Section 8.2
 Ellipses

An ellipse is the set of all points, the sum of whose distances from two fixed points is constant. Each fixed point is called a focus (plural = foci).

Basic "Vertical" Ellipse (centers at origin):

Basic "vertical" ellipse:
Equation: $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1, a>b$

Foci: $(0, \pm c)$, where $c^{2}=a^{2}-b^{2}$

Vertices: $(0, \pm a)$

Eccentricity: $e=\frac{c}{a}$

The eccentricity provides a numerical measure of how much the ellipse deviates from being a
 circle. The eccentricity e is a number between 0 and 1 .

Basic "Horizontal" Ellipse:

Equation: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$
Foci: $(\pm c, 0)$, where $c^{2}=a^{2}-b^{2}$

Vertices: $(\pm a, 0)$

Eccentricity: $e=\frac{c}{a}$

For ellipses, the line segment joining the vertices is called the Major Axis (length 2a) and the line segment through the center and perpendicular to the major axis with endpoints on the ellipse is called the Minor Axis (length 2b).

Graphing Ellipses

To graph an ellipse with center at the origin:

- Rearrange into the form $\frac{x^{2}}{\text { number }}+\frac{y^{2}}{\text { number }}=1$.
- Decide if it's a "horizontal" or "vertical" ellipse.

0 if the bigger number is under x^{2}, it's horizontal (longer in x-direction).
0 if the bigger number is under y^{2}, it's vertical (longer in y-direction).

- Use the square root of the number under x^{2} to determine how far to measure in x-direction.
- Use the square root of the number under y^{2} to determine how far to measure in y-direction.
- Draw the ellipse with these measurements. Be sure it is smooth with no sharp corners
- $c^{2}=a^{2}-b^{2}$ where a^{2} and b^{2} are the denominators. (Subtract the small denominator from the large denominator to get c^{2}.)
- The foci are located c units from the center on the long axis.

To graph an ellipse with center not at the origin:

- Rearrange (complete the square if necessary) to look like $\frac{(x-h)^{2}}{\text { number }}+\frac{(y-k)^{2}}{\text { number }}=1$.

Start at the center (h, k) and then graph it as before.

Example 1: Graph $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. Find the center, vertices, foci, lengths of Major and Minor Axes, the coordinates of the Major and Minor Axes and the eccentricity.

Example 2: Graph $4 x^{2}-8 x+9 y^{2}-54 y=-49$. Find the center, vertices, foci, lengths of Major and Minor Axes, the coordinates of the Major and Minor Axes and the eccentricity.

Example 3: Find the equation for the ellipse satisfying the given conditions.
Foci are $(-2,-3)$ and $(-2,5), \mathrm{a}=8$.

Math 1330 Section 8.2B
Example 4: Find the equation for the ellipse satisfying the given conditions Foci : $(0,4)$ and $(0,-4)$ and sum of foci radii is 10 .

Example 5: Given that foci $(-2,-1)$ and (6. -1), passes through the point $(2,2)$. Write the equation for the ellipse in standard form.

Math 1330 Section 8.2B
Example 6: Graph the ellipse and state the foci.
$\frac{x^{2}}{25}+\frac{(y-1)^{2}}{36}=1$

