HOMEWORK 7

Due in class Mon, Apr. 30.

- **1.** (Lee 11.7a). Let $F \colon \mathbb{R}^2 \to \mathbb{R}^2$ be the smooth map given by $F(s,t) = (st, e^t)$, and let $\omega \in \mathfrak{X}^*(\mathbb{R}^2)$ be the covector field given by $\omega = x \, dy y \, dx$. Compute $F^*\omega$.
- **2.** (Lee 11.14). Consider the following two covector fields on \mathbb{R}^3 :

$$\omega = -\frac{4z \, dx}{(x^2 + 1)^2} + \frac{2y \, dy}{y^2 + 1} + \frac{2x \, dz}{x^2 + 1},$$
$$\eta = -\frac{4xz \, dx}{(x^2 + 1)^2} + \frac{2y \, dy}{y^2 + 1} + \frac{2 \, dz}{x^2 + 1}.$$

- (a) Set up and evaluate the line integral of each covector field along the straight line segment from (0, 0, 0) to (1, 1, 1).
- (b) Determine whether either of these covector fields is exact.
- (c) For each one that is exact, find a potential function and use it to recompute the line integral.
- **3.** (BG 6.11.1). Prove that TM and T^*M are isomorphic as vector bundles; that is, there is a diffeomorphism $f: TM \to T^*M$ such that f restricts to a linear isomorphism from T_pM to T_p^*M for all $p \in M$. Hint: use a Riemannian metric.
- **4.** Given a basis $\{e_1, \ldots, e_n\}$ for a vector space V, the *dual basis* for V^* is the set $\{L_1, \ldots, L_n\}$ defined by $L_i(e_j) = \delta_{ij}$. A $\binom{k}{0}$ -tensor on a V is a multilinear map $V^k \to \mathbb{R}$. The tensor product of a $\binom{k}{0}$ -tensor ω and a $\binom{\ell}{0}$ -tensor η is the $\binom{k+\ell}{0}$ -tensor

$$\omega \otimes \eta(v_1,\ldots,v_k,v_{k+1},\ldots,v_{k+\ell}) = \omega(v_1,\ldots,v_k)\eta(v_{k+1},\ldots,v_{k+\ell}).$$

Consider the $\binom{2}{0}$ -tensor det on \mathbb{R}^2 given by det $= L_1 \otimes L_2 - L_2 \otimes L_1$. Determine, with proof, whether or not there are covectors $\binom{1}{0}$ -tensors) ω, η on \mathbb{R}^2 such that det $= \omega \otimes \eta$.

- 5. Let $\omega_1, \ldots, \omega_k$ be covectors on a finite-dimensional vector space V.
 - (a) (Lee 14.1). Show that $\omega_1, \ldots, \omega_k$ are linearly dependent iff $\omega_1 \wedge \cdots \wedge \omega_k = 0$.
 - (b) Suppose $\omega_1, \ldots, \omega_k$ are linearly independent, and so is the collection of covectors $\eta_1, \ldots, \eta_k \in V^*$. Prove that $\operatorname{span}(\omega_1, \ldots, \omega_k) = \operatorname{span}(\eta_1, \ldots, \eta_k)$ if and only if there is some nonzero real number c such that $\omega_1 \wedge \cdots \wedge \omega_k = c \eta_1 \wedge \cdots \wedge \eta_k$.
- 6. (Lee 16-2). Let $\mathbb{T}^2 = S^1 \times S^1 \subset \mathbb{R}^4$ denote the 2-torus, defined as the set of points (w, x, y, z) such that $w^2 + x^2 = y^2 + z^2 = 1$, with the product orientation determined by the standard orientation on S^1 . Consider the 2-form $\omega = xyz \, dw \wedge dy \in \Omega^2(\mathbb{R}^4)$ and compute $\int_{\mathbb{T}^2} \omega$.