Section 8.3

Hyperbolas

A hyperbola is the set of all points, the difference of whose distances from two fixed points is constant. Each fixed point is called a focus (plural = foci).

The focal axis is the line passing through the foci.

Basic "Vertical" Hyperbola:

Equation: $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

Asymptotes: $y= \pm \frac{a}{b} x$
Foci: $(0, \pm c)$, where $c^{2}=a^{2}+b^{2}$

Vertices: $(0, \pm a)$

Eccentricity: $e=\frac{c}{a}$

Basic "Horizontal" Hyperbola:

Equation: $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Asymptotes: $y= \pm \frac{b}{a} x$

Foci: $(\pm c, 0)$, where $c^{2}=a^{2}+b^{2}$
Vertices: $(\pm a, 0)$

Eccentricity: $e=\frac{c}{a}$

The transverse axis (length 2a) is the line segment joining the two vertices. The conjugate axis (length 2b) is the line segment perpendicular to the transverse axis, passing through the center and extending a distance b on either side of the center.

Graphing Hyperbolas:

To graph a hyperbola with center at the origin:

- Rearrange into the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ or $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$.
- Decide if it's a "horizontal" or "vertical" hyperbola.

0 if x^{2} is positive, it's horizontal (vertices are on x-axis).
0 If y^{2} is positive, it's vertical (vertices are on y-axis).

- Use the square root of the number under x^{2} to determine how far to measure in x-direction.
- Use the square root of the number under y^{2} to determine how far to measure in y-direction.
- Draw a box with these measurements.
- Draw diagonals through the box. These are the asymptotes. Use the dimensions of the box to determine the slope and write the equations of the asymptotes.
- Put the vertices at the edge of the box on the correct axis. Then draw a hyperbola, making sure it approaches the asymptotes smoothly.
- $c^{2}=a^{2}+b^{2}$ where a^{2} and b^{2} are the denominators.
- The foci are located c units from the center, on the same axis as the vertices.

To graph a hyperbola with center not at the origin:

- Rearrange (complete the square if necessary) to look like
$\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$ or $\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1$.
- Start at the center (h, k) and then graph it as before.
- To write down the equations of the asymptotes, start with the equations of the asymptotes for the similar hyperbola with center at the origin. Then replace x with $x-h$ and replace y with $y-k$.

Math 1330 Section 8.3
Example 1: Graph $\frac{x^{2}}{36}-\frac{y^{2}}{4}=1$. Find the center, vertices, foci, asymptotes, length and coordinates of both Transverse and Conjugate Axes and the eccentricity.

Math 1330 Section 8.3
Example 2: Graph $y^{2}-25 x^{2}+8 y-9=0$. Find the center, vertices, foci, asymptotes, length and coordinates of both Transverse and Conjugate Axes and the eccentricity.

Math 1330 Section 8.3
Example 3: Given: $\frac{(x-2)^{2}}{16}-\frac{(y-3)^{2}}{9}=1$. Find the center, vertices, foci, asymptotes, length and coordinates of both Transverse and Conjugate Axes and the eccentricity

Math 1330 Section 8.3

Example 4: Use the following information to write the equation for the hyperbola in standard form. Vertices: $(2,2)$ and $(8,2), \quad b=4$

Example 5: Use the following information to write the equation for the hyperbola in standard form. Foci are $(-4,0)$ and $(4,0)$ and the length of conjugate axis is 6 .

