MATH 1311

Section 5.3

Modelling Data with Power Functions:

You can model power function data (or near power function data) by using the regression feature within the calculator.

As in previous examples, you can input your values using STAT \rightarrow Edit and then L1 and L2. The command for power function regression is PwrReg.

Example:

A balloon is inflated at a constant rate. Its radius and volume are recorded in the following table:

Radius r	1	2	3	4	5
Volume V	4.19	33.51	113.10	268.08	523.60

Create the power function that will best represent this data.

Example:

A balloon is inflated at a constant rate. Its radius and volume are recorded in the following table:

Radius r	1	2	3	4	5
Volume V	4.19	33.51	113.10	268.08	523.60

Create the power function that will best represent this data.

L1	L2	L3 2
1	4.19	
2	33.51	
3	113.1	
4	268.08	
5	523.6	
L2(6) =		

PwrReg
y=a*x^b
a=4.189716194
b=2.999830868

Comparison of Scatterplot and Graphs

Repeat this process for the radius and surface area of the same balloon:

Radius r	1	2	3	4	5
Surface area S	12.57	50.27	113.10	201.06	314.16

Repeat this process for the radius and surface area of the same balloon:

Radius r	1	2	3	4	5
Surface area S	12.57	50.27	113.10	201.06	314.16

Based on the tensile strength of the rubber used to manufacture this balloon, it can stretch to a surface area of 400 square inches before popping. At what radius will that occur?

Kepler's Third Law:

Kepler discovered that there was a relationship between the average distance a planet is from the sun and the amount of time it takes to complete one orbit. The following data shows these values for our solar system:

Planet	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Distance D	36.0	67.1	92.9	141.7	483.4	886.1	1782.7	2793.1	3666.1
Period P	0.24	0.62	1	1.88	11.87	29.48	84.07	164.90	249

Create the power function for this data.

Kepler's Third Law:

Kepler discovered that there was a relationship between the average distance a planet is from the sun and the amount of time it takes to complete one orbit. The following data shows these values for our solar system:

Planet	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Distance D	36.0	67.1	92.9	141.7	483.4	886.1	1782.7	2793.1	3666.1
Period P	0.24	0.62	1	1.88	11.87	29.48	84.07	164.90	249

Kepler's Third Law states that the average distance cubes divided by the period squared must be constant for each planet (d^3/p^2) . Does your model confirm this?

The velocity of a projectile launched from the ground (during its ascent) is given by the following table:

-					
time (seconds)	1	5	10	12	15
velocity (mph)	350	14	3.5	2.43	1.56

- 1. Determine the power function for the projectile's velocity.
- 2. When will the projective slow to 0.01 mph (nearest 10 seconds)?