MATH 1311

Test 2 Review

Solve the equation:

 $5(x+3)-2 x=-x-(x+3)$
Solve the equation for x : $5 x y+8 x-6 y=10 x+8 x-7 x y+2$

Solve the equation for c : $a b+3 a c-4 c=c+5$

The number of people in a certain city is given by the equation, where x is measured in years and $P(x)$ is measured in millions of people.

$$
P(x)=\frac{14}{1.2+0.2^{x-1}}
$$

Find the initial value of the equation, and interpret its meaning.

The number of people in a certain city is given by the equation, where x is measured in years and $P(x)$ is measured in millions of people.

$$
P(x)=\frac{14}{1.2+0.2^{x-1}}
$$

What is the population after 2 years?

The number of people in a certain city is given by the equation, where x is measured in years and $P(x)$ is measured in millions of people.

$$
P(x)=\frac{14}{1.2+0.2^{x-1}}
$$

When will the population reach 9 million people?

The number of people in a certain city is given by the equation, where x is measured in years and $P(x)$ is measured in millions of people.

$$
P(x)=\frac{14}{1.2+0.2^{x-1}}
$$

Will the population ever level out? If so, to what value?

A stone is thrown upwards from the top of a building at an initial speed of 35 mph . Its height is given by the formula:
$h(t)=-16 t^{2}+35 t+120$
where t is measured in seconds after being thrown and $h(t)$ is measured in feet.

What is the height of the building?

A stone is thrown upwards from the top of a building at an initial speed of 35 mph . Its height is given by the formula:
$h(t)=-16 t^{2}+35 t+120$
where t is measured in seconds after being thrown and $h(t)$ is measured in feet.

When will the stone reach the ground?

A stone is thrown upwards from the top of a building at an initial speed of 35 mph . Its height is given by the formula:
$h(t)=-16 t^{2}+35 t+120$
where t is measured in seconds after being thrown and $h(t)$ is measured in feet.

What is the maximum height of the stone? When will this happen?

The following table relates variables x and y :

x	-3	-2	-1	0	1	2
y	12	10	8	6	4	2

Is this a linear relationship?

The following table relates variables x and y :

x	-3	-2	-1	0	1	2
y	12	10	8	6	4	2

What is the slope of the line?

The following table relates variables x and y :

x	-3	-2	-1	0	1	2
y	12	10	8	6	4	2

What is the y-intercept of the line?

The following table relates variables x and y :

x	-3	-2	-1	0	1	2
y	12	10	8	6	4	2

What is the equation of the line?

The following table relates variables x and y :

x	-3	-2	-1	0	1	2
y	12	10	8	6	4	2

Use this equation to estimate the y-value that corresponds to an x value of 5 .

Based on the near-linear data, determine the equation of the linear model that most closely matches the data:

$$
\begin{array}{|r|r|r|r|r|r|r|}
\hline \mathrm{x} & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline \mathrm{y} & 10 & 14 & 17 & 23 & 26 & 31 \\
\hline
\end{array}
$$

Based on the near-linear data, determine the equation of the linear model that most closely matches the data:

x	0	1	2	3	4	5
y	10	14	17	23	26	31

How accurate (as a percent) is this linear model?

Based on the near-linear data, determine the equation of the linear model that most closely matches the data:

x	0	1	2	3	4	5
y	10	14	17	23	26	31

Use the linear model to find the value of p in the following coordinate point: $(7, p)$

The pitch of a roof has a slope of 1.5. If the peak of the roof is 12 feet higher than the walls, and located in the exact center of the house, how wide is the house?

A parking lot charges $\$ 7$ for a car and $\$ 10$ for a bus to park for the day. The lot sold 30 parking tickets for the day and earned $\$ 234$.

Write an equation for the number of vehicles parked.

A parking lot charges $\$ 7$ for a car and $\$ 10$ for a bus to park for the day. The lot sold 30 parking tickets for the day and earned \$234.

Solve this equation for c .

A parking lot charges $\$ 7$ for a car and $\$ 10$ for a bus to park for the day. The lot sold 30 parking tickets for the day and earned \$234.

Write an equation for the revenue of parking those vehicles.

A parking lot charges $\$ 7$ for a car and $\$ 10$ for a bus to park for the day. The lot sold 30 parking tickets for the day and earned \$234.

Solve this equation for c .

A parking lot charges $\$ 7$ for a car and $\$ 10$ for a bus to park for the day. The lot sold 30 parking tickets for the day and earned $\$ 234$.

Solve the system (using a graphing calculator).

Using the crossing method, solve the following equation:

$$
\sqrt{x^{2}-5 x+12}=3^{x}
$$

Provide a sketch of both graphs (label your axis with a scale and label your intersection point).

A linear equation has the values of $g(-3)=5$ and $g(2)=15$. Determine the equation of the linear function, and use it to find $g(10)$.

Popper 17

Questions 1 -5, bubble in Answers Choice A.

