Math 1314
 Lesson 10
 Elasticity of Demand

Suppose you owned a small business and needed to make some decisions about the pricing of your products. It would be helpful to know what effect a small change in price would have on the demand for your product. If a price change will have no real change on demand for the product, it might make good sense to raise the price. However, if a price increase will cause a big drop in demand, then it may not be a good idea to raise prices.

There is a measure of the responsiveness of demand for product or service to a change in its price: elasticity of demand. This is defined as
percentage change in demand
percentage change in price
The derivation of the following formula can be found in the online book.

Elasticity of Demand

$E(p)=-\frac{p \cdot f^{\prime}(p)}{f(p)}$, where p is price and $f(p)$ is the demand function, differentiable at $x=p$.

The expression $\frac{p \cdot f^{\prime}(p)}{f(p)}$ is almost always negative, but since we're interested in magnitude
(size), we work with the negative of this ratio to give the elasticity of demand.

Revenues Response To Elasticity

If demand is unitary at p, then

- An increase in unit price will cause the revenue to stay about the same.

This type of elasticity really does not occur. But the best example that can be given to describe it would be: a price increase of 5% will result in a reduction in demand of 5%; a price reduction of 10% will result in an increase in demand of 10%. Demand is said to be unitary if $E(p)=1$.

If demand is elastic at p, then

- total revenue decreases as price increases.
- total revenue increases as price decreases.

Example: Airfare Demand is said to be elastic if $E(p)>1$.

If demand is inelastic at p, then

- total revenue decreases as price decreases.
- total revenue increases as price increases.

Example: Super Bowl Tickets Demand is said to be inelastic if $E(p)<1$.

Example 1: If $E(p)=\frac{1}{2}$ when $p=\$ 250$, then the demand is?

Example 2: If $E(p)=\frac{3}{2}$ when $p=\$ 250$, then the demand is?

Example 3: State whether the each of the following is elastic or inelastic.
a. Tap Water
b. Mrs. Baird's Bread
c. Hershey's Milk Chocolate Bar

Example 4: Given $x=f(p)=-2 p+15$, determine if demand is elastic, inelastic or unitary when $p=\$ 4$
Recall: $E(p)=-\frac{p \cdot f^{\prime}(p)}{f(p)}$

Example 5: Suppose the demand function for a product is given by $p=-0.02 x+400$. This function gives the unit price in dollars when x units are demanded.
a. Find the elasticity of demand.
$E(p)=-\frac{p \cdot f^{\prime}(p)}{f(p)}$
b. Find $E(\$ 100)$ and interpret the results.
c. Find $E(\$ 300)$ and interpret the results.

