MATH 3307 Lesson 6

Counting Techniques

Combinatorics is the study of the number of ways a set of objects can be arranged, combined, or chosen; or the number of ways a succession of events can occur. Each result is called an outcome. An event is a subset of outcomes. When several events occur together, we have a compound event.

The Fundamental Counting Principle

The Fundamental Counting Principle states that the total number of a ways a compound event may occur is $n_{1} \cdot n_{2} \cdot n_{3} \cdot \ldots \cdot n_{i}$ where n_{1} represents the number of ways the first event may occur, n_{2} represents the number of ways the second event may occur, and so on.

Example:

Example:

How many ways can you create a pizza choosing a meat and two veggies if you have 3 choices of meats and 4 choices for veggies?

Rstudio and TI Commands:

Rstudio:
factorials: (such as 5!)
factorial(5)
combinations: (such as ${ }_{6} \mathrm{C}_{2}$) choose(6,2)

TI 83/84:
Select MATH \rightarrow PRB (right arrow)
factorial: (option 4)
5!
permutation: (option 2)
${ }_{6} \mathrm{P}_{2}$ will be written as 6 nPr 2
combination: (option 3)
${ }_{6} \mathrm{C}_{2}$ will be written as 6 nCr 2

Permutations

A permutation of a set of n objects is an ordered arrangement of the objects.

$$
\begin{aligned}
& { }_{n} P_{n}=n(n-1)(n-2) \ldots .3 \cdot 2 \cdot 1=n!\quad \text { All objects are placed in order } \\
& { }_{n} P_{r}=\frac{n!}{(n-r)!} \quad \text { Some of the objects are placed in order }
\end{aligned}
$$

Examples:

How many ways can six people be seated in a row?

In how many ways can 3 of the six symbols, $\& \wedge \% \$ \# @$ be arranged?

With Repetition

When we allow repeated values, The number of orderings of n objects taken r at a time, with repetition is n^{r}. Example:

In how many ways can you write 4 letters on a tag using each of the letters C O U G A R with repetition?

Duplicate Objects

The number of permutations, P , of n objects taken n at a time with r objects alike, s of another kind alike, and t of another kind alike is

$$
P=\frac{n!}{r!s!t!}
$$

Example:

How many different words (they do not have to be real words) can be formed from the letters in the word MISSISSIPPI?

$$
P=\frac{n!}{r!s!t!}
$$

Circular Permutations

The number of circular permutations of n objects is $(n-1)$!

Example:
In how many ways can 12 people be seated around a circular table?

Combinations:

A combination gives the number of ways of picking r unordered outcomes from n possibilities. The number of combinations of a set of n objects taken r at a time is

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!}
$$

Example:

How many ways can a committee of 5 be chosen from a group of 12 people?

Permutation or Combination:

How many ways can $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ place ribbons be awarded when there are 15 contestants?

How many ways can you be dealt a poker hand of 7 cards from a standard deck of 52?

How many ways can a class President, Vice President, Secretary, Treasurer, and Historian be selected from a class of 500?

