Math 3339
 Review for Test 1 KEY

1. $X \sim \operatorname{binomial}(6, .125) ; \quad P(X=1)=0.3847$
2. $X \sim \operatorname{binomial}(10, .85) ; P(X=8)+P(X=9)+P(X=10)=0.8202$
3. $X \sim \operatorname{binomial}(5, .325) ; P(X \geq 1)=1-P(X<1)=1-P(X=0)=0.8599$
4. $E[X]=18$
5. $E[X]=3.7$ miles, $V[X]=2.61$
6. $E[X]=2, V[X]=1.2$
7. $\tilde{\mu}=3.65$
8. median $=172, \bar{x}=169.4, s^{2}=52.30$
9. $X \sim \operatorname{binomial}(10,6) ; \quad P(X \geq 5)=0.8338$
10.

\#11 The test grades for a certain class were entered into a Minitab worksheet, and then Descriptive Statistics were requested. The results were

You happened to see, on a scrap of paper, that the lowest grades were $35,57,59,60, \ldots$ but you don't know what the other individual grades are. Nevertheless, a knowledgeable user of statistics can tell a lot about the data set simply by studying the set of descriptive statistics above.
a. Write a brief description of what the results in the box tell you about the distribution of grades. Be sure to address: lightly Q3-Q1 i. The general shape of the distribution $\Lambda_{\text {skewed }}$ left $I Q R=16$
$(68,84)$ ii. Unusual features, including possible outliers $\quad 1.5 I Q R=24$ iv. Any significance in the difference between the mean and the median Nof reall $y d y$
 outliers Q1-24, Q3+24 35 is an outher
11. 0.33
12.
a. 0.1
b. 0.1
c. yes $P(H \mid L)=P(H)$
13.
a. 0.027
b. 0.778
14.

a.
b. 0.82
c. 0.16
15. 0.5
16.
a. $P(X=4)=0.15$
b. $P(1 \leq X<3)=0.45$
c. 2.25
d. 1.178
e. 3
17.
a. $E[Y]=57$
b. $V[Y]=17.64$
c. 4.2
d. 17.64
18.
a. 192
b. 108
c. 0.4375 or $7 / 16$
19.
a. $\quad P(A \mid B)=\frac{2}{3}$
b. No
20.
a.

$y \backslash x$	1	2	
1	$4 / 39$	$7 / 39$	$11 / 39$
2	$5 / 39$	$8 / 39$	$13 / 39$
3	$6 / 39$	$9 / 39$	$15 / 39$
	$15 / 39$	$24 / 39$	1

b. (in red on table)

$$
E[X]=\frac{21}{13}
$$

c. $E[Y]=\frac{82}{39}$
$E[X Y]=\frac{132}{39}$
$\sigma_{X}=0.4865$
d. $\sigma_{Y}=0.8100$
$\operatorname{cov}(X, Y)=-0.012$
e. Not independent
21.
a. 0.044
b. 0.3409
22. 22
23. 1-phyper($1,20,15,5)=1-0.0933457=0.9066543$
24. 0.1804
25. Suppose that from a group of 9 men and 8 women, a committee of 5 people is to be chosen.
a. What type of probability distribution is this?

Hypergeometric with $\mathrm{m}=9, \mathrm{n}=8$ and $\mathrm{k}=5$
b. What is the probability that the committee has exactly 3 men and 2 women?

$$
\frac{\binom{9}{3}\binom{8}{2}}{\binom{17}{5}}=\frac{84 \times 28}{6188}=0.3801
$$

26. A restaurant serves three fixed-price dinners costing $\$ 12, \$ 15$, and $\$ 20$. For a randomly selected couple dining at this restaurant, let $X=$ the cost of the man's dinner and $Y=$ the cost of the woman's dinner. The joint pmf of X and Y is given in the following table:

		Y		
$\mathrm{P}(x, y)$		12	15	20
	12	0.05	0.05	0.10
X	15	0.05	0.10	0.35
	20	0	0.20	0.10

a. Compute the marginal pmf's of X and Y.

Marginal pmf of X

X	12	15	20
$\mathrm{P}(\mathrm{X})$	$0.05+0.05+0.10=0.20$	$0.05+0.10+0.35=0.5$	$0+0.2+0.1=0.3$

Marginal pmf of Y

Y	12	15	20
$\mathrm{P}(\mathrm{Y})$	$0.05+0.05+0=0.1$	$0.05+0.10+0.20=0.35$	$0.1+0.35+0.1=0.55$

b. What is the probability that the man's and the woman's dinner cost at most \$15 each?
$\mathrm{P}(\mathrm{X} \leq 15$ and $\mathrm{Y} \leq 15)=\mathrm{P}(\mathrm{X}=12, \mathrm{Y}=12)+\mathrm{P}(\mathrm{X}=12, \mathrm{Y}=15)+\mathrm{P}(\mathrm{X}=15, \mathrm{Y}$
$=12)+\mathrm{P}(\mathrm{X}=15, \mathrm{Y}=15)=0.05+0.05+0.05+0.10=0.25$
c. Are X and Y independent? Justify your answer.

X	12	15	20
$\mathrm{P}(\mathrm{X} \mid \mathrm{Y}=12)$	$0.05 / 0.1=0.5$	$0.05 / 0.1=0.5$	$0 / 0.1=0$

Since this conditional probability is not the same as the probability distribution of X, X and Y are not independent.
d. What is the expected value of the total cost of the dinner for the two people?
$\mathrm{E}(\mathrm{X})=12(0.2)+15(0.5)+20(0.3)=2.4+7.5+6=15.9$
$\mathrm{E}(\mathrm{Y})=12(0.1)+15(0.35)+20(0.55)=1.2+5.25+11=17.45$
$E(X+Y)=15.9+17.45=\$ 33.35$
e. Suppose the when a couple opens fortune cookies at the conclusion of the meal, they find the message "You will receive as a refund the difference between the cost of the more expensive and the less expensive meal that you have chosen." How much does the restaurant expect to refund? $|\mathrm{E}(\mathrm{X}-\mathrm{Y})|=|\mathrm{E}(\mathrm{X})-\mathrm{E}(\mathrm{Y})|=|15.9-17.45|=|-1.55|=\$ 1.55$
27. The weight of a randomly selected bag of corn chips coming off an assembly line is a random variable with mean $\mu=10 \mathrm{oz}$. and standard deviation $\sigma=0.2 \mathrm{oz}$. Suppose we pick four bags at random assume that weight of each of the bags are independent. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be the weights of each of the four bags.
a. What is the mean of the combined weight of these four bags?

We want $\mathrm{E}\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}\right)=10+10+10+10=40$
b. What is the standard deviation of the combined weight of these four bags?
$\operatorname{Var}\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}\right)=0.04+0.04+0.04+0.04=0.16$
$\mathrm{SD}\left(\left(\mathrm{X}_{1}+\mathrm{X}_{2}+\mathrm{X}_{3}+\mathrm{X}_{4}\right)=\sqrt{0.16}=0.4\right.$
28. Marie is getting married tomorrow, at an outdoor ceremony in the desert. In recent years, it has rained only 5 days each year. Unfortunately, the weatherman has predicted rain for tomorrow. When it actually rains, the weatherman correctly forecasts rain 90% of the time. When it doesn't rain, he incorrectly forecasts rain 10% of the time. What is the probability that it will rain on the day of Marie's wedding, given the weatherman forecasts rain?

Let $\mathrm{A}=$ a rainy day, $\mathrm{B}=$ weatherman forecasts rain.
$\mathrm{P}(\mathrm{A})=5 / 365=0.0137$
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})=0.9$
$\mathrm{P}(\sim \mathrm{B} \mid \sim \mathrm{A})=0.1$

