MATH 1311

Section 6.5

Equilibrium or Steady State Equations:

When an object is dropped from an airplane, there are two opposing forces acting upon the object:

Acceleration due to gravity will cause an object to speed up as it dropped.

Slowing down due to resistance from air molecules.

These will eventually balance out to an steady-state, known as terminal velocity.

Why are we still alive?

Our solar system is based on two opposing forces:

Centripetal force is constantly pushing us out into space (think about when you are driving around a sharp turn).

Gravitational attraction from the sun is constantly pulling us towards the sun.

The balance is that we are in a stable orbit.....or are we?

Equations of Equilibrium:

Equilibrium or Steady State Equations must have a rate of change equal to 0 .

For the falling object:
$\mathrm{A}=\mathrm{g}-\mathrm{rV}=32-0.1818 \mathrm{~V} \quad$ [You would be given these values.]
Determine the value of V , assuming that this equation is at equilibrium.

Continuing with the idea of a falling object:

We saw that the value of x placing this equation at equilibrium is 176.018.

We know that our limiting value of the velocity is: 176.018 and our rate of change would be: $\mathrm{e}^{(-1 / 1818) t}$. We also know that velocity will begin lower than our limiting value and increase to 176.018 .

Find the velocity function of a falling object with air resistance:

Continuing with the idea of a falling object:

We saw that the value of x placing this equation at equilibrium is 176.018.

We know that our limiting value of the velocity is: 176.018 and our rate of change would be: $\mathrm{e}^{(-1 / 1818) t}$. We also know that velocity will begin lower than our limiting value and increase to 176.018 .

Find the velocity function of a falling object with air resistance:
$\mathrm{v}(\mathrm{t})=176.018-\mathrm{ke}^{(-1 / 1818) \mathrm{t}}$

Determine the value of k is the initial velocity of the object is 0 :

Determine the value of k is the initial velocity of the object is 0 :
 $k=176.018$

Making the function:
$\mathrm{v}(\mathrm{t})=176.018-176.018 \mathrm{e}^{(-1 / 1818) \mathrm{t}}=176.018\left(1-\mathrm{e}^{(-1 / 1818) \mathrm{t}}\right)$
How fast the object reaches terminal velocity will be determined by the atmospheric conditions (temperature, pressure, humidity, etc).

