HOMEWORK 2

Due in class Mon, Feb. 12.

1. (Lee, 2-9) Let p be a non-zero polynomial in one variable with complex coefficients. Show that there is a unique continuous map $\tilde{p}: \mathbb{C} P^{1} \rightarrow \mathbb{C} P^{1}$ such that the following diagram commutes, where $G: \mathbb{C} \rightarrow \mathbb{C} P^{1}$ is given by $G(z)=[z, 1]$:

2. (BG 1.15.13)
(a) Let M and N be smooth manifolds, and prove that $T(M \times N)$ is diffeomorphic to $T M \times T N$; that is, the tangent bundle of a product is diffeomorphic to the product of the tangent bundles.
(b) Prove that $T S^{1}$ is diffeomorphic to $S^{1} \times \mathbb{R}$, then use part (a) to show that $T \mathbb{T}^{2}$ is diffeomorphic to $\mathbb{T}^{2} \times \mathbb{R}^{2}$.
3. Let M be an oriented embedded surface in \mathbb{R}^{3}. In example 1.7.3 of the textbook, the Gauss map $M \rightarrow S^{2}$ is defined as follows: given a point $p \in M$ and a local parametrization $\phi: U \rightarrow V \ni p$ from our oriented smooth atlas, we put

$$
F(p)=\frac{\partial \phi}{\partial x_{1}}\left(\phi^{-1} p\right) \times \frac{\partial \phi}{\partial x_{2}}\left(\phi^{-1} p\right) \in \mathbb{R}^{3}
$$

where \times represents the cross product in \mathbb{R}^{3}, and then we define $G: M \rightarrow S^{2}$ by

$$
G(p)=F(p) /\|F(p)\|
$$

Note that $T_{p} M$ and $T_{G(p)} S^{2}$ are naturally identified with the same two-dimensional subspace of \mathbb{R}^{3}, and so $d G_{p}: T_{p} M \rightarrow T_{G(p)} S^{2}$ can be viewed as a linear map from $T_{p} M$ to itself. The determinant of this map is called the Gaussian curvature of M at p.
(a) Prove that $F(p) \neq 0$ for all $p \in M$, so that $G(p)$ makes sense. Then prove that $G(p)$ does not depend on which parametrization we choose near p.
(b) Prove that if M is compact, then $G: M \rightarrow S^{2}$ is surjective, and that there must be some point p where the Gaussian curvature is nonnegative.
(c) Consider the surface M given by $z=x^{2}-y^{2}$, identify $T_{0} M$ with \mathbb{R}^{2} using the natural identification from the chart $\phi(x, y)=\left(x, y, x^{2}-y^{2}\right)$, and compute the matrix for the linear map $d G_{0}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Use this to find the Gaussian curvature of M at 0 .

