1. *Munkres, §51, Exercise 3*
 A topological space X is said to be *contractible* if the identity map $i_X : X \to X$ is nullhomotopic (homotopic to a constant map).
 (a) Show that $[0,1]$ and \mathbb{R} are contractible.
 (b) Show that a contractible space is path connected.
 (c) Let $[X,Y]$ be the set of homotopy classes of maps $X \to Y$. Show that if Y is contractible, then for any X, the set $[X,Y]$ has a single element.
 (d) Show that if X is contractible and Y is path connected, then $[X,Y]$ has a single element.

2. *Munkres, §52, Exercise 4*
 Given $A \subset X$, a continuous map $r : X \to A$ is called a *retraction* if $r(a) = a$ for every $a \in A$. If $a_0 \in A$ and r is a retraction of X onto A, show that $r_* : \pi_1(X,a_0) \to \pi_1(A,a_0)$ is surjective. Give an example to show that r_* may not be injective.

3. *Munkres, §53, Exercise 5*
 Fix $n \in \mathbb{N}$ and let $p : S^1 \to S^1$ be the map $p(z) = z^n$. Show that p is a covering map. What is $\# p^{-1}(z)$?

4. *Munkres, §54, Exercise 5*
 Consider the covering map $p : \mathbb{R}^2 \to \mathbb{T}^2 = S^1 \times S^1$ given by $p(x,y) = (e^{2\pi ix}, e^{2\pi iy})$. Consider the path $\gamma(t) = (e^{2\pi it}, e^{4\pi it})$ on \mathbb{T}^2. Sketch what γ looks like when \mathbb{T}^2 is identified with the “doughnut” surface in \mathbb{R}^3. Find two different liftings $\tilde{\gamma}$ of γ to \mathbb{R}^2, and sketch them.

5. *Munkres, §54, Exercise 8*
 Let $p : E \to B$ be a covering map, with E path connected. Show that if B is simply connected, then p is a homeomorphism.