MATH 1342

Test 3 Review 20 Multiple Choice Questions:

10 Questions (7 points each)

10 Questions (3 points each) [2 groups of 5 questions, 1 question per step] Topics to know:

When to use each type of test.
z-test vs. t-test for means
Concluding based on p vs α
Effects of changes to the
Confidence Interval

Hypothesis tests:

Test	Null Hypothesis	Test Statistic
One-sample z-test for means	$\mu = \mu_o$	$z = \frac{\overline{x} - \mu_o}{\frac{\sigma}{\sqrt{n}}}$
One-sample t-test for means	$\mu = \mu_o$	$t = \frac{\overline{x} - \mu_o}{\frac{s}{\sqrt{n}}}; df = n - 1$
Matched Pairs t-test	$\mu_D = \mu_{D_0}$	$t = \frac{\overline{x_D} - \mu_D}{s / \sqrt{n}}; df = n - 1$
One-sample z-test for proportions	$p = p_o$	$z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}}$
Two-sample t-test for means	$\mu_1 - \mu_2 = 0$ or $\mu_1 = \mu_2$	$t = \frac{\overline{x_1} - \overline{x_2}}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}; df = \min(n1, n2) - 1$
Two-sample z-test for proportion	$p_1 - p_2 = 0$ or $p_1 = p_2$	$z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\left(\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}\right)}}$
χ^2 Goodness of fit test	no change	$\chi^2 = \sum \frac{(\text{observed} - \text{expected})^2}{\text{expected}}$

Confidence Intervals

General formula: statistic ± margin of error

One-sample z-test:	$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}}$
Two-proportion z-test	$:: (\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} $
One-sample t-test:	$\overline{x} \pm t^* \frac{s}{\sqrt{n}}$
One-proportion z-test	t: $\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Two-sample z-test:	$(\overline{x}_1 - \overline{x}_2) \pm z * \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
Two-sample t-test:	$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

An 80% confidence interval was calculated to show the difference in passing percentages of the Biology Final Exam and Algebra Final Exam. The resulting interval was [.04, .12].

Answer the following, if it is possible to calculate:

- The difference in the sample proportions.
- The pass rate of the Algebra Final Exam.
- The margin of error for the difference between these passrates.
- Are the two samples of equal size?
- Was a t-test or a z-test used?
- Which final exam had the higher passrate?

A confidence interval is calculated using a twosample t-test for means and the resulting interval was [10, 30]. Determine the difference in sample means and the margin of error of this interval. A study was conducted to determine the mean number of traffic tickets a person receives by the age of thirty. A 90% confidence interval was calculated, yielding [4, 10] as the result. Give an explanation of this interval. A SRS of 81 observations produced a mean of 250 with a standard deviation of 22. Determine the 95% confidence interval for the population mean.

A random sample of 64 observations produced a sample proportion of 0.23. Determine the 95% confidence interval for the population proportion.

After performing a p-test, the P-Value is found to be smaller than the significance level (α). How should you proceed?

- a. Reject the Null Hypothesis
- b. Accept the Alternate Hypothesis
- c. Fail to Reject the Null Hypothesis
- d. Accept the Null Hypothesis
- e. Fail to Reject the Alternate Hypothesis
- f. Perform a q-test to confirm results
- g. Accept them both, the more the merrier!
- h. Throw a party
- i. Any or All of the above are acceptable (no one really hypothesis tests anyway)

Which of the following will increase the width of confidence interval for the sample mean?

- Decrease the sample size
- Increase the confidence level
- Increase the sample size
- Decrease the confidence level
- Increase the variance
- Decrease the standard deviation
- Increase the value of the mean
- Decrease the value of the mean

The weights of pennies produced by the US Mint is determined to have a standard deviation of 0.2 grams. You wish to create a mean confidence interval of level 90%. How large of a sample of pennies should you select to have a margin of error of .02?

A one-sample z-statistic for a test of Ho: $\mu = 53$, and Ha: $\mu > 53$ based of 75 observations and calculations show z = 1.837. Determine the p-value. An assortment of candies claims that their sample bag contains the following: 15% Snickers, 35% Milky Way, 25% Three Musketeers, 15% Almond Joy and 10% Mounds.

From a bag of 200 candies, you find there are 30 Snickers, 35 Milky Way, 40 Three Musketeers, 45 Almond Joy and 50 Mounds.

Use a $\chi 2$ test for goodness of fit to determine if the company's claim is accurate. (Use $\alpha = 0.01$)

Continued from Previous Slide

Candy Name	Expected Percents	Observed Amounts
Snickers	15%	30
Milky Way	35%	35
Three Musketeers	25%	40
Almond Joy	15%	45
Mounds	10%	50
	Total	200

Determine the Null and Alternate Hypothesis.

Determine the Rejection Region.

Calculate the Test Statistic.

Determine the p-value.

Draw a conclusion.

Determine your Null and Alternate Hypothesis.

Determine your rejection region.

Calculate your test statistic.

Determine your p-value.

Draw a conclusion.

Determine your Null and Alternate Hypothesis.

Determine your rejection region.

Calculate your test statistic.

Determine your p-value.

Draw a conclusion.