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You Try Questions

For each random variable, determine if it is:

a. Discrete b. Continuous

2. The number of cars passing a busy intersection between 4:30 PM
and 6:30 PM. X = AuenOLe oFcats Q)

3. The weight of a fire fighter. =X \g)

4. The amount of soda in a can of Pepsi.
ConkhwouS
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Types of Random Variables

@ A random variable that may assume either a finite number of
values or an infinite sequence of values such as 0,1, ... is referred
to as a discrete random variable.

@ A random variable that may assume any numerical value in an
4interval or collection of intervals is called a continuous random
variable.
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Example

@ Suppose we want to determine the probability of waiting for an
elevator where the longest waiting time is 5 minutes.

@ What type of variable do we have?

@ Suppose we take a sample of 10, 50, 1000, and 10,000 people to
see how long they wait for the elevator. The following are
histograms for the waiting times of each sample.

X= ao;\‘\us Aone Yac ane \td&\@r
fx | 0\ ceu) umieers 'V ahuten © and %E
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Sample of 10 People Waiting for the Elevator
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Sample of 50 People Waiting for the Elevator

Histogram of a Sample of 50
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Sample of 100 People Waiting for the Elevator

Histogram of a Sample of 100
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Sample of 1000 People Waiting for the Elevator

Histogram of a Sample of 1000
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Sample of 10,000 People Waiting for the Elevator

Histogram of a Sample of 10,000
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Probability distributions

@ A probability distribution for random variables describes how
probabilities are distributed over the values of the random variable.

@ For a discrete random variable X, the probability distribution is
defined by probability mass function, denoted by f(X). This
provides the probability for each value of the random variable.

@ For a continuous random variable, this is called the probability
density function f(x).The probability density function (pdf) f(x) is
a graph of an equation. The area under the graph of f(x)
corresponding to a given interval provides the probability that the
random variable x assumes a value in that interval.
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Probability Density Function

For f(x) to be a legitimate pdf, it must satisfy the following two
conditions:

1. f(x) > 0 for all x.

2. The area under the entire graph of f(x) must equal 1.
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Probability Density Function of Elevator Waiting Times

Density Curve for Elevator Wating Times
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Uniform Distribution

A continuous random variable X is said to have a uniform
distribution on the interval [A, B] if the pdf of X is:

1 < x <
fx)— { A ASX<B
0, otherwise
This is denoted as X ~ U(a, b)

Elevador e xamele X= M, \'-"Q"\"Ns'g“
Xl (0,8 o \edodec
pas \ & X 4
'g (‘L): S 0= x =S

o 0 '\'&Lrua?vee_

Cathy Poliak, Ph.D. cathy@math.uh.edu Offig Sections 5.1 - 5.4

Lecture 7 - 3339 13/53



Density curve for waiting time

The rectangle ranges between 0 and 5. The height of the rectangle is:
highest Value lowest value — 5 0~ 0.2.

Distribution Plot
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From Waiting Time Example Determine the Following

Let X = the waiting time for the elevator. With X ~ U(0,5).
1. P(X <2)

2. P(X <2) ?&24)«-‘0 ?Q(X-D

A
3. P(X =2) K3 g
4, P(2<X<4):2(-’§ Y
5

CPX>4) Sy (AN -
6. Find Xp such that P(X < xp) = 0.25.
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Your Turn

Old Faithful erupts every 91 minutes. Let X = the time you wait for Old
Faithful to erupt. Assume o unlocm Ao vdhion
1. What is the pdf of the time waiting? X &) U.(Q‘Q\3
- L 0 xeq
S(x) = 2 Q-0 N -
o Othac VR

2. You arrive there at random and wait for 20 minutes ... what is the
probability you will see it erupt? Pt € XK€ £ 4200
= (tx20-O(
\ 1
al = 29
\ L

- 6. A\

|
O € tia 9
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Example of a density function

Let the random variable X = a dealer’s profit, in units of $5000, on a
new automobile with a density function:

_J2(1—x) forO<x<1
F(x) = { 0 elsewhere

What is the probability that the dealer’s profit is at least $4000 for a
new automobile. That is P(X > 2339) = P(X > 0.8).
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Finding Probability

To find the probability of the profit at least $4000, we need to find the
area under the curve between 0.8 and 1.
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Density Function
This is the graph of the density function. q(x 2 0. ‘\

- J- C1-0 Do)

- o.o4
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Definition of a Density Function

@ A density function is a non-negative function f defined of the set
of real numbers such that:

/OO f(x)dx = 1.

—0o0

@ If fis a density function, then its integral F(x) = ffoo f(u)duis a
continuous cumulative distribution function (cdf), that is
P(X < x) = F(x).

@ If X is a random variable with this density function, then for any
two real numbers, aand b

Pla< X < b) = /b F(x)dx.
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Integration

1. Evaluate [2(})ax. = -"5- x| = (s =
> S
- o.’a)
e
. -0.5
2. Evaluate [ 0.3e%3gt. = 1-¢
= -0 v
" o;-;‘ z'Se' it -03
AU-" 0. _o%.&
= - = -e - (O
 =|-@03
3. Evaluate [;° 2xe~2*dXx. oe -0 25%2
yuc).u - - ) -1 e~
U= 2x V-

du= 2 Au=e ok
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R S
j&’xepmc\x ='X6-hl = J -¢ "k
o 0
o = [0‘03 y -\ e-zx'
\ z °
= 0 - (- Y
-
Z

> f=function(x) 2*x*exp(-2*x)
> integrate(f,0,Inf)
0.5 with absolute error < 8.6e-06



Determine the cdf of a Uniform Distribution
Let X ~ U(0,5) such that the pdf of X is:

1 0<x<5 %
=92 "~
0 otherwise
Find the cdf F(x)for X. z

S
FOO = PX L) °
= P(X42D
— .!s- La) o.M

Lauw= Lx 0¢xesS
F00=j 5 O = 505'C K <o
o F(I-?:? g"‘- c.} 553 'pufg):\
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Cumulative Density Function
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Using the cdf F(X) to Compute Probabilities

Let X be a continuous random variable with pdf f(x) and cdf F(x).
Then for any number a, - (- ?0‘ £0~3

and for any two numbers a and b with a < b,

P(a< X < b) = F(b) — F(a)

=Pk 20D -Pkéad
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Example Using CDF

Suppose we have a cdf;

0, x < -1
Fx)={XH  1<x<2
— 1, x> 2.
340
— + —
1. Determine P(X <0) = T(O) = 2 =
T 79
2. Determine PO < X <1) = Fa 1D Y F(Q)
e 4V - L - L
q 1 7
3. Determine P(X >05) = (- P(X ¢ 0.S)
>
=1 - 93 £l _|-0ou2¥
U =o.31%
4. Given this CDF determine the pdf f(x).
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Example

Suppose we have a pdf of w 3 2
5 I 3 K c)x =
() = ax? 0< X<k
|0 otherwise o
“ 3 :
a) Determine k. K L

"4 2 \ 3| = 'y
s Lx'dx= A g 3
. 3 I 2PN v

b) Give the;gdf of this distribution.

Ya
0 x<0
FCxD= § %u‘d\ﬁ %—-’ FO :3 x?
o K
|

c) Determine xp such that P(X < xp) = 0.125
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F.\WA XO %C»\ M'\'
Px¢x,Y=012¥
F(Cx) =028
s

‘ﬁ— = Q. S
3
‘xo = ( )
1, N (b\mm‘h\t“



Quantiles

Let F be a given cumulative distribution and let p be any real number
between 0 and 1. The (100p)th percentile of the distribution of a
continuous random variable X is defined as

F~'(p) = min{x|F(x) > p}.

For continuous distributions, F~'(p) is the smallest number x such that
F(x)=p.
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Determine the Percentiles

Given a cdf,
0 X<0
Fx)=4§x® 0<X<2
1 X>2
1. Determine the 907 percenhle 3 A
POy, =0 3 =08 [ ke
F(X,)-—b-ti 25;_'.2

2. Detgrmine the 50t percentlle ‘
%-05 5 x93 x = 1Sy Medan

3. Flnd the value ofcsuch that P(X < c¢) = 0.75.
%,q,1s—7 c®=0 = c=\%11 Q3
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Expected Values for Continuous Random Variables

Disctade . TOO= £ Xy

The expected or mean value of a continuous random variable X with
pdf f(x) is

[e.9]

E(X):/ xf(x)dx.

—00

More generally, if his a function defined on the range of X,

E(h(X)) = /_ ~ hOOf(xX)dx.

(2]

EGd =) 22t ax
-0
Vac(xy= FGD - By’
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Example

The following is a pdf of X,

fu%_gm—%)0§X§1
o otherwise

1. Determine E(X{

2
EGO=Jxf{201-x)]Ax= 0378
> f=function(x) 3/2*x*(1-x"2)

O > integrate(f,0,1)
0.375 with absolute error <

4.2e-15
2. Determine E(X?) ©

EWCO= jly," i % U*f)]ék =
d
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> #E(x"2)

> f=function(x) 3/2*x*2*(1-x*2)

> integrate(f,0,1)

0.2 with absolute error < 2.2e-15

Nae(x> = £08) - [EW)”

_ 2
- 0.2~ 0.3%1S
=0.05943%7S

SPWR) = {o.oS‘iB‘?s = 0.2N34L7

> sqri(.Last.value)
[1] 0.2436699



Mean and Variance of the Uniform Distribution

= k(\loc\\r e.ﬁoump\t.
Let X ~ Unif(a, b) 5(.1.): _% e X< S

° E(X) =2t BiS
EkD= _.E- = 2.3
\,Q‘(‘> - QS-—QS?- :E_S“
2
o Var(X) = 72 s '* ‘
EQ):= 5 z & &x
0.S
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Example From Quiz 7

Let X be the amount of time (in hours) the wait is to get a table at a
restaurant. Suppose the cdf is represented by

Use the cdf to determine E[X].
|. Tone e QecinoNine .
d = 2x
] F () T 3 . 3
2 2x” | =
== _ e X -
ja(F)ex=) 3 27 ,
o (o]
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The Exponential Distribution

X is said to have an exponential distribution with parameter A 2l

(A > 0) if the pdf of X is:

e M x>0
f(x) = .
0 otherwise

Where ) is a rate parameter, we write X ~ Exp()). The cdf of a
exponential random variable is:

0 x <0
F(x)=
() {1 —e™ x>0
The mean of the exponential distribution is uy = E(X) = % the

standard deviation is also 1.
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Exponential Density Curves

Exponential Density Curves
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Exponential Distribution Related to the Poisson
Distribution

@ The exponential distribution is frequently used as a model for the
distribution of times between the occurrence of successive events until
the first arrival.

@ Suppose that the number of events occurring in any time of length t has
a Poisson distribution with parameter at.

@ Where «, the rate of the event process, is the expected number of
events occurring in 1 unit of time.

@ The number of occurrences are in non overlapping intervals and are
independent of one another.

@ Then the distribution of elapsed time between the occurrence of two
successive events is exponential with parameter A = «.
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Example

@ Suppose you usually get 3 phone calls per hour.

@ 3 phone calls per hour means that we would expect one phone
call every § hour so A = 1.

@ Compute the probability that a phone call will arrive within the next
hour.

P(xsVv)= "/5(\b = 62535
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R code

A
vl

> pexp(1l,1/3)
[1] 0.2834687

@ To find the probability of an exponential distribution in R: pexp(x, ).

@ To find the percentile (quantile) in R: gexp(x,\).
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Examples

Applications of the exponential distribution occurs naturally when
describing the waiting time in a homogeneous Poisson process. It can
be used in a range of disciplines including queuing theory, physics,
reliability theory, and hydrology. Examples of events that may be
modeled by exponential distribution include:

@ The time until a radioactive particle decays

@ The time between clicks of a Geiger counter

@ The time until default on payment to company debt holders
@ The distance between roadkills on a given road

@ The distance between mutations on a DNA strand

@ The time it takes for a bank teller to serve a customer

@ The height of various molecules in a gas at a fixed temperature
and pressure in a uniform gravitational field

@ The monthly and annual maximum values of daily rainfall and river
discharge volumes
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Example from Quiz 7

1. Suppose the time a child spends waiting at for the bus as a school
bus stop is exponentially distributed with mean 6 minutes.
Determine the probability that the child must wait at least 9
minutes on the bus on a given morning.

m=b A=l
> 1-pexp(9,1/6)

‘PU( ZQ) = = PX LK) 1102231302

2. Suppose the time a child spends waiting at for the bus as a school
bus stop is exponentially distributed with mean 4 minutes.
Determine the probability that the child must wait between 3 and 6
minutes on the bus on a given morning.

- = | > pexp(6,1/4)-pexp(3,1/4)
M= A=Y [1] 0.2492364

P2 S XCL) = PWXEW) -x e 3D
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The "Memoryless" Property P(x2 )= §—[1- |
Another application of the exponential distribution is tg r%?)%)e Ti%&)

distribution of component lifetime.

@ Suppose component lifetime is exponentially distributed with
parameter .

@ After putting the component into service, we leave for a period of
fo hours and then return to find the components still working; what
now is the probability that it last at least an addition t hours?

@ We want to find P(X >t + §h| X > o)

= Plx2gae, N XL

5 PR 24D
= POX2en) _
ety - Pxb)
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The Gamma Function

The gamma function I'(«) is defined by:

Ma) = / X~ Te X dx
0
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Properties of the Gamma Function

The most important properties of the gamma function are the
following:

1. Foranya >1,T(a) = (a—1)[(a—1)
2. For any positive integer, n, I'(n) = (n—1)!

3. T(}) = V&
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The PDF of a Gamma Distribution

A continuous random variable X is said to have a gamma distribution
if the pdf of X is

#Xa_‘le_x/ﬂ x>0

f(x;a,8) = {ﬁa”a)

0 otherwise

where parameters « and g satisfy o > 0, 8 > 0.
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Gamma Distribution Related to the Poisson

@ Gamma distribution is a distribution that arises naturally in
processes for which the waiting times between events are
relevant.

@ It can be thought of as a waiting time between Poisson distributed
events, unitl k arrivals.

@ Thus the scale parameter can also be thought of as the inverse of
the rate parameter (), %

° Thend B’Z%\
]

@ In R, P(X < x) = pgamma(x, «, B)
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Gamma Density Curve

Gamma Density Curve
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Applications of the Gamma Distribution

The gamma distribution can be used a range of disciplines including
queuing models, climatology, and financial services. Examples of
events that may be modeled by gamma distribution include:

@ The amount of rainfall accumulated in a reservoir
@ The size of loan defaults or aggregate insurance claims

@ The flow of items through manufacturing and distribution
processes

@ The load on web servers

@ The many and varied forms of telecom exchange
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Example

Suppose that the telephone calls arriving at a particular switchboard

follow a Poisson process with an average of 5 calls coming per minute.
What is the probability that up to a minute will elapse urg :
come in to the switchboard?

@ Average of 5 calls coming per minute means that 5 = %
@ Until 2 calls have come into the switchboard means that o = 2.

Pv(x¢ |) = Pgamma(y) 9 ‘/0’93

> pgamma(1,2,1/(1/5))
[1] 0.9595723
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Mean and Variance of the Gamma Distribution

The mean and variance of a random variable X having the gamma
distribution are:

E(X)=p=ap
Var(X) = 02 = a8
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Example of Gamma Distribution

Suppose that a transistor of a certain type is subjected to an
accelerated life test, the lifetime Y (in weeks) has a gamma distribution
with a mean of 24 and a standard deviation of 12.

1. Find the values of « and 8.  EQZ RN\ (M= \2 Yol (4

ECGH=0 @ Vocrd>=agt
g% zd @ NY = o @°
a= e N4 = 24 g*
2. Find P(Y < 24) [
="
&=

P74 290 = pgoenma (34,9, Yud

> pgamma(24,4,1/6)
[1] 0.5665299
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