HOMEWORK 2

Due in class Mon, Feb. 12.

1. (Lee, 2-9) Let p be a non-zero polynomial in one variable with complex coefficients. Show that there is a unique continuous map $\tilde{p}: \mathbb{C}P^1 \to \mathbb{C}P^1$ such that the following diagram commutes, where $G: \mathbb{C} \to \mathbb{C}P^1$ is given by G(z) = [z, 1]:

$$\mathbb{C} \xrightarrow{G} \mathbb{C}P^{1}$$

$$\downarrow^{p} \qquad \qquad \downarrow^{\tilde{p}}$$

$$\mathbb{C} \xrightarrow{G} \mathbb{C}P^{1}$$

- **2.** (BG 1.15.13)
 - (a) Let M and N be smooth manifolds, and prove that $T(M \times N)$ is diffeomorphic to $TM \times TN$; that is, the tangent bundle of a product is diffeomorphic to the product of the tangent bundles.
 - (b) Prove that TS^1 is diffeomorphic to $S^1 \times \mathbb{R}$, then use part (a) to show that $T\mathbb{T}^2$ is diffeomorphic to $\mathbb{T}^2 \times \mathbb{R}^2$.
- **3.** Let M be an oriented embedded surface in \mathbb{R}^3 . In example 1.7.3 of the textbook, the *Gauss map* $M \to S^2$ is defined as follows: given a point $p \in M$ and a local parametrization $\phi: U \to V \ni p$ from our oriented smooth atlas, we put

$$F(p) = \frac{\partial \phi}{\partial x_1}(\phi^{-1}p) \times \frac{\partial \phi}{\partial x_2}(\phi^{-1}p) \in \mathbb{R}^3,$$

where \times represents the cross product in \mathbb{R}^3 , and then we define $G \colon M \to S^2$ by

$$G(p) = F(p) / ||F(p)||.$$

Note that T_pM and $T_{G(p)}S^2$ are naturally identified with the same two-dimensional subspace of \mathbb{R}^3 , and so $dG_p: T_pM \to T_{G(p)}S^2$ can be viewed as a linear map from T_pM to itself. The determinant of this map is called the *Gaussian curvature* of M at p.

- (a) Prove that $F(p) \neq 0$ for all $p \in M$, so that G(p) makes sense. Then prove that G(p) does not depend on which parametrization we choose near p.
- (b) Prove that if M is compact, then $G: M \to S^2$ is surjective, and that there must be some point p where the Gaussian curvature is nonnegative.
- (c) Consider the surface M given by $z = x^2 y^2$, identify T_0M with \mathbb{R}^2 using the natural identification from the chart $\phi(x, y) = (x, y, x^2 y^2)$, and compute the matrix for the linear map $dG_0 \colon \mathbb{R}^2 \to \mathbb{R}^2$. Use this to find the Gaussian curvature of M at 0.