HOMEWORK 7

Due in class Mon, Apr. 30.

1. (Lee 11.7a). Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the smooth map given by $F(s, t)=\left(s t, e^{t}\right)$, and let $\omega \in \mathfrak{X}^{*}\left(\mathbb{R}^{2}\right)$ be the covector field given by $\omega=x d y-y d x$. Compute $F^{*} \omega$.
2. (Lee 11.14). Consider the following two covector fields on \mathbb{R}^{3} :

$$
\begin{aligned}
& \omega=-\frac{4 z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 x d z}{x^{2}+1} \\
& \eta=-\frac{4 x z d x}{\left(x^{2}+1\right)^{2}}+\frac{2 y d y}{y^{2}+1}+\frac{2 d z}{x^{2}+1}
\end{aligned}
$$

(a) Set up and evaluate the line integral of each covector field along the straight line segment from $(0,0,0)$ to $(1,1,1)$.
(b) Determine whether either of these covector fields is exact.
(c) For each one that is exact, find a potential function and use it to recompute the line integral.
3. (BG 6.11.1). Prove that $T M$ and $T^{*} M$ are isomorphic as vector bundles; that is, there is a diffeomorphism $f: T M \rightarrow T^{*} M$ such that f restricts to a linear isomorphism from $T_{p} M$ to $T_{p}^{*} M$ for all $p \in M$. Hint: use a Riemannian metric.
4. Given a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for a vector space V, the dual basis for V^{*} is the set $\left\{L_{1}, \ldots, L_{n}\right\}$ defined by $L_{i}\left(e_{j}\right)=\delta_{i j}$. A $\binom{k}{0}$-tensor on a V is a multilinear map $V^{k} \rightarrow \mathbb{R}$. The tensor product of a $\binom{k}{0}$-tensor ω and a $\binom{\ell}{0}$-tensor η is the $\binom{k+\ell}{0}$-tensor

$$
\omega \otimes \eta\left(v_{1}, \ldots, v_{k}, v_{k+1}, \ldots, v_{k+\ell}\right)=\omega\left(v_{1}, \ldots, v_{k}\right) \eta\left(v_{k+1}, \ldots, v_{k+\ell}\right) .
$$

Consider the $\binom{2}{0}$-tensor det on \mathbb{R}^{2} given by det $=L_{1} \otimes L_{2}-L_{2} \otimes L_{1}$. Determine, with proof, whether or not there are covectors $\binom{1}{0}$-tensors) ω, η on \mathbb{R}^{2} such that det $=\omega \otimes \eta$.
5. Let $\omega_{1}, \ldots, \omega_{k}$ be covectors on a finite-dimensional vector space V.
(a) (Lee 14.1). Show that $\omega_{1}, \ldots, \omega_{k}$ are linearly dependent iff $\omega_{1} \wedge \cdots \wedge \omega_{k}=0$.
(b) Suppose $\omega_{1}, \ldots, \omega_{k}$ are linearly independent, and so is the collection of covectors $\eta_{1}, \ldots, \eta_{k} \in V^{*}$. Prove that $\operatorname{span}\left(\omega_{1}, \ldots, \omega_{k}\right)=\operatorname{span}\left(\eta_{1}, \ldots, \eta_{k}\right)$ if and only if there is some nonzero real number c such that $\omega_{1} \wedge \cdots \wedge \omega_{k}=c \eta_{1} \wedge \cdots \wedge \eta_{k}$.
6. (Lee 16-2). Let $\mathbb{T}^{2}=S^{1} \times S^{1} \subset \mathbb{R}^{4}$ denote the 2-torus, defined as the set of points (w, x, y, z) such that $w^{2}+x^{2}=y^{2}+z^{2}=1$, with the product orientation determined by the standard orientation on S^{1}. Consider the 2-form $\omega=x y z d w \wedge d y \in \Omega^{2}\left(\mathbb{R}^{4}\right)$ and compute $\int_{\mathbb{T}^{2}} \omega$.

