HOMEWORK 5

Due in class Mon, Apr. 2.

- 1. (BG 3.4.1). If (M_1, g_1) and (M_2, g_2) are Riemannian manifolds, show that the mapping g defined by $g_{(p_1, p_2)}((X_1, X_2), (Y_1, Y_2)) = (g_1)_{p_1}(X_1, Y_1) + (g_2)_{p_2}(X_2, Y_2)$ defines a Riemannian metric on $M_1 \times M_2$, called the product metric.
- **2.** (BG 3.4.2). Consider the Riemannian metric induced by \mathbb{R}^4 on the torus $S^1 \times S^1$, parametrized as $(\cos(x_1), \sin(x_1), \cos(x_2), \sin(x_2))$. Show that $S^1 \times S^1$ with the induced metric is isometric to the flat torus $\mathbb{R}^2/\mathbb{Z}^2$.
- **3.** (BG 3.4.8). Consider the Poincaré half plane \mathbb{H}^2 and the Poincaré disc \mathbb{B}^2 .
 - (a) Show that the mapping $f: \mathbb{H}^2 \to \mathbb{B}^2$ defined by f(z) = (i-z)/(i+z) is an isometry.
 - (b) Consider the manifold \mathcal{H}^2 consisting of the upper sheet (z > 0) of the hyperboloid $x^2 + y^2 z^2 = -1$ with the smooth structure induced by \mathbb{R}^3 . Endow this manifold with the Minkowski metric $ds^2 = dx^2 + dy^2 dz^2$. This is called the hyperboloid model of the hyperbolic plane. Show that the map $g \colon \mathbb{H}^2 \to \mathcal{H}^2$ given by

$$g(z) = \frac{(2\operatorname{Re}(z), 2\operatorname{Im}(z), 1 + |z|^2)}{(1 - |z|^2)}$$

is an isometry.

4. (BG 4.8.1). Consider \mathbb{R} with the connection $\nabla_{(\partial/\partial x)}(\partial/\partial x) = \lambda$, for some $\lambda \in \mathbb{R}$. Let $c \colon [0,1] \to \mathbb{R}$ be a curve with $dc/dt(0) = \partial/\partial x$. Show that the parallel transport along c

$$P_{c(t),c(0)} \colon T_{c(0)} \mathbb{R} \to T_{c(t)} \mathbb{R}$$

is given by

$$P_{c(t),c(0)}(v\partial/\partial x) = ve^{-\lambda t}(\partial/\partial x),$$

for $v \in \mathbb{R}$. Note that $\lambda = 0$ gives the usual connection, and every $\lambda \neq 0$ determines a non-Euclidean parallelism on \mathbb{R} .