Calculations for data: Distributions

1. **Center**
 - **Mean** = add up all the numbers and divide by how many values you have
 - **Median** = middle value of ordered data
 - **Mode** = The value that has the highest frequency

2. **Spread**
 - **Range** = Maximum - Minimum
 - **Standard deviation** = the average distance the values are from the mean.
 - **Variance** = \(SD^2 \)

3. **Shape**
 - **Symmetric**
 - **Skewed right**
 - **Skewed left**

4. **Outliers** (sometimes)
 - Extreme values

Example about standard deviation (SD):

3, 3, 9, 15, 15
Symmetric data

\[
\text{mean} = \frac{3+3+9+15+15}{5} = 9 = \text{median}
\]

\[SD = 6\]

1. 20, 20, 20, 20, 20

\[
\text{mean} = 20
\]

\[SD = 0\]

If all of the values in the list are the same, \(SD = 0 \)

3, 3, 9, 15, 15

Add 4: 7, 7, 13, 19, 19

\[
\text{mean} = 13 (\frac{9+4}{2})
\]

\[SD = 6\] remains the same

Multiply by 2: 6, 6, 18, 30, 30

\[
\text{mean} = 18 \ (6 \times 2)
\]

\[SD = 12 \ (6 \times 2)\]
Quiz 1

Question 1

True or False:
The amount of rainfall in your state last month is an example of discrete data.

- **a)** True
- **b)** False

Question 2

True or False:
The standard deviation is the square of the variance.

- **a)** True
- **b)** False

Question 3

Which of the following is not affected by an extreme value in the data set?

- **a)** standard deviation
- **b)** range
- **c)** median
- **d)** mean

Question 4

Given a data set of all positive values, if the smallest value of a data set is divided by two, which of the following is true?

- **a)** The interquartile range increases.
- **b)** The standard deviation decreases.
- **c)** The range decreases.
d) The mean decreases.

Question 5

If the test scores of a class of 35 students have a mean of 71.1 and the test scores of another class of 28 students have a mean of 67.4, then the mean of the combined group is

\[
\text{mean} = \frac{\text{sum of the total}}{\text{n}}
\]

a) 67.750

\[
\text{class 1 = sum = mean(n)} = 71.1 (35) = 2488.5
\]

b) 69.250

\[
\text{class 2 = sum = mean(n)} = 67.4 (28) = 1887.2
\]

c) 69.456

d) 66.956

\[
\text{mean} = \frac{2488.5 + 1887.2}{35 + 28} = \frac{4375.7}{63} = 69.456
\]

Question 6

Given the first type of plot indicated in each pair, which of the second plots could not always be generated from it?

a) dot plot, histogram
yes
histogram or box plot for first plot.

b) stem and leaf, dot plot
yes

c) histogram, stem and leaf
no

d) dot plot, box plot
yes

Question 7

A survey was conducted to gather ratings of the quality of service at local restaurants. Respondents rated on a scale of 0 (terrible) to 100 (excellent). The data are represented by the following stem plot.

```
3 | 2 4
4 | 0 3 4 7 8 9 9 9
5 | 0 1 2 3 4 5
6 | 1 2 5 6 6
7 | 0 1
8 |
9 | 2
```

The median response was

```
32, 34, 40, 43, 44, 47, 48, 49, 49, 49, 50, 51, 51
52, 53, 54, 55, 61, 62, 65, 66, 68, 70, 71, 92
```

a) 50

b) **51**

c) 51.5

d) 52
mean = \frac{-5 + (-1) + (-1) + 3 + 9}{5} = \frac{0}{5} = 1

median = \text{middle value of ordered data} = -1

mode = \text{value with the highest frequency} = -1

range = \text{highest value} - \text{lowest value} = 9 - (-5) = 14

Standard deviation:

<table>
<thead>
<tr>
<th>X</th>
<th>X - mean</th>
<th>(X - mean)^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>-5 - 1 = -6</td>
<td>(-4)^2 = 36</td>
</tr>
<tr>
<td>-1</td>
<td>-1 - 1 = -2</td>
<td>(-2)^2 = 4</td>
</tr>
<tr>
<td>-1</td>
<td>-1 - 1 = -2</td>
<td>(0)^2 = 0</td>
</tr>
<tr>
<td>3</td>
<td>3 - 1 = 2</td>
<td>(2)^2 = 4</td>
</tr>
<tr>
<td>9</td>
<td>9 - 1 = 8</td>
<td>(8)^2 = 64</td>
</tr>
</tbody>
</table>

\[\text{sum} = 112 \]

\[\text{variance} = \frac{\text{sum of} \ (X - \text{mean})^2}{n - 1} = \frac{112}{4} = 28 = \sigma^2 \]

\[\sigma = \sqrt{\text{variance}} = \sqrt{28} = 5.29 \]

using R-studio

> x = c(-5,-1,-1,3,9)
> mean(x)
[1] 1
> median(x)
[1] -1
> sd(x)
[1] 5.291503
Question 8

Calculate the mean, median, mode, range and standard deviation of the data: -5, -1, -1, 3, 9

a) mean = 1.0, median = -1, mode = -1, range = 14, standard deviation = 5.3

b) mean = 1.8, median = -5, mode = -1, range = 13, standard deviation = 5.2

c) mean = 1.0, median = 3, mode = -5, range = 15, standard deviation = 5.3

d) mean = 1.8, median = -1, mode = -1, range = 14, standard deviation = 5.2

e) None of the above

Question 9

Calculate the mean, median, mode, range and standard deviation of the data: -72, -40, -40, 56, 88

a) mean = -1.6, median = 56, mode = -72, range = 161, standard deviation = 69.4

b) mean = -1.6, median = -40, mode = -40, range = 160, standard deviation = 69.4

c) mean = 17.6, median = -40, mode = -40, range = 160, standard deviation = 69.4

d) mean = 17.6, median = -72, mode = -40, range = 159, standard deviation = 69.4

e) None of the above

Question 10

The boxplots shown below summarize two data sets, I and II. Based on the boxplots, which of the following statements about these two data sets CANNOT be justified?

a) The interquartile range of data set I is equal to the interquartile range of data set II. Yes

b) Data set I and data set II have the same number of data points.

c) The range of data set I is greater than the range of data set II. Yes

d) The median of data set I is equal to the median of data set II. Yes
Question 11

The distribution that has the box plot shown could be described as

- a) skewed left
- b) skewed right
- c) symmetrical
- d) inconclusive

[Box plot image]

Question 12

The figure below shows a cumulative relative frequency plot of 40 scores on a test given in a Statistics class. Which of the following conclusions can be made from the graph?

- a) The horizontal nature of the graph for test scores of 60 and below indicates that those scores occurred most frequently.
- b) 10% of the class scored 50 or less.
- c) 25% of the class scored 70 or less.
- d) Q1 = 70.
- e) 50% of the class scored 85 or less.
- f) Median = 85.
- g) 60 is at 15%.

[Graph image]

60 is at 15% False
b) There is greater variability in the lower 20 test scores than in the higher 20 test scores.

c) The median test score is less than 70.

\[\text{median} \approx 85 \]

\[80 \text{ is at the } 40\text{th percentile} \Rightarrow 40\% \text{ scored } 80 \text{ or less} \]

\[60\% \text{ scored above } 80 \]

Question 13

The weights of male and female students in a class are summarized in the following boxplots:

Which of the following is NOT correct?

a) About 50% of the male students have weights between 150 and 185 lbs.

b) About 75% of the female students have weights more than 128 lbs.

\[\text{median} = \text{mean} \]

c) The mean weight of the female students is about 120 because of symmetry.

d) The median weight of the male students is about 166 lbs.

Question 14

Given a data set consisting of 33 unique whole number observations, its five-number summary is:

\[[14, 25, 36, 47, 59] \]

What is the IQR?

a) 45

\[\text{IQR} = Q_3 - Q_1 = 47 - 25 = 22 \]

b) 22

How many values are strictly less than 25?

\[Q_1 = 25 \Rightarrow 25\% \text{ are less than } 25. \]

\[0.25(33) = 8.25 \text{ are less than } 25. \]

\[Q_3 = 47 \Rightarrow 75\% \text{ of } 33 \text{ are less than } 47 \]

\[0.75(33) = 24.75 \text{ are less than } 47. \]