Math 1330 Section 5.1b

5.1b Start of Identities

Learn these now
Reciprocal Identities

$$
\begin{aligned}
& \frac{\sin \theta}{\cos \theta}=\tan \theta \\
& \sec \theta=\frac{1}{\cos \theta}, \quad \csc \theta=\frac{1}{\sin \theta}, \quad \cot \theta=\frac{1}{\tan \theta}
\end{aligned}
$$

Pythagorean Identities:

$$
\begin{aligned}
& \sin ^{2}(t)+\cos ^{2}(t)=1 \\
& \tan ^{2}(t)+1=\sec ^{2}(t) \\
& 1+\cot ^{2}(t)=\csc ^{2}(t)
\end{aligned}
$$

Opposite Angle Identities

$$
\begin{aligned}
& \sin (-t)=-\sin (t) \\
& \cos (-t)=\cos (t) \\
& \tan (-t)=-\tan (t) \\
& \csc (-t)=-\csc (t) \\
& \sec (-t)=\sec (t) \\
& \cot (-t)=-\cot (t)
\end{aligned}
$$

Example 1: Simplify: $\cot (-t) \sec (-t)$

Here's another set of identities:

Periodicity

The sine and cosine functions are periodic functions. That means that there is some number p such that $f(x+p)=f(x)$. The number p is the period of the function. So

$$
\begin{array}{lll}
\sin (t+2 \pi)=\sin (t) & \text { more generally } & \sin (t+2 k \pi)=\sin (t) \\
\cos (t+2 \pi)=\cos (t) & & \cos (t+2 k \pi)=\cos (t)
\end{array}
$$

for all real numbers t and all integers k .
The tangent and cotangent functions are also periodic functions. However, these functions repeat themselves when $\mathbf{p}=\pi$. So

$$
\begin{array}{lrr}
\tan (t+\pi)=\tan (t) & \text { more generally } & \tan (t+k \pi)=\tan (t) \\
\cot (t+\pi)=\cot (t) & & \cot (t+k \pi)=\cot (t)
\end{array}
$$

for all real numbers t and all integers k .
Note: the period for the sine and cosine functions is 2π while the period for the tangent and cotangent functions is π.

The secant and cosecant functions are the reciprocal functions, so they will follow the same periodicity rules as sine and cosine.

```
\(\sec (t+2 \pi k)=\sec (t)\)
\(\csc (t+2 \pi k)=\csc (t) \quad\) for all real numbers \(t\) and all integers \(k\).
```

Example 2: Simplify: $\frac{1+\tan (t-\pi)}{1+\cot (t+2 \pi)}$

Math 1330 Section 5.1b
Example 3: Suppose that $\csc (x)=\frac{4}{3}$ and that $0<x<\frac{\pi}{2}$. Compute $\cot (x-74 \pi)$.

Example 4: Simplify.
$\frac{\sin (t+6 \pi) \csc (t-2 \pi)}{\cot (t+\pi)+\tan (t+2 \pi)}$

Example 5: Find the equivalent: $\frac{\sec ^{2} x-1}{\sec ^{2} x}$.

Math 1330 Section 5.1b
Example 6: Find the equivalent: $\frac{1}{1-\cos \theta}+\frac{1}{1+\cos \theta}$

