Math 3339

Review for Final Exam - KEY

1. c. The interquartile range increases.
2. 0.003348589
3. --
4. $b_{0}=y$-intercept and $b_{1}=$ slope. Which of these will best explain the relationship between x and y ? b_{1}
5. --
6. d. Deciding to go for the first down when his team will not get the first down.
7. $15 / 43$
8. $9 / 20$
9. a. [17.01, 26.79]
b. [29.75313, 170.9206]
10.

$$
P\left(Z<\frac{(7020 / 52)-140}{10 / \sqrt{52}}\right)
$$

11. b. two-sample t-test for means
12. new mean $=5.64$, new $\mathrm{s}=1.32$
13. $\mathrm{E}[\mathrm{X}]=3.2, \mathrm{~V}[\mathrm{X}]=1.76$
14. Median $=3.5 \mathrm{~kg}$, shape is skewed right
15. b. A and C have reasonable intervals, but B does not.
16. [0.621, 0.779]
17. a. Fail to reject H_{0} at $\alpha=0.05$

$$
\begin{aligned}
& H_{0}: \mu=33.5 \\
& H_{a}: \mu \neq 33.5 \\
& t=\frac{31.6-33.5}{3.4 / \sqrt{12}}=-1.936 \\
& p(t \neq-1.936)=2 \cdot p(t<-1.936)=0.07897696
\end{aligned}
$$

b. Reject H_{0} at $\alpha=0.05$

$$
\begin{aligned}
& H_{0}: \mu=33.5 \\
& H_{a}: \mu<33.5 \\
& t=\frac{31.6-33.5}{3.4 / \sqrt{12}}=-1.936 \\
& p(t<-1.936)=p(t<-1.936)=0.03948848
\end{aligned}
$$

c. two-sided t test vs. one-sided t test.
18. a. $1 / 4 \quad$ b. $3 / 4$
19. a. $\hat{y}=-0.9644+0.0105 x$
b. $\hat{y}=0.5742+0.0137 x$
c. IT (higher R^{2} and lower p -value)
20. a. $n p=2$, too small
b. since $n p$ and $n(1-p)$ must each be at least 10 , we will need 500 parts to sample
c. Fail to reject H_{0} at $\alpha=0.05$

$$
\begin{array}{ll}
H_{0}: \rho=0.02 & H_{0}: \rho=0.02 \\
H_{a}: \rho \neq 0.02 & H_{a}: \rho>0.02 \\
z=\frac{.03-.02}{\sqrt{.02(.98) / 500}}=1.597 & z=\frac{.03-.02}{\sqrt{.02(.98) / 500}}=1.597 \\
p(z \neq 1.597)=2 \cdot p(z>1.597)=0.1102657 & p(z>1.597)=0.05513285
\end{array}
$$

21. Fail to reject the null hypothesis. (this is a two sided proportions test, the test statistic is 0.3333 which does not fall in the rejection region for 1% significance)
22. Reject H_{0} at $\alpha=0.05$

$$
\begin{aligned}
& H_{0}: \mu=32 \\
& H_{a}: \mu \neq 32 \\
& t=\frac{35-32}{5 / \sqrt{64}}=4.8 \\
& p(t \neq 4.8)=2 \cdot p(t>4.8)=1.014185 \mathrm{e}-05
\end{aligned}
$$

23. (two sample z test since we have population sd)
test statistic is $\mathrm{z}=-7.28=>$ Reject the null and conclude there is a difference in the means.
24. 0.420117
25. -0.5244005
26. 0.0306
27. 1.396815
28. 0.02550163
29. 1537
30. matched pairs t-test. Reject the null hypothesis
$H_{0}: \mu_{D}=0$
$H_{a}: \mu_{D}>0$
$t=\frac{33.3}{26.39044 / \sqrt{10}}=3.99$
$p(t>3.99)=0.001578866$
31. a. success/fail, same prob for success, independent trials
b. dbinom $(4,6, .9)=0.098415$
c. pbinom(2,6,.9)=0.00127
d. 1-pbinom $(4,6, .9)=0.885735$ (remember, this is discrete data)
32. for H_{a} : not all same, based on p-value given for data, reject the null at 5%
33. $\int_{0}^{a} \frac{1}{2} x^{2} d x=\left.\frac{1}{6} x^{3}\right|_{0} ^{a}=\frac{1}{6} a^{3}=1 \rightarrow a=\sqrt[3]{6}$
34. 98
35. Fail to reject the null hypothesis
$H_{0}: \mu_{g}=\mu_{b}$
$H_{a}: \mu_{g} \neq \mu_{b}$
$t=\frac{18.56-17.95}{\sqrt{\frac{4.35^{2}}{65}+\frac{4.87^{2}}{75}}}=0.783$
$p(t \neq 0.783)=2 \cdot p(t>0.783)=0.436515$
36. a. $f=\mathrm{MSTr} / \mathrm{MSE}=9.722$
b. p-value $=1-p f(9.722,3,16)=0.000685104$; Reject H_{0}; Pairs that differ significantly will have $\mathrm{w}=\mathrm{qtukey}(.95,4,16) * \operatorname{sqrt}(1.331 / 5)=2.087564 ;(1,2),(1,3),(4,2),(4,3)$
37. Reject H_{0}
$H_{0}: \rho_{r}=\rho_{n}$
$H_{a}: \rho_{r}>\rho_{n}$
$z=\frac{.7-.4}{\sqrt{\frac{86}{140}\left(\frac{54}{140}\right)\left(\frac{1}{100}+\frac{1}{40}\right)}}=3.29$
$p(z>3.29)=0.0005009369$
38. Reject H_{0}
$H_{0}: \rho=0.8$
$H_{a}: \rho<.8$
$z=\frac{{ }^{77}-.8}{\sqrt{-8(.2) / 110}}=-2.622$
$p(z<-2.622)=0.004370772$
39. Reject the null hypothesis
$H_{0}: \mu_{1}=\mu_{2}$
$H_{a}: \mu_{1}>\mu_{2}$
$t=\frac{85-83}{\sqrt{\frac{3^{2}}{75}+\frac{2^{2}}{60}}}=4.629($ use $d f=59)$
$p(t>4.629)=1.032084 \mathrm{e}-05$
40. a. $\hat{y}=-46.425+1.158 x \quad r=.9255 \quad r^{2}=.8566$
b. $\mathrm{b}=1.158 \quad \mathrm{t}^{*}=1.860 \quad \mathrm{SE}=.1676$
$b \pm t^{*} S E_{b}$
$1.158 \pm 1.860 \cdot .1676$
$(.846,1.467)$
This means that I am 90% confident the true slope of the LSRL of math and verbal scores on the SAT will lie in this interval. OR: I am 90\% confident that for every 1 point increase in math SAT score, the average increase in verbal SAT score will be between .846 and 1.467.
c.

$$
\begin{aligned}
& H_{0}: \beta=0 \quad H_{a}: \beta \neq 0 \\
& t=6.912 \\
& P(b \neq 0)=P(t \neq 6.912)=0.000123
\end{aligned}
$$

Conclusion: Based on 5\% significance level, I will reject the null hypothesis which states that there is no linear relationship between math and verbal scores on the SAT.
41. a. $\hat{y}=12.96+4.0162 x$
b. On average, for each 1 point increase in the problem solving sub score, the was an increase of 4.0162 points in the total score.
c. R^{2} indicates that 62% of the variation in total scores can be explained by the LSRL of total scores on problem solving sub score.
d.
$n=36 \Rightarrow d f=34 \Rightarrow t^{*}=2.032$
$b \pm t^{*} S E_{b}$
$4.0162 \pm 2.032 \cdot .5393$
(2.920,5.112)
e. All assumptions check.

$$
\begin{aligned}
& H_{0}: \beta=0 \quad H_{a}: \beta \neq 0 \\
& t=7.45 \text { from printout } \\
& \mathrm{t}=\frac{4.0162}{.5393} \text { formula } \\
& P(b \neq 0)=P(t \neq 7.45)=0.000 \\
& 6.0613 \times 10^{-9} \text { using tcdf on calculator }
\end{aligned}
$$

Based on 5\% significance level I will reject the null hypothesis which states that there is no linear relationship between problem solving sub scores and total scores on the exam.

