MATH 1311

Section 6.3

Estimating Rates of Change

As seen earlier in the course, we can estimate a rate of change by using the Average Rate of Change formula:

$$
A R O C=\frac{\text { Change in } y-\text { value }}{\text { Change in } x-\text { value }}
$$

Example:

The data from an airplane gives the distance from Los Angeles at two different time intervals:

Time	1:00 P.M.	1:30 p.M.
Distance from L.A.	360 miles	612 miles

Use this data to calculate the average velocity of the airplane, then estimate its distance from L.A. at the 1:20 pm.

Note: this method will only give estimated values in most cases.

Example:

Water is leaking from a tank. The amount of water remaining in the tank is given in the table as a function of hours.

$\boldsymbol{t}=$ hours	0	3	6	9	12
$\boldsymbol{W}=$ gallons left	860	725	612	515	433

Explain the meaning of $\mathrm{dW} / \mathrm{dt}$ in terms of this problem. Estimate the value of $\mathrm{dW} / \mathrm{dt}$ when $\mathrm{t}=6$ using the time interval $[3,6]$ and $[6,9]$.

What can you say about how fast water is leaking from the tank based on these figures?

Example:

Water is leaking from a tank. The amount of water remaining in the tank is given in the table as a function of hours.

$\boldsymbol{t}=$ hours	0	3	6	9	12
$\boldsymbol{W}=$ gallons left	860	725	612	515	433

Explain the meaning of $\mathrm{dW} / \mathrm{dt}$ in terms of this problem. Estimate the value of $\mathrm{dW} / \mathrm{dt}$ when $\mathrm{t}=6$ using the time interval $[3,6]$ and $[6,9]$.

Use each of these values of $\mathrm{dW} / \mathrm{dt}$ to estimate the amount of water in the tank at $\mathrm{t}=8$.

Rates of Change for Functions given by Formulas

If you are given a formula and wish to determine the rate of change at a specific value, you want to create your own table close to that data point (usually less than 1 unit away to ensure accuracy).

Then, repeat the process that was just performed.

Example:

The amount of cells in a bacteria colony is increasing at a rate given by the formula:
$b(t)=3500 e^{2 t}$ where t is measured in hours.

Describe in words the meaning of the $\mathrm{db} / \mathrm{dt}$ for this situation.

Calculate the value for $\mathrm{db} / \mathrm{dt}$ close to $\mathrm{t}=5$. Use $t=5$ and $t=5.001$ for your calculations.

Use this value to estimate the number of cells in the colony for after 5 hours and 15 minutes.

The profit that a company makes for producing n -items is given by the formula: $p(n)=12 n^{2}-60 n$.

1. Calculate the value of $d p / d n$ for $n=2.5$ using values of [2.499, 2.5].
2. Use this to estimate the profit for producing $n=3$ items.
3. Calculate the value of $d p / d n$ for $n=2.5$ using values of [2.5, 2.501].
4. Use this to estimate the profit for producing $n=3$ items.
5. What does this tell you about the value of $n=2.5$ in this situation?
