HOMEWORK 6

Due in class Fri, Apr. 20.

This assignment walks you through the proof of part of the Gauss-Bonnet theorem. The goal is to prove a result that relates curvature of a surface to angles in geodesic triangles $(\# 4)$, and then use this to prove one specific case of Gauss-Bonnet in $\# 5$.
Let M be a two-dimensional Riemannian manifold. Given $p \in M$, fix $v_{0} \in T_{p} M$ with $\left\|v_{0}\right\|=1$, and for each $\theta \in \mathbb{R}$, let v_{θ} be the unit vector in $T_{p} M$ that makes an angle θ with v_{0}. (This involves a choice of orientation; it does not matter which way we rotate, just pick one and stick with it.) Define geodesic polar coordinates around p by the coordinate $\operatorname{map} \phi:(0, \infty) \times \mathbb{R} \rightarrow M$ by $\phi(r, \theta)=\exp _{p}\left(r v_{\theta}\right)$. It follows from properties of the exponential map that ϕ is a local diffeomorphism when r is sufficiently small.

1. Prove that in geodesic polar coordinates, the Riemannian metric takes the form $d s^{2}=$ $d r^{2}+g(r, \theta)^{2} d \theta^{2}$ for some positive smooth function g, and that $\lim _{r \rightarrow 0^{+}} \frac{\partial g}{\partial r}=1$. Compute the Christoffel symbols for this coordinate system (here $x_{1}=r$ and $x_{2}=\theta$), and use these to compute the vector fields $\nabla_{\frac{\partial}{\partial r}} \frac{\partial}{\partial r}, \nabla_{\frac{\partial}{\partial r}} \frac{\partial}{\partial \theta}, \nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial r}$, and $\nabla_{\frac{\partial}{\partial \theta}} \frac{\partial}{\partial \theta}$. You will need the fact that if $g_{i j}$ represents the metric in local coordinates, and $g^{k \ell}$ is the inverse of the matrix $g_{i j}$, then

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{\ell=1}^{m}\left(\frac{\partial g_{i \ell}}{\partial x_{j}}+\frac{\partial g_{j \ell}}{\partial x_{i}}-\frac{\partial g_{i j}}{\partial x_{\ell}}\right) g^{k \ell} \quad \text { and } \quad \nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}=\sum_{k=1}^{m} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}
$$

2. Recall that the Gaussian curvature of M at a point p is the real number given by

$$
\kappa(p)=\frac{\left\langle(R(X, Y) Y)_{p}, X_{p}\right\rangle}{\left\|X_{p}\right\|^{2}\left\|Y_{p}\right\|^{2}-\left\langle X_{p}, Y_{p}\right\rangle}
$$

where X, Y are (any) vector fields with X_{p}, Y_{p} linearly independent, and R is the curvature tensor defined by $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$. Using $\# 1$, prove that in geodesic polar coordinates, the Gaussian curvature is given by

$$
\kappa(r, \theta)=-\frac{1}{g} \frac{\partial^{2} g}{\partial r^{2}}
$$

3. Let γ be a curve given in geodesic polar coordinates by $\gamma(t)=\phi(r(t), \theta(t))$. Prove that γ is a geodesic if and only if the following equations are satisfied:

$$
\begin{gathered}
\frac{d^{2} r}{d t^{2}}-g \frac{\partial g}{\partial r}\left(\frac{d \theta}{d t}\right)^{2}=0 \\
\frac{d^{2} \theta}{d t^{2}}+\frac{2}{g} \frac{\partial g}{\partial r} \frac{d r}{d t} \frac{d \theta}{d t}+\frac{1}{g} \frac{\partial g}{\partial \theta}\left(\frac{d \theta}{d t}\right)^{2}=0
\end{gathered}
$$

4. We define integration on a Riemannian manifold M with respect to volume as follows: given a region $E \subset M$ that is covered by a single chart ϕ, we write

$$
\int_{E} f(p) d V(p)=\int_{\phi^{-1}(E)} f\left(\phi\left(x_{1}, \ldots, x_{m}\right)\right) \sqrt{\left|\operatorname{det} g_{i j}\left(x_{1}, \ldots, x_{m}\right)\right|} d x_{1} \cdots d x_{m}
$$

When M is two-dimensional, as in the present exercise, we refer to volume as surface area and write $d S$ (or $d A$) in place of $d V$. Let E be a geodesic triangle - that is, E is the region bounded by three geodesics on M, that intersect in points $A, B, C \in M$, where they make angles α, β, γ. Suppose that E is covered by a single set of geodesic polar coordinates, and prove that

$$
\int_{E} \kappa d S=\alpha+\beta+\gamma-\pi
$$

Hint: Use geodesic polar coordinates centered at A and let $\omega:[b, c] \rightarrow M$ be the unit speed geodesic from B to C. Compute the derivative of $\zeta(t)=\angle\left(\frac{d \omega}{d t}, \frac{\partial}{\partial r}\right)$ using \#3, and relate $\zeta(b), \zeta(c)$ to β and γ. Then write $\int_{E} \kappa d S$ as a double integral in these coordinates, and simplify as much as possible using \#2. Relate the two computations to complete the proof.

Remark: This says that the angular excess of the triangle E is the total curvature that it encloses, so triangles enclosing positive total curvature will have angles adding up to more than π (as with great circles on a sphere), while triangles enclosing negative total curvature will have angles adding up to less than π (as with triangles in the hyperbolic plane). Note that if we move a vector by parallel transport around the perimeter of the triangle, the result is a rotation of the original vector, determined by the angular excess, and hence by the total curvature.
5. Prove that if g is any Riemannian metric on the torus \mathbb{T}^{2}, then $\int_{\mathbb{T}^{2}} \kappa d S=0$.

Hint: Consider the torus as $[0,1]^{2}$ with opposite edges identified, and partition it into a large number of small geodesic triangles with vertices at the points $\left(\frac{i}{n}, \frac{j}{n}\right)$ for $0 \leq$ $i, j \leq n$, where n is chosen large enough that the necessary geodesics connecting nearby points all exist. Then show that the angular excesses of these triangles must add up to 0 by counting how many total vertices and edges your partition has.

Remark: One can similarly prove that for any Riemannian metric on the sphere S^{2}, we have $\int_{S^{2}} \kappa d S=4 \pi$, and that if M is the surface of genus k defined by identifying opposite edges of a regular $4 k$-gon, then any Riemannian metric on M has $\int_{M} \kappa d S=$ $4 \pi(1-k)$. This is usually written as $\int_{M} \kappa d S=2 \pi \chi(M)$, where $\chi(M)=2-2 k$ is the Euler characteristic. The sphere has Euler characteristic 2, and the process of "adding a handle" reduces Euler characteristic by 2. Euler characteristic is typically defined by 'triangulating' the surface as in $\# 5$, then putting

$$
\chi(M)=\# \text { vertices }-\# \text { edges }+\# \text { faces }
$$

