Section 5.4b

Inverse Trigonometric Functions and Models
Here is a summary of properties that maybe helpful when evaluating inverse trigonometric functions:

$$
\begin{array}{lll}
\sin \left(\sin ^{-1}(x)\right)=x & \text { when } & x \in[-1,1] \\
\cos \left(\cos ^{-1}(x)\right)=x & \text { when } & x \in[-1,1] \\
\tan \left(\tan ^{-1}(x)\right)=x & \text { when } & x \in(-\infty, \infty) \\
\sin ^{-1}(\sin (x))=x & \text { when } & x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \\
\cos ^{-1}(\cos (x))=x & \text { when } & x \in[0, \pi] \\
\tan ^{-1}(\tan (x))=x & \text { when } & x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
\end{array}
$$

Example 1: Find the exact value, if possible.
a. Find $\tan ^{-1}(-\sqrt{3})$
b. Evaluate: $\boldsymbol{\operatorname { s i n }}^{-\mathbf{1}}(\boldsymbol{\operatorname { s i n }}(\boldsymbol{\pi}))$
c. Evaluate: $\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\operatorname { c o s }}^{-1}(\boldsymbol{\pi})\right)$

Example 2: Evaluate $\cos \left(\sin ^{-1}\left(-\frac{3}{4}\right)\right)$

Example 3: Evaluate $\cot \left(\csc ^{-1}\left(\frac{7}{4}\right)\right)$.

Example 4: Find the exact value: $\cos \left[\sin ^{-1}\left(\frac{5}{13}\right)\right]$.

Models

As we know, trigonometric functions repeat their behavior. Breathing normally, brain waves during deep sleep are just a couple of examples that can be described using a sine function.

Example 5: Determine the equation of the sine function which has amplitude is 5, the phase shift is 4 to the left, the vertical shift is 3 down, and the period is 2 .

Example 6: The number of hours of daylight in Boston is given by $f(x)=3 \sin \frac{2 \pi}{365}(x-79)+12$, where x is the number of days after January 1. What is the:
a. amplitude?
b. period?

Example 7: Determine the equation of the form $f(x)=A \sin (B x)$ for the following graph.

Example 8: Determine the equation of the form $f(x)=A \sin B(x-C / B)+D$ for the following graph.

Example 9: Your fishing bobber oscillates in simple harmonic motion from the waves in the lake where you fish. Your bobber moves a total of 1.5 inches from its high point to its low point and returns to its high point every 3 seconds. Write an equation of the form $f(x)=A \cos (B x)$ modeling the motion of your bobber, if it is at its high point at time $\mathrm{t}=0$.

Example 10: Assume you are aboard a submarine. You begin to alternate deeper and then shallower. At time $t=5 \mathrm{~min}$ you are at your deepest, $\mathrm{y}=-900 \mathrm{~m}$. At time $\mathrm{t}=10 \mathrm{~min}$ you next reach your shallowest, $\mathrm{y}=-300 \mathrm{~m}$. Assume y varies with time. Find an equation of the form $f(x)=A \cos B(x-C / B)+D$ that describes this situation.

