Section 5.3b Graphs of the Tangent and Cotangent Functions

Recall: $\tan x = \frac{\sin x}{\cos x}$ so where $\cos x = 0$, $\tan x$ has an asymptote and where $\sin x = 0$, $\tan x$ has an *x*-intercept.

How to graph $y = A \tan(Bx - C)$:

1. The period is given by $\frac{\pi}{B}$. Find two consecutive asymptotes by setting Bx – C equal to $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ and then solve for x

then solve for *x*.

2. Find an *x*-intercept by taking the average of the two points on the *x*-axis where consecutive asymptotes pass.

3. Find the points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the consecutive asymptotes. The *y*-coordinates of these points are -A and A.

Example 1: Describe the transformations of $f(x) = -\tan(5x) - 3$. Then find the period and asymptotes.

Example 2: Given: $f(x) = 2 \tan \left(\frac{x}{4}\right)$. Find the period of the function. Show the two asymptotes of the graph of the function. List one x intercept and the coordinates of two other points.

Recall: $\cot x = \frac{\cos x}{\sin x}$ so where $\cos x = 0$, $\cot x$ has an *x*- intercept and where $\sin x = 0$, $\cot x$ has an asymptote.

How to graph $y = A \cot(Bx - C)$:

1. The period is given by $\frac{\pi}{B}$. Find two consecutive asymptotes by setting Bx - C equal to 0 and π and then

solve for *x*.

2. Find an *x*-intercept by taking the average of the two points on the *x*-axis where consecutive asymptotes pass. 3. Find the points on the graph $\frac{1}{4}$ and $\frac{3}{4}$ of the way between the consecutive asymptotes. The *y*-coordinates of these points are -A and A.

Example 3: Graph $f(x) = 5 \cot(2x)$. Find the period of the function. Show the two asymptotes of the graph of the function. List one x intercept and the coordinates of two other points.

Example 4: Graph $f(x) = -2\cot\left(\frac{\pi}{4}x\right)$. Find the period of the function. Show the two asymptotes of the graph of the function. List one x intercept and the coordinates of two other points.

Math 1330 Section 5.3b

Extra Review for Test 3: **Example 1:** Graph $f(x) = 3\cos(4x)$

Example 2: Given the following sine curve and the fact that point A has coordinates (6, -3), what is the equation in terms of sine function that produces this graph?

