
Math 7352 Riemannian Geometry Spring 2018

HOMEWORK 6

Due in class Fri, Apr. 20.

This assignment walks you through the proof of part of the Gauss–Bonnet theorem.
The goal is to prove a result that relates curvature of a surface to angles in geodesic
triangles (#4), and then use this to prove one specific case of Gauss–Bonnet in #5.

Let M be a two-dimensional Riemannian manifold. Given p ∈ M , fix v0 ∈ TpM with
‖v0‖ = 1, and for each θ ∈ R, let vθ be the unit vector in TpM that makes an angle θ
with v0. (This involves a choice of orientation; it does not matter which way we rotate,
just pick one and stick with it.) Define geodesic polar coordinates around p by the
coordinate map φ : (0,∞)× R→M by φ(r, θ) = expp(rvθ). It follows from properties
of the exponential map that φ is a local diffeomorphism when r is sufficiently small.

1. Prove that in geodesic polar coordinates, the Riemannian metric takes the form ds2 =
dr2+g(r, θ)2dθ2 for some positive smooth function g, and that limr→0+
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the Christoffel symbols for this coordinate system (here x1 = r and x2 = θ), and use
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the fact that if gij represents the metric in local coordinates, and gk` is the inverse of
the matrix gij, then
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2. Recall that the Gaussian curvature of M at a point p is the real number given by

κ(p) =
〈(R(X, Y )Y )p, Xp〉
‖Xp‖2‖Yp‖2 − 〈Xp, Yp〉

,

where X, Y are (any) vector fields with Xp, Yp linearly independent, and R is the
curvature tensor defined by R(X, Y )Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z. Using #1,
prove that in geodesic polar coordinates, the Gaussian curvature is given by

κ(r, θ) = −1

g

∂2g

∂r2
.

3. Let γ be a curve given in geodesic polar coordinates by γ(t) = φ(r(t), θ(t)). Prove that
γ is a geodesic if and only if the following equations are satisfied:
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4. We define integration on a Riemannian manifold M with respect to volume as follows:
given a region E ⊂M that is covered by a single chart φ, we write∫

E

f(p) dV (p) =

∫
φ−1(E)

f(φ(x1, . . . , xm))
√
| det gij(x1, . . . , xm)| dx1 · · · dxm.

When M is two-dimensional, as in the present exercise, we refer to volume as surface
area and write dS (or dA) in place of dV . Let E be a geodesic triangle – that is, E
is the region bounded by three geodesics on M , that intersect in points A,B,C ∈ M ,
where they make angles α, β, γ. Suppose that E is covered by a single set of geodesic
polar coordinates, and prove that∫

E

κ dS = α + β + γ − π.

Hint: Use geodesic polar coordinates centered at A and let ω : [b, c] → M be the unit
speed geodesic from B to C. Compute the derivative of ζ(t) = ∠(dω

dt
, ∂
∂r

) using #3,
and relate ζ(b), ζ(c) to β and γ. Then write

∫
E
κ dS as a double integral in these

coordinates, and simplify as much as possible using #2. Relate the two computations
to complete the proof.

Remark: This says that the angular excess of the triangle E is the total curvature that
it encloses, so triangles enclosing positive total curvature will have angles adding up to
more than π (as with great circles on a sphere), while triangles enclosing negative total
curvature will have angles adding up to less than π (as with triangles in the hyperbolic
plane). Note that if we move a vector by parallel transport around the perimeter of
the triangle, the result is a rotation of the original vector, determined by the angular
excess, and hence by the total curvature.

5. Prove that if g is any Riemannian metric on the torus T2, then
∫
T2 κ dS = 0.

Hint: Consider the torus as [0, 1]2 with opposite edges identified, and partition it into
a large number of small geodesic triangles with vertices at the points ( i

n
, j
n
) for 0 ≤

i, j ≤ n, where n is chosen large enough that the necessary geodesics connecting nearby
points all exist. Then show that the angular excesses of these triangles must add up to
0 by counting how many total vertices and edges your partition has.

Remark: One can similarly prove that for any Riemannian metric on the sphere S2,
we have

∫
S2 κ dS = 4π, and that if M is the surface of genus k defined by identifying

opposite edges of a regular 4k-gon, then any Riemannian metric on M has
∫
M
κ dS =

4π(1 − k). This is usually written as
∫
M
κ dS = 2πχ(M), where χ(M) = 2 − 2k is

the Euler characteristic. The sphere has Euler characteristic 2, and the process of
“adding a handle” reduces Euler characteristic by 2. Euler characteristic is typically
defined by ‘triangulating’ the surface as in #5, then putting

χ(M) = #vertices−#edges + #faces.


