7.2 Area of a Triangle

Area of a Triangle

Recall the area of a triangle is given by $A=\frac{1}{2} b h$.

$$
\begin{aligned}
& \text { Area of a triangle } \\
& \qquad A=\frac{1}{2} a b \sin \theta
\end{aligned}
$$

a, b are the lengths of two sides of a triangle θ is the angle between them.

Example 1: Find the exact area of the triangle.
A.

Example 2: Find the area of an isosceles triangle with legs measuring 7 inches and base angles measuring 22.5°.

Example 3: If the area of $\triangle A B C$ is 20 square centimeters, $a=16 \mathrm{~cm}$ and $\mathrm{c}=5 \mathrm{~cm}$, find all possible measures for angle B.

Example4: A regular hexagon is inscribed in a circle of radius 4 m . Find the area of the hexagon. Note: Regular means that all of the sides are equal and all of the angles are equal

Example 5: Find the area of a regular octagon with side length 16. (Hint: we will use trigonometry and the geometric version of area of a triangle).

Area of a Segment of a Circle
You can also find the area of a segment of a circle. The shaded area of the picture is an example of a segment of a circle.

To find the area of a segment, find the area of the sector with central angle θ and radius $O A$. Then find the area of $\triangle O A B$. Then subtract the area of the triangle from the area of the sector.

Example 6: Find the area of the segment of the circle with radius 8 and central angle measuring $\frac{\pi}{4}$. Give an exact answer.

Example 7: In triangle $A B C$, the measure of Angle A is $2 x$, the length of $A B$ is 5, and the length of $A C$ is $\frac{\sqrt{6}}{4}$. If $\sin (x)=\frac{1}{5}$, what is the area of the triangle.

