MATH 1342

Section 7.2

Confidence Interval from a Proportion

Before any inferences can be made about a proportion, certain conditions must be satisfied:

- 1. The sample must be an SRS from the population of interest.
- 2. The population must be at least 10 times the size of the sample.
- 3. The number of successes and the number of failures must each be at least 10 (both $n\hat{p} \ge 10$ and $n(1-\hat{p}) \ge 10$).

Inference #2: for large populations, this can be assumed to be true.

Sample Statistics

The sample statistic for a population proportion is \hat{p} , so based on the formula for a CI, we have $\hat{p} \pm margin\ of\ error$

How do we find the margin of error if it is not given to us? Critical Value: percent of confidence The margin of error is equal to the **critical value** (a number based on our level of confidence) and the **standard deviation** (or **standard error** when needed) of the statistic.

<u>Critical Value</u>: When the distribution is assumed to be normal, our critical value is found from the z table (or using invNorm on calculator or quorm in R). If it is not normal, we will use the t distribution (discussed later).

Standard Deviation/Error: When working with proportions, the standard deviation of the statistic \hat{p} is $\sqrt{p(1-p)/n}$. Since p is unknown, we will use the standard error. To calculate the standard error of \hat{p} , use the formula $\sqrt{\hat{p}(1-\hat{p})/n}$.

The formula for confidence intervals of proportions:

This is taken from the Formula Sheet for Test 3, already posted on the casa calendar!

Confidence Intervals

General formula: statistic ± margin of error

One-sample z-test:
$$\overline{x} \pm z * \frac{\sigma}{\sqrt{n}}$$

Two-proportion z-test:
$$(\hat{p}_1 - \hat{p}_2) \pm z * \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$$

One-sample t-test:
$$\overline{x} \pm t * \frac{s}{\sqrt{n}}$$

One-proportion z-test:
$$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

Two-sample z-test:
$$(\overline{x}_1 - \overline{x}_2) \pm z * \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Two-sample t-test:
$$(\overline{x}_1 - \overline{x}_2) \pm t * \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

R Studio / Calculator Assistance!

For a confidence level of 95%, you are interested in the middle 95% of a standard deviation:

InvNorm(1.##/2)

$$0.5 + 0.95/2$$

$$\frac{1}{2} + 0.95/2$$

Essentially, you will always use: g norm (1, 95/2) qnorm(1.##/2) or InrNJ/m (1, 95/2) n = 40, x = 25, CL: 90%

Example:

In the first eight games of this year's basketball season, Lenny made 25 free throws in 40 attempts.

- **a.** What is \hat{p} , Lenny's sample proportion of successes?
- **b.** Find and interpret the 90% confidence interval for Lenny's proportion of free-throw success.

Part a:
$$p^ = x/n = 25/40 = 0.625$$


```
> phat=25/40
> phat-qnorm(1.90/2)*sqrt(phat*(1-phat)/40)
[1] 0.4990921
> phat+qnorm(1.90/2)*sqrt(phat*(1-phat)/40)
[1] 0.7509079
```

[0.499, 0.751]

We are 90% certain that the proportion of Lenny's free-throw success for the season will be between 49.9% and 75.1%

```
-40*phat
1] 25
40*(1-phat)
1] 15 //∩
```

Sometimes we are asked to find the minimum sample size needed to produce a particular margin of error given a certain confidence level. When working with a one-sample proportion, we can use the formula:

$$ME = z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\hat{p} \stackrel{+}{=} 2 * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$ME = z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$(2 + 1)^{2} = \frac{\hat{p}(1-\hat{p})}{n}$$

$$(1-\hat{p})(\frac{z^{*}}{mE})^{2} = n$$

$$ME = \frac{\hat{p}(1-\hat{p})}{n}$$

$$ME = \frac{\hat{p}(1-\hat{p})}{n}$$

$$NE = \frac{\hat{p}(1-\hat{p})}{n}$$

Note: If a preliminary proportion (\hat{p}) is not given in the problem, use $\hat{p} = 0.50$

Example:

\$=0.35

It is believed that 35% of all voters favor a particular candidate. How large of a simple random sample is required so that the margin of error of the estimate of the percentage of all voters in favor is no more than 3% at the 95% confidence level?

ME = .03 CL=95%

h= p(1-p) (2*)2

 $.35*(1-.35)*(qnorm(1.95/2)/.03)^2$

L] 971.0354

move to next larger whole number

N= 972

Changes in the Confidence Interval: (Proportion)

The following changes will result in an increase in the width of the confidence interval:

Increase of Margin of Error

Increase of Confidence Level

Change in sample proportion nearer to $\hat{p}=0.50$

Decrease of Sample Size

Popper 23:

n=150

A simple random sample, of size 150, is selected from a large population. It is determined that, within this sample, 85% of people own their own vehicles.

- 1. Are the number of successes and failures appropriate for this method?
 - a. Yes
- b. No
- 2. Determine the standard deviation or standard error for the sample selected.
 - a. 0.0008
- b. 0.069
- c. 0.029
- d. 0.85
- 3. Determine the margin of error with a confidence level of 90%.
 - a. 0.90
- b. 0.4365
- c. 1.2823
- d. 0.04796
- 4. Determine the confidence interval for this statistic.

 - a. [.37, .85] **(**b. [.802, .898] **)**
- c. [.85, .90] d. [65, 235]
- 5. If the sample size were increased, what is a possible confidence interval:
- a. [.808, .892]
- b. [.802, .892] c. [.791, .909]
- d. [.808, .903]

Decrease width of interval: increase low value, decrease high value by the same amount

Popper 23:

For a certain population, it is known that 85% of people own their own vehicles. A simple random sample, of size 150, is selected from this population.

- 6. Interpret the confidence interval.
- a. There is a 90% probability that the population proportion will be within the confidence interval
 - b. There is a 90% probability that the mean of the sample will be 0.85.
 - c. 90% of the 150 subjects own a vehicle.
 - d. 85% of the 150 subjects fall within the confidence interval.

```
> .85*150
[1] 127.5
> (1-.85)*150
[1] 22.5
> sqrt(.85*(1-.85)/150)
[1] 0.02915476
> qnorm(1.90/2)*sqrt(.85*(1-.85)/150)
[1] 0.04795531
> .85-qnorm(1.90/2)*sqrt(.85*(1-.85)/150)
[1] 0.8020447
> .85+qnorm(1.90/2)*sqrt(.85*(1-.85)/150)
[1] 0.8979553
```