Review Final Exam Math 1330:

1. The graph of the function:  $f(x) = \frac{4x^2 + x - 2}{x^2 + x - 3}$  has a horizontal asymptote. If the graph crosses this asymptote, give the *x*-coordinate of the intersection. Otherwise, state that the graph does not cross the asymptote.

2. Let  $f(x) = 5 \ln(x)$  and  $g(x) = e^{3x}$ . Find  $(f \circ g)(4)$ .

3. Given  $f(x) = -x^2 + 2x - 1$ : find the difference quotient  $\frac{f(x+h)-f(x)}{h}$  and simplify it when x =1.

4. In the figure below, angle B is a right angle,  $m(D) = 45^{\circ}$  and  $m(ACB) = 60^{\circ}$ . If AC = 16, find the length of AD.



- 5. Simplify the following expression:  $(1 \cos \theta)(\csc \theta + \cos \theta)$ .
- 6. Let P(x,y) denote the point where the terminal side of an angle  $\theta$  meets the unit circle. If P is in Quadrant II and  $y = \frac{3}{4}$  find sec  $\theta$  and cot  $\theta$ .

7. Given  $f(x) = 2 \cot \left( 5x - \frac{\pi}{6} \right)$ . Find the vertical asymptotes for f(x).

- 8. Find a sine function with positive vertical displacement satisfying : The amplitude is 8, the horizontal shift is  $\frac{\pi}{6}$  units to the right, the vertical shift is 3 units up and the period  $\frac{\pi}{10}$ .
- 9. Point P has the coordinates (1,4). Find the function. One asymptote is the y-axis.



10. Simplify: 
$$\frac{8\cos(-t)\sin(-t)}{\tan(-t)\cot(t+3\pi)}$$

11. Evaluate the flowing expression: 
$$\frac{\sin\left(-\frac{35\pi}{6}\right) cos\left(\frac{32\pi}{3}\right)}{tan\left(\frac{43\pi}{4}\right)}$$

12. Find the exact value of the expression: 
$$\cos\left(\tan^{-1}\left(\frac{12}{5}\right)\right)$$

13. Evaluate the following expression:  $\sin^{-1}(1) + \cos^{-1}(-1) + \tan^{-1}(-\sqrt{3})$ 

14. Give tan(x) = 4 and  $0 < x < \pi$ : find the value for sin(2x).

15. Solve the following equation on the interval  $[0, 2\pi)$ .

$$2\sin^2(x) - 3\sin(x) - 5 = 0$$

## 16. Given the following:

$$0 < x < \frac{\pi}{2}$$
,  $0 < y < \pi$ ,  $\sin(x) = \frac{1}{5}$ ,  $\sin y = \frac{1}{4}$ 

Evaluate: a.  $\cos(x - y)$ 

- b.  $\cos(2x)$
- 17. Solve the following equation over the interval  $[0, \frac{2\pi}{3}]$ :  $4\sin(3x) 2 = 4$

18. Classify  $16x^2 - 4y^2 + 32x - 48y - 192 = 0$ 

19. Find the area of  $\Delta XYZ$  if  $\angle 45^{\circ}$ , z = 7 and x = 4.

20. Given  $\triangle ABC$  with AB = 5 and  $BC = \frac{5\sqrt{3}}{3}$ . The measure of  $\angle A$  is 30°. How many choices are there for the measure of  $\angle C$ ?

21. Given  $\triangle ABC$  with  $\angle A = 60^{\circ}$ ,  $\angle B = 45^{\circ}$ , and BC = 32 cm. Find AC. (All answers are in cm.)

22. Given the conic system: 
$$3x^2 + 2y^2 = 17$$
  
 $x^2 - y^2 = -1$ 

- a. Identify the conic section represented by the first equation.
- b. Identify the conic section represented by the second equation.
- c. Find the point of intersection.

23. Write in standard form:  $25x^2 + 4y^2 - 100x + 8y + 4 = 0$ 

24. Find the magnitude:  $\mathbf{v} = 4\mathbf{i} - 4\mathbf{j}$ 

25. Given the vector:  $\mathbf{v} = \langle -2\sqrt{3}, 2 \rangle$  Find the direction angle of this vector.

26. Give all possible polar coordinates for the point  $(3\sqrt{3}, -3)$  given in rectangular coordinates. (In the choices below, *n* represents any integer.)