MATH 1342

Section 4.1

Density Curves

A density curve is a graph whose area between it and the x -axis is equal to one. These graphs come is a variety of shapes but the most familiar "normal" graph is bell shaped. The area under the curve in a range of values indicates the proportion of values in that range.

Skewness and curves:

Bell Shaped (normal)

Skewed Right

Skewed Left

Example: Think about a density curve that consists of two line segments. The first goes from the point $(0,1)$ to the point $(.4,1)$. The second goes from $(.4,1)$ to $(.8,2)$ in the xy plane.

Sketch:

Example: Think about a density curve that consists of two line segments. The first goes from the point $(0,1)$ to the point $(.4,1)$. The second goes from $(.4,1)$ to $(.8,2)$ in the xy plane.

Sketch:

Example: Think about a density curve that consists of two line segments. The first goes from the point $(0,1)$ to the point $(.4,1)$. The second goes from $(.4,1)$ to $(.8,2)$ in the xy plane.

What percent of observations fall below.4?

What percent of observations lie between .4 and .8 ?

What percent of observations are equal to .4 ?

Example: Consider a uniform density curve

 defined from $x=0$ to $x=6$. Sketch:What percent of observations fall below 2?
What percent of observations lie between 2 and 3 ?
Find the median.

Example: Consider a uniform density curve defined from $x=0$ to $x=6$.

Sketch:

What percent of observations fall below 2?
What percent of observations lie between 2 and 3 ?
Find the median.

Another Example:

A probability density curve consists of two line segments. One segment connects the points $(0,2)$ and $(0.25,2)$, and the other connects $(0.25,2)$ to the x-axis. Determine $P(x>0.35)$.

