Math 3339 Review for Test 1 KEY

- 1. $X \sim binomial(6, .125); P(X = 1) = 0.3847$
- 2. $X \sim binomial(10,.85); P(X = 8) + P(X = 9) + P(X = 10) = 0.8202$
- 3. $X \sim binomial(5,.325); P(X \ge 1) = 1 P(X < 1) = 1 P(X = 0) = 0.8599$
- 4. E[X] = 18
- 5. E[X] = 3.7 miles, V[X] = 2.61
- 6. E[X] = 2, V[X] = 1.2
- 7. $\tilde{\mu} = 3.65$
- 8. median = 172, $\bar{x} = 169.4$, $s^2 = 52.30$
- 9. $X \sim binomial(10,.6); P(X \ge 5) = 0.8338$

10.

#11 The test grades for a certain class were entered into a Minitab worksheet, and then Descriptive Statistics were requested. The results were:

You happened to see, on a scrap of paper, that the lowest grades were 35, 57, 59, 60, ... but you don't know what the other individual grades are. Nevertheless, a knowledgeable user of statistics can tell a lot about the data set simply by studying the set of descriptive statistics above.

	a. Wri grad	te a brief description of what the results in the des. Be sure to address:	he box tell you about the	the distribution of $Q3 - Q1$
	i.	The general shape of the distribution	skewed left	IQR = 10
10 041	ii.	Unusual features, including possible out	liers	1.5 IQR = 24
(00,01)	iv.	Any significance in the difference betwee	the mean and the m	edian not really
	b. Cor	struct a boxplot f <u>or the test</u> grades.	outliers	Q1-24, Q3+24
				(44,188)
			35 is an	outher
	3	45 55 65 75 RE 45		

11. 0.33 12. a. 0.1 b. 0.1 c. yes P(H|L) = P(H)

13.

- a. 0.027
- b. 0.778

14.

15. 0.5

a.
$$P(X=4) = 0.15$$

b. $P(1 \le X < 3) = 0.45$
c. 2.25
d. 1.178
e. 3

a.
$$E[Y] = 57$$

b. $V[Y] = 17.64$
c. 4.2
d. 17.64

a. 192
b. 108
c. 0.4375 or 7/16

a.
$$P(A|B) = \frac{2}{3}$$

b. No

a.

y∖x	1	2	
1	4/39	7/39	11/39
2	5/39	8/39	13/39
3	6/39	9/39	15/39
	15/39	24/39	1

b. (in red on table)
$$E[X] = \frac{21}{13}$$

c.
$$E[Y] = \frac{82}{39}$$

 $E[XY] = \frac{132}{39}$
 $\sigma_X = 0.4865$
d. $\sigma_X = 0.8100$

a.
$$\sigma_Y = 0.0100$$

 $\operatorname{cov}(X,Y) = -0.012$
e. Not independent

21.

a. 0.044

22. 22

- 23. 1-phyper(1,20,15,5)=1 0.0933457 = 0.9066543
- 24. 0.1804
- 25. Suppose that from a group of 9 men and 8 women, a committee of 5 people is to be chosen.
 - a. What type of probability distribution is this? Hypergeometric with m = 9, n = 8 and k = 5
 - b. What is the probability that the committee has exactly 3 men and 2 women?

$$\frac{\binom{9}{3}\binom{8}{2}}{\binom{17}{5}} = \frac{84 \times 28}{6188} = 0.3801$$

26. A restaurant serves three fixed-price dinners costing \$12, \$15, and \$20. For a randomly selected couple dining at this restaurant, let X = the cost of the man's dinner and Y = the cost of the woman's dinner. The joint pmf of X and Y is given in the following table:

			Y	
P(x, y)		12	15	20
	12	0.05	0.05	0.10
X	15	0.05	0.10	0.35
	20	0	0.20	0.10

a. Compute the marginal pmf's of X and Y. Marginal pmf of X

Х	12	15	20	
P(X)	0.05 + 0.05 + 0.10 = 0.2	0.05 + 0.10 + 0.35 = 0.5	0 + 0.2 + 0.1 = 0.3	
Marginal pmf of Y				
Y	12	15	20	
P(Y)	0.05 + 0.05 + 0 = 0.1	0.05 + 0.10 + 0.20 = 0.35	0.1 + 0.35 + 0.1 = 0.55	

b. What is the probability that the man's and the woman's dinner cost at most \$15 each?

 $P(X \le 15 \text{ and } Y \le 15) = P(X = 12, Y = 12) + P(X = 12, Y = 15) + P(X = 15, Y = 12) + P(X = 15, Y = 15) = 0.05 + 0.05 + 0.05 + 0.10 = 0.25$

c. Are *X* and *Y* independent? Justify your answer.

Х	12	15	20	
P(X Y = 12)	0.05/0.1 = 0.5	0.05/0.1 = 0.5	0/0.1 = 0	
Since this conditional probability is not the same as the probability distribution				
of X, X and Y are	not independent.			

- d. What is the expected value of the total cost of the dinner for the two people? E(X) = 12(0.2) + 15(0.5) + 20(0.3) = 2.4 + 7.5 + 6 = 15.9 E(Y) = 12(0.1) + 15(0.35) + 20(0.55) = 1.2 + 5.25 + 11 = 17.45 E(X + Y) = 15.9 + 17.45 = \$33.35
- e. Suppose the when a couple opens fortune cookies at the conclusion of the meal, they find the message "You will receive as a refund the difference between the cost of the more expensive and the less expensive meal that you have chosen." How much does the restaurant expect to refund? |E(X - Y)| = |E(X) - E(Y)| = |15.9 - 17.45| = |-1.55| = \$1.55
- 27. The weight of a randomly selected bag of corn chips coming off an assembly line is a random variable with mean μ = 10 oz. and standard deviation σ = 0.2 oz. Suppose we pick four bags at random assume that weight of each of the bags are independent. Let X₁, X₂, X₃, X₄ be the weights of each of the four bags.
 - a. What is the mean of the combined weight of these four bags? We want $E(X_1 + X_2 + X_3 + X_4) = 10 + 10 + 10 + 10 = 40$
 - b. What is the standard deviation of the combined weight of these four bags? $Var(X_1 + X_2 + X_3 + X_4) = 0.04 + 0.04 + 0.04 + 0.04 = 0.16$ $SD((X_1 + X_2 + X_3 + X_4) = \sqrt{0.16} = 0.4$

28. Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on the day of Marie's wedding, given the weatherman forecasts rain?

Let A = a rainy day, B = weatherman forecasts rain. P(A) = 5/365 = 0.0137 P(B | A) = 0.9 P(~B | ~ A) = 0.1 $P(Rain) = \frac{5}{365} = 0.0137$ O(3) Forecast P(Rain) = Forecast O(3) Forecast $P(Rain) = \frac{0.0137(0.9)}{-} = 0.0137(0.9) + 0.9863(0.1)$ $P(Rain) = \frac{0.0137(0.9)}{-} = 0.0137(0.9) + 0.9863(0.1)$ $P(Rain) = \frac{0.01333}{-} = 0.1111$