Continuous Probability Distributions

Sections 5.1-5.4

Cathy Poliak, Ph.D.
cathy@math.uh.edu
Office in 11c Flemming

Department of Mathematics
University of Houston
Lecture 7-3339

You Try Questions

For each random variable, determine if it is:
a. Discrete b. Continuous
2. The number of cars passing a busy intersection between 4:30 PM and 6:30 PM. $X=$ number of cars
3. The weight of a fire fighter. $=x \quad$ b)
4. The amount of soda in a can of Pepsi. Continuous

Types of Random Variables

- A random variable that may assume either a finite number of values or an infinite sequence of values such as $0,1, \ldots$ is referred to as a discrete random variable.
- A random variable that may assume any numerical value in an
ψ interval or collection of intervals is called a continuous random variable.

Example

- Suppose we want to determine the probability of waiting for an elevator where the longest waiting time is 5 minutes.
- What type of variable do we have?
- Suppose we take a sample of $10,50,1000$, and 10,000 people to see how long they wait for the elevator. The following are histograms for the waiting times of each sample.

$$
\begin{aligned}
& x=\text { wating time for an elevator } \\
& \{x \mid \text { all real numbers between } 0 \text { and }\}
\end{aligned}
$$

Sample of 10 People Waiting for the Elevator

Histogram of a Sample of 10

Sample of 50 People Waiting for the Elevator

Sample of 100 People Waiting for the Elevator

Sample of 1000 People Waiting for the Elevator

Histogram of a Sample of 1000

Sample of 10,000 People Waiting for the Elevator

Histogram of a Sample of 10,000

Probability distributions

- A probability distribution for random variables describes how probabilities are distributed over the values of the random variable.
- For a discrete random variable X, the probability distribution is defined by probability mass function, denoted by $f(X)$. This provides the probability for each value of the random variable.
- For a continuous random variable, this is called the probability density function $f(x)$. The probability density function (pdf) $f(x)$ is a graph of an equation. The area under the graph of $f(x)$ corresponding to a given interval provides the probability that the random variable x assumes a value in that interval.

Probability Density Function

For $f(x)$ to be a legitimate pdf, it must satisfy the following two conditions:

1. $f(x) \geq 0$ for all x.
2. The area under the entire graph of $f(x)$ must equal 1 .

Probability Density Function of Elevator Waiting Times

Density Curve for Elevator Wating Times

Uniform Distribution
A continuous random variable X is said to have a uniform distribution on the interval $[A, B]$ if the pdf of X is:

$$
f(x)= \begin{cases}\frac{1}{B-A}, & A \leq x \leq B \\ 0, & \text { otherwise }\end{cases}
$$

This is denoted as $X \sim U(a, b)$
Elevator example $x=$ min. waiting for $x \sim u(0,5)$ an elevator

$$
f(x)= \begin{cases}\frac{1}{5} & 0 \leq x \leq 5 \\ 0, & 0 \text { otherwise }\end{cases}
$$

Density curve for waiting time

The rectangle ranges between 0 and 5 . The height of the rectangle is: $\frac{1}{\text { highest value }- \text { lowest value }}=\frac{1}{5-0}=0.2$.

From Waiting Time Example Determine the Following

Let $X=$ the waiting time for the elevator. With $X \sim U(0,5)$.

1. $P(X \leq 2)$
2. $P(X<2)$
3. $P(X=2)$
4. $P(2<x<4)=2\left(\frac{1}{5}\right)=0.4$
5. $P(X>4)=1\left(\frac{1}{5}\right)=0.2$

6. Find X_{0} such that $P\left(X \leq x_{0}\right)=0.25$.

7. Find x. such that $P\left(x \leq x_{0}\right)=0.25$

$$
\begin{aligned}
& x_{0}(0.2)=0.25 \\
& x_{0}=\frac{0.25}{0.2} \\
& x_{0}=1.25=\text { quartile } \\
& K 01
\end{aligned}
$$

Your Turn
Old Faithful erupts every 91 minutes. Let $X=$ the time you wait for Old Faithful to erupt. Assume a uniform distribution

1. What is the pdf of the time waiting? $\quad X \sim U(0,91)$

$$
f(x)=\left\{\begin{array}{cl}
\frac{1}{91-0}=\frac{1}{91} & 0 \leq x \leq 91 \\
0 & \text { otherwise }
\end{array}\right.
$$

2. You arrive there at random and wait for 20 minutes ... what is the probability you will see it erupt?

$$
\begin{aligned}
& P(t<x<t+20) \\
& =(t+20-t)\left(\frac{1}{91}\right) \\
& =\frac{20}{91} \\
& =0.2198
\end{aligned}
$$

Example of a density function

Let the random variable $X=$ a dealer's profit, in units of $\$ 5000$, on a new automobile with a density function:

$$
f(x)= \begin{cases}2(1-x) & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

What is the probability that the dealer's profit is at least $\$ 4000$ for a new automobile. That is $P\left(X \geq \frac{4000}{5000}\right)=P(X \geq 0.8)$.

Finding Probability

To find the probability of the profit at least $\$ 4000$, we need to find the area under the curve between 0.8 and 1.

Density Function
This is the graph of the density function.

$$
\begin{aligned}
& P(x \geq 0.8) \\
& =\frac{1}{2}(1-0.8)(0.4) \\
& =0.04 \\
& P(x \geq 0.8) \\
& =\int^{1} 2(1-x) d x \\
& =\int_{0.8}^{0.8} 2-2 x d x \\
& =2 x-\left.x^{2}\right|_{-8} ^{1}
\end{aligned}
$$

Definition of a Density Function

- A density function is a non-negative function f defined of the set of real numbers such that:

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

- If f is a density function, then its integral $F(x)=\int_{-\infty}^{x} f(u) d u$ is a continuous cumulative distribution function (cdf), that is $P(X \leq x)=F(x)$.
- If X is a random variable with this density function, then for any two real numbers, a and b

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Integration

1. Evaluate $\int_{0}^{5}\left(\frac{1}{5}\right) d x=\left.\frac{1}{5} x\right|_{0} ^{5}=\frac{1}{5}(5-0)=1$
2. Evaluate $\int_{0}^{1} \underline{0.3 e^{-0.3 t} d t .}=1-e^{-0.3}$
$u=-0.3 t$

$$
\begin{aligned}
u=-0.3 t & =-\int e^{u} d u \\
d u=-0.3 d t & =-\left.e^{-03 t}\right|_{0} ^{1}
\end{aligned}=-e^{-0.3}-(-1)
$$

$$
\begin{array}{ll}
\int u d v=u v-\int v d u \\
u=2 x & v=-\frac{1}{2} \\
u=e^{-2 x} \\
d u=2 & d v=e^{-2 x} d x
\end{array}
$$

$$
\begin{aligned}
\int_{0}^{\infty} 2 x e^{-2 x} d x & =-\left.x e^{-2 x}\right|_{0} ^{\infty}-\int_{0}^{\infty}-e^{-2 x} d x \\
& =[0-0]+\frac{-1}{2} e^{-\left.2 x\right|^{\infty}} \\
& =0-\left(-\frac{1}{2}\right) \\
& =\frac{1}{2}
\end{aligned}
$$

$>f=$ function $(x) 2^{*} x^{*} \exp \left(-2^{*} x\right)$
$>$ integrate($f, 0$, Inf)
0.5 with absolute error < 8.6e-06

Determine the cdf of a Uniform Distribution Let $X \sim U(0,5)$ such that the pdf of X is:

Find the $\operatorname{cdf} F(x)$ for X.

$$
\left.\begin{array}{rl}
F(x) & =P(x \leq x) \\
& =P(x \leq 2) \\
& =\frac{1}{5}(2)=0.4 \\
F(x) & =\int_{0}^{x} \frac{1}{5} d u=\frac{1}{5} x \\
F(x)=\left\{\begin{array}{lll}
0 \leq x \leq 5 \\
\frac{1}{5} x & x \leq x \leq 5 & P(x \leq 5)
\end{array}\right. \\
0
\end{array}\right)
$$

Cumulative Density Function

Using the $\operatorname{cdf} F(X)$ to Compute Probabilities

Let X be a continuous random variable with pdf $f(x)$ and $\operatorname{cdf} F(x)$.
Then for any number a,

$$
\begin{aligned}
& =1-P(x \leq a) \\
P(X>a) & =1-F(a)
\end{aligned}
$$

and for any two numbers a and b with $a<b$,

$$
\begin{aligned}
P(a \leq X \leq b) & =F(b)-F(a) \\
& =P(x \leq b)-P(x \leq a)
\end{aligned}
$$

Example Using CDF

Suppose we have a cdf;

$$
\underline{F(x)}= \begin{cases}0, & x \leq-1 \\ \frac{x^{3}+1}{9}, & -1 \leq x<2 \\ 1, & x \geq 2\end{cases}
$$

1. Determine $P(X \leq 0)=F(0)=\frac{0^{3}+1}{9}=\frac{1}{9}$
2. Determine $\begin{aligned} P(0<x \leq 1) & =F_{(}(1)-F(0) \\ & =\frac{1^{3}+1}{9}-\frac{1}{9}=\frac{1}{9}\end{aligned}$
3. Determine $P(X \geq 0.5)=1-P(x \leq 0.5)$

$$
\begin{aligned}
=1-\frac{0.5^{3}+1}{9} & =1-0.125 \\
& =0.825
\end{aligned}
$$

4. Given this CDF determine the pdf $f(x)$.

$$
F^{\prime}(x)=\frac{2 x}{9} \quad F(x)=\frac{x^{2}+1}{9}
$$

paf

$$
f(x)=\left\{\begin{array}{cc}
\frac{2 x}{9} & -1 \leq x \leq 2 \\
0 & 0 \text { therwise }
\end{array}\right.
$$

Example
Suppose we have a pdf of

$$
f(x)=\left\{\begin{array}{ll}
\frac{3}{8} x^{2} & 0 \leq x \leq k \\
0 & \text { otherwise }
\end{array} \int_{0}^{k} \frac{3}{8} x^{2} d x=1\right.
$$

a) Determine k.

$$
\int_{0}^{k} \frac{3}{8} x^{2} d x=\left.\frac{1}{8} x^{3}\right|_{0} ^{k}=\frac{k^{3}}{8}
$$

$$
\begin{aligned}
& \frac{k^{3}}{8}=1 \\
& k^{3}=8 \\
& k=2
\end{aligned}
$$

$$
F(x)=\int_{0}^{\text {b) Give the } x^{x} \frac{3}{8} \text { of this distribution. }} u^{2} d u=\frac{\frac{x}{8}}{8} \quad F(x)= \begin{cases}0 & x<0 \\ \frac{x^{3}}{8} & 0 \leq x \leq 2 \\ 1 & x>2\end{cases}
$$

c) Determine x_{0} such that $P\left(X \leq x_{0}\right)=0.125$

Find x_{0} such that

$$
\begin{aligned}
P\left(x \leq x_{0}\right) & =0.125 \\
F\left(x_{0}\right) & =0.125 \\
\frac{x_{0}^{3}}{8} & =0.125 \\
x_{0}^{2} & =1 \\
x_{0} & =1 \text { "quartile" }
\end{aligned}
$$

Quantiles

Let F be a given cumulative distribution and let p be any real number between 0 and 1. The (100p)th percentile of the distribution of a continuous random variable X is defined as

$$
F^{-1}(p)=\min \{x \mid F(x) \geq p\} .
$$

For continuous distributions, $F^{-1}(p)$ is the smallest number x such that $F(x)=p$.

Determine the Percentiles

Given a cdf,

$$
F(x)= \begin{cases}0 & X<0 \\ \frac{1}{8} x^{3} & 0 \leq X \leq 2 \\ 1 & x>2\end{cases}
$$

1. Determine the $90^{\text {th }}$ percentile.

$$
\begin{aligned}
& P\left(x \leq x_{0}\right)=0 \\
& F\left(x_{0}\right)=0.9
\end{aligned}
$$

$$
>7.2^{\wedge}(1 / 3)
$$

2. Determine the $50^{\text {th }}$ percentile.

$$
\begin{aligned}
& \frac{x^{3}}{8}=0.9 \\
& x^{3}=7.2 \\
& x=1.931
\end{aligned}
$$

[1] 1.930979
median
3. Find the value of c such that $P(X \leq c)=0.75$.

$$
\frac{c^{3}}{8}=0.75 \Rightarrow c^{3}=6 \Rightarrow c=1.81710 .3
$$

Expected Values for Continuous Random Variables

 Discreter.u. $E(x)=\Sigma x p$The expected or mean value of a continuous random variable X with pdf $f(x)$ is

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x .
$$

More generally, if h is a function defined on the range of X,

$$
E\left(x^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(h(x))=\int_{-\infty}^{\infty} h(x) f(x) d x
$$

$\operatorname{Var}(x)=E\left(x^{2}\right)-E(x)^{2}$

Example

The following is a pdf of X,

$$
f(x)= \begin{cases}\frac{3}{2}\left(1-x^{2}\right) & 0 \leq X \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

1. Determine $E(X)$.

$$
\left.E(x)=\int_{0}^{i} \underset{\substack{ \\>f=\text { function }(x) \\>\text { integrate }(f, 0,1)}}{ } \frac{3}{2}\left(1-x^{2}\right)\right]^{*} x^{*}\left(1-x^{\wedge} 2\right)<\underset{~}{d x}=0.375
$$

0.375 with absolute error <
2. Determine $E\left(X^{2}\right)^{4.2 \mathrm{e}-15}$
$E\left(x^{2}\right)=\int_{0}^{1} x^{2}\left[\frac{3}{2}\left(1-x^{2}\right)\right] d x=0.2$
$>\# E\left(x^{\wedge} 2\right)$
$>f=$ function $(x) 3 / 2^{*} x^{\wedge} 2^{*}\left(1-x^{\wedge} 2\right)$
$>$ integrate $(f, 0,1)$
0.2 with absolute error $<2.2 \mathrm{e}-15$

$$
\begin{aligned}
\operatorname{Var}(x) & =E\left(x^{2}\right)-[E(x)]^{2} \\
& =0.2-0.375^{2} \\
& =0.059375 \\
S D(x) & =\sqrt{0.059375}=0.24367
\end{aligned}
$$

> sqrt(.Last.value)
[1] 0.2436699

Mean and Variance of the Uniform Distribution

Let $X \sim \operatorname{Unif}(a, b)$
Elevator example

- $E(X)=\frac{a+b}{2}$

$$
\begin{aligned}
f(x) & =\frac{1}{5} \quad 0 \leq x \leq 5 \\
E(x) & =\frac{0+5}{2}=2.5 \\
\operatorname{Var}(x) & =\frac{(5-0)^{2}}{12}=\frac{25}{12}
\end{aligned}
$$

- $\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}$

$$
\begin{aligned}
& E(x)=\int_{0}^{5} \frac{1}{5} x d x \\
& E\left(x^{2}\right)=\int_{0}^{5} \frac{1}{5} x^{2} d x
\end{aligned}
$$

$$
\begin{aligned}
E(x) & =\int_{0}^{5} \frac{1}{5} x d x=\left.\frac{1}{10} x^{2}\right|_{0} ^{5}=\frac{5}{2} \\
E\left(x^{2}\right) & =\int_{0}^{5} \frac{1}{5} x^{2} d x=\frac{1}{15} x_{0}^{31^{5}}=\frac{25}{3} \\
\operatorname{Var}(x) & =E\left(x^{2}\right)-[E(x)]^{2} \\
& =\frac{25}{3}-\left(\frac{5}{2}\right)^{2} \\
& =\frac{25}{3}-\frac{25}{4} \\
& =\frac{100-75}{12}=\frac{25}{12}
\end{aligned}
$$

Example From Quiz 7
Let X be the amount of time (in hours) the wait is to get a table at a restaurant. Suppose the cdf is represented by

$$
F(X)=\left\{\begin{array}{cl}
0 & x<0 \\
\frac{x^{2}}{9} & 0 \leq x \leq 3 \\
1 & x>3
\end{array}\right.
$$

Use the oaf to determine $\mathrm{E}[\mathrm{X}]$.

1. Take the derivative.

$$
\begin{aligned}
& F^{\prime}(x)=\frac{2 x}{9} \\
& \int_{0}^{3} x\left(\frac{2 x}{9}\right) d x=\int_{0}^{3} \frac{2 x^{2}}{9} d x=\left.\frac{2 x^{3}}{27}\right|_{0} ^{3}=2
\end{aligned}
$$

The Exponential Distribution

X is said to have an exponential distribution with parameter $\lambda=$ rate $(\lambda>0)$ if the pdf of X is:

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Where λ is a rate parameter, we write $X \sim \operatorname{Exp}(\lambda)$. The cdf of a exponential random variable is:

$$
F(x)= \begin{cases}0 & x<0 \\ 1-e^{-\lambda x} & x \geq 0\end{cases}
$$

The mean of the exponential distribution is $\mu_{X}=E(X)=\frac{1}{\lambda}$ the standard deviation is also $\frac{1}{\lambda}$.

Exponential Density Curves

Exponential Density Curves

Exponential Distribution Related to the Poisson Distribution

- The exponential distribution is frequently used as a model for the distribution of times between the occurrence of successive events until the first arrival.
- Suppose that the number of events occurring in any time of length t has a Poisson distribution with parameter αt.
- Where α, the rate of the event process, is the expected number of events occurring in 1 unit of time.
- The number of occurrences are in non overlapping intervals and are independent of one another.
- Then the distribution of elapsed time between the occurrence of two successive events is exponential with parameter $\lambda=\alpha$.

Example

- Suppose you usually get 3 phone calls per hour.
- 3 phone calls per hour means that we would expect one phone call every $\frac{1}{3}$ hour so $\lambda=\frac{1}{3}$.
- Compute the probability that a phone call will arrive within the next hour.

$$
P(x \leq 1)=1-e^{-1 / 3(1)}=0.2835
$$

R code

- To find the probability of an exponential distribution in $R: \operatorname{pexp}(x, \lambda)$.
- To find the percentile (quantile) in R: $q \exp (x, \lambda)$.

Examples

Applications of the exponential distribution occurs naturally when describing the waiting time in a homogeneous Poisson process. It can be used in a range of disciplines including queuing theory, physics, reliability theory, and hydrology. Examples of events that may be modeled by exponential distribution include:

- The time until a radioactive particle decays
- The time between clicks of a Geiger counter
- The time until default on payment to company debt holders
- The distance between roadkills on a given road
- The distance between mutations on a DNA strand
- The time it takes for a bank teller to serve a customer
- The height of various molecules in a gas at a fixed temperature and pressure in a uniform gravitational field
- The monthly and annual maximum values of daily rainfall and river discharge volumes

Example from Quiz 7

1. Suppose the time a child spends waiting at for the bus as a school bus stop is exponentially distributed with mean 6 minutes. Determine the probability that the child must wait at least 9 minutes on the bus on a given morning.
$\mu=6 \quad \lambda=1 / 6$

$$
P(x \geq q)=1-P(x \leq q) \begin{aligned}
& >1-\operatorname{pexp}(9,1 / 6) \\
& {[1] 0.2231302}
\end{aligned}
$$

2. Suppose the time a child spends waiting at for the bus as a school bus stop is exponentially distributed with mean 4 minutes. Determine the probability that the child must wait between 3 and 6 minutes on the bus on a given morning.

$$
\mu=4 \quad \lambda=1 / 4 \quad \begin{aligned}
& >\operatorname{pexp}(6,1 / 4)-\operatorname{pexp}(3,1 / 4) \\
& {[1] 0.2492364}
\end{aligned}
$$

$P(3<x<6)=P(x \leq 6)-P(x \leq 5)$

The "Memoryless" Property

$$
P(x \geq x)=1-\left[1-e^{-\lambda x}\right]
$$

 distribution of component lifetime.

- Suppose component lifetime is exponentially distributed with parameter λ.
- After putting the component into service, we leave for a period of t_{0} hours and then return to find the components still working; what now is the probability that it last at least an addition t hours?
- We want to find $P\left(X \geq t+t_{0} \mid X \geq t_{0}\right)$

$$
\begin{aligned}
& =\frac{P\left(x \geq t+t_{0} \cap x \geq t_{0}\right)}{P\left(x \geq t_{0}\right)} \\
& =\frac{P\left(x \geq t+t_{0}\right)}{P\left(x \geq t_{0}\right)}=P(x \geq t)
\end{aligned}
$$

The Gamma Function

The gamma function $\Gamma(\alpha)$ is defined by:

$$
\Gamma(\alpha)=\int_{0}^{\infty} x^{\alpha-1} e^{-x} d x
$$

Properties of the Gamma Function

The most important properties of the gamma function are the following:

1. For any $\alpha>1, \Gamma(\alpha)=(\alpha-1) \Gamma(\alpha-1)$
2. For any positive integer, $n, \Gamma(n)=(n-1)$!
3. $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

The PDF of a Gamma Distribution

A continuous random variable X is said to have a gamma distribution if the pdf of X is

$$
f(x ; \alpha, \beta)= \begin{cases}\frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x / \beta} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

where parameters α and β satisfy $\alpha>0, \beta>0$.

Gamma Distribution Related to the Poisson

- Gamma distribution is a distribution that arises naturally in processes for which the waiting times between events are relevant.
- It can be thought of as a waiting time between Poisson distributed events, unitl k arrivals.
- Thus the scale parameter can also be thought of as the inverse of the rate parameter $(\mu), \frac{1}{\mu}$.
- Then $\alpha=k$ and $\beta=\frac{1}{\mu}$
- $\operatorname{In} \mathrm{R}, P(X \leq x)=\operatorname{pgamma}\left(x, \alpha, \frac{1}{\beta}\right)$

Gamma Density Curve

Gamma Density Curve

Applications of the Gamma Distribution

The gamma distribution can be used a range of disciplines including queuing models, climatology, and financial services. Examples of events that may be modeled by gamma distribution include:

- The amount of rainfall accumulated in a reservoir
- The size of loan defaults or aggregate insurance claims
- The flow of items through manufacturing and distribution processes
- The load on web servers
- The many and varied forms of telecom exchange

Example

Suppose that the telephone calls arriving at a particular switchboard follow a Poisson process with an average of 5 calls coming per minute. What is the probability that up to a minute will elapse urtil 2 calls have come in to the switchboard?

- Average of 5 calls coming per minute means that $\beta=\frac{1}{5}$.
- Until 2 calls have come into the switchboard means that $\alpha=2$.

$$
P(x \leq 1)=\text { Pgamma }(1,2,1 /(1 / s))
$$

> pgamma(1,2,1/(1/5))
[1] 0.9595723

Mean and Variance of the Gamma Distribution

The mean and variance of a random variable X having the gamma distribution are:

$$
\begin{aligned}
E(X) & =\mu=\alpha \beta \\
\operatorname{Var}(X) & =\sigma^{2}=\alpha \beta^{2}
\end{aligned}
$$

Example of Gamma Distribution
Suppose that a transistor of a certain type is subjected to an accelerated life test, the lifetime Y (in weeks) has a gamma distribution with a mean of 24 and a standard deviation of 12.

1. Find the values of α and β. $\quad E(x)=24 S D(x)=12$ var (x) 144
$E(x)=\alpha \beta$
$24=\alpha \beta$

$$
\operatorname{Var}(x)=\alpha \beta^{2}
$$

$$
\alpha=2 Y / \beta
$$

2. Find $P(Y \leq 24)$
$144=\frac{24}{\beta} \beta^{2}$
$\beta=6$
$\alpha=4$

$$
\begin{aligned}
P(y \leq 2 y) & =\underset{\substack{\text { pgamma(24,4,1/6) } \\
[1] 0.5665299}}{\operatorname{Pgamma}}(24,4,1 / u)
\end{aligned}
$$

