7.1

In this lesson, we'll solve problems involving triangles. We'll start by working with right triangles, but we will also solve problems involving oblique and acute triangles (triangles which do not contain a right angle).

Note that a calculator will be needed for most of the problems we will do in class. Test problems will involve angles for which no calculator is needed (e.g., $30^{\circ}, 45^{\circ}, 60^{\circ}, 120^{\circ}$, etc.). So you will still need those unit circle values.

Example 1: Use properties of special triangles to find x and y.

Example 2: Suppose x represents an acute angle in a right triangle. Use a calculator to find x and round to the nearest hundredth of a degree.
$\tan (x)=\frac{12}{7}$

Example 3: In $\triangle A B C$ with right angle $C, \angle A=46^{\circ}$ and $A C=12$. Find $B C$. Round the answer to the nearest hundredth.

Example 4: An isosceles triangle has sides measuring 9 inches, 14 inches, and 14 inches. What are the measures of its angles?

Example 5: A 46 foot ladder is leaned against the side of a building. If the ladder forms a 41° angle with the ground, how high up the side of the building does the ladder reach?

Angle of Elevation; Angle of Depression:
An angle of elevation is an angle that is formed by a horizontal ray and another ray above the horizontal. For example, in viewing an object at a point above the horizontal, the angle between the line of sight and the horizontal is the angle of elevation as shown in the figure below.

Example 6: The angle of elevation to the top of a building from a point on the ground 125 feet away from the building is $\mathbf{8}^{\circ}$. How tall is the building?

An angle of depression is an angle that is formed by a horizontal ray and another ray below the horizontal. For example, in viewing an object at a point below the horizontal, the angle between the line of sight and the horizontal is the angle of depression as shown in the figure below.

Example 7: The sonar of a navy cruiser detects a submarine that is 4000 feet from the cruiser. The angle between the water line and the submarine is 34°. How deep is the submarine?

