HOMEWORK 5

Due in class Mon, Apr. 2.

1. (BG 3.4.1). If $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ are Riemannian manifolds, show that the mapping g defined by $g_{\left(p_{1}, p_{2}\right)}\left(\left(X_{1}, X_{2}\right),\left(Y_{1}, Y_{2}\right)\right)=\left(g_{1}\right)_{p_{1}}\left(X_{1}, Y_{1}\right)+\left(g_{2}\right)_{p_{2}}\left(X_{2}, Y_{2}\right)$ defines a Riemannian metric on $M_{1} \times M_{2}$, called the product metric.
2. (BG 3.4.2). Consider the Riemannian metric induced by \mathbb{R}^{4} on the torus $S^{1} \times S^{1}$, parametrized as $\left(\cos \left(x_{1}\right), \sin \left(x_{1}\right), \cos \left(x_{2}\right), \sin \left(x_{2}\right)\right)$. Show that $S^{1} \times S^{1}$ with the induced metric is isometric to the flat torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
3. (BG 3.4.8). Consider the Poincaré half plane \mathbb{H}^{2} and the Poincaré disc \mathbb{B}^{2}.
(a) Show that the mapping $f: \mathbb{H}^{2} \rightarrow \mathbb{B}^{2}$ defined by $f(z)=(i-z) /(i+z)$ is an isometry.
(b) Consider the manifold \mathcal{H}^{2} consisting of the upper sheet $(z>0)$ of the hyperboloid $x^{2}+y^{2}-z^{2}=-1$ with the smooth structure induced by \mathbb{R}^{3}. Endow this manifold with the Minkowski metric $d s^{2}=d x^{2}+d y^{2}-d z^{2}$. This is called the hyperboloid model of the hyperbolic plane. Show that the map $g: \mathbb{H}^{2} \rightarrow \mathcal{H}^{2}$ given by

$$
g(z)=\frac{\left(2 \operatorname{Re}(z), 2 \operatorname{Im}(z), 1+|z|^{2}\right)}{\left(1-|z|^{2}\right)}
$$

is an isometry.
4. (BG 4.8.1). Consider \mathbb{R} with the connection $\nabla_{(\partial / \partial x)}(\partial / \partial x)=\lambda$, for some $\lambda \in \mathbb{R}$. Let $c:[0,1] \rightarrow \mathbb{R}$ be a curve with $d c / d t(0)=\partial / \partial x$. Show that the parallel transport along c

$$
P_{c(t), c(0)}: T_{c(0)} \mathbb{R} \rightarrow T_{c(t)} \mathbb{R}
$$

is given by

$$
P_{c(t), c(0)}(v \partial / \partial x)=v e^{-\lambda t}(\partial / \partial x)
$$

for $v \in \mathbb{R}$. Note that $\lambda=0$ gives the usual connection, and every $\lambda \neq 0$ determines a non-Euclidean parallelism on \mathbb{R}.

