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In preparation for the next post on the central limit theorem, it’s worth
recalling the fundamental results on convergence of the average of a sequence
of random variables: the law of large numbers (both weak and strong), and
its strengthening to non-IID sequences, the Birkhoff ergodic theorem.

1 Convergence of random variables

First we need to recall the different ways in which a sequence of random
variables may converge. Let Yn be a sequence of real-valued random vari-
ables and Y a single random variable to which we want the sequence Yn to
“converge”. There are various ways of formalising this.

1.1 Almost sure convergence

The strongest notion of convergence is “almost sure” convergence: we write
Yn

a.s.−−→ Y if
P(Yn → Y ) = 1. (1)

If Ω is the probability space on which the random variables are defined and
ν is the probability measure defining P, then this condition can be rewritten
as

ν{ω ∈ Ω | Yn(ω)→ Y (ω)} = 1. (2)
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1.2 Convergence in probability

A weaker notion of convergence is convergence “in probability”: we write
Yn

p−→ Y if
P(|Yn − Y | ≥ ε)→ 0 for any ε > 0. (3)

In terms of Ω and ν, this condition is

ν{ω ∈ Ω | |Yn(ω)− Y (ω)| ≥ ε} → 0 (4)

Almost sure convergence implies convergence in probability (by Egorov’s the-
orem, but not vice versa. For example, let In ⊂ [0, 1] be any sequence of
intervals such that for every x ∈ [0, 1] the sets

{n | x ∈ In}, {n | x /∈ In}

are both infinite. Let Ω = [0, 1] and let Yn = 1In be the characteristic

function of the interval In. Then Yn
p−→ 0 but Yn 6

a.s.−−→ 0.

1.3 Convergence in distribution

A still weaker notion of convergence is convergence “in distribution”: we

write Yn
d−→ Y if, writing Fn, F : R → [0, 1] for the cumulative distribution

functions of Yn and Y , we have Fn(t)→ F (t) at all t where F (t) is continuous.
Convergence in probability implies convergence in distribution, but the

converse fails if Y is not a.s.-constant. Here is one broad class of examples
showing this: suppose Y : Ω → R has P(Y ∈ A) = P(Y ∈ −A) for every
interval A ⊂ R (for example, this is true if Y is normal with zero mean).
Then −Y and Y have the same CDF, and so any sequence which converges
in distribution to one of the two will also converge in distribution to the
other; on the other hand, Yn cannot converge in probability to both Y and
−Y unless Y = 0 a.s.

2 Weak law of large numbers

Given a sequence of real-valued random variables Xn, we consider the sums

Sn = X1 +X2 + · · ·+Xn.

Then 1
n
Sn is the average of the first n observations.
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Suppose that the sequence Xn is independent and identically distributed
(IID) and that Xn is integrable – that is, E(|Xn|) < ∞. Then in particular
the mean µ = E(Xn) is finite. The weak law of large numbers says that 1

n
Sn

converges in probability to the constant function µ. Because the limiting dis-
tribution here is a constant, it is enough to show convergence in distribution.
This fact leads to a well-known proof of the weak law of large numbers using
characteristic functions.

If a random variable Y is absolutely continuous – that is, if it has a
probability density function f – then its characteristic function ϕY is the
Fourier transform of f . More generally, the characteristic function of Y is

ϕY (t) = E(eitY ). (5)

Characteristic functions are related to convergence in distribution by Lévy’s

continuity theorem, which says (among other things) that Yn
d−→ Y if and

only if ϕYn(t) → ϕY (t) for all t ∈ R. In particular, to prove the weak law
of large numbers it suffices to show that the characteristic functions of 1

n
Sn

converge pointwise to the function eitµ.
Let ϕ be the characteristic function of Xn. (Note that each Xn has the

same characteristic function because they are identically distributed.) Let
ϕn be the characteristic function of 1

n
Sn – then

ϕn(t) = E(e
it
n
(X1+···+Xn)).

Because the variables Xn are independent, we have

ϕn(t) =
n∏
j=1

E(e
it
n
Xj) = ϕ

(
t

n

)n
. (6)

By Taylor’s theorem and by linearity of expectation, we have for t ≈ 0 that

ϕ(t) = E(eitXj) = E(1 + itXj + o(t2)) = 1 + itµ+ o(t),

and together with (6) this gives

ϕn(t) =

(
1 +

itµ

n
+ o(t/n)

)n
→ eitµ,

which completes the proof.
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3 Strong law of large numbers and ergodic

theorem

The strong law of large numbers states that not only does 1
n
Sn converge to µ

in probability, it also converges almost surely. This takes a little more work
to prove. Rather than describe a proof here (a nice discussion of both laws,
including a different proof of the weak law than the one above, can be found
on Terry Tao’s blog), we observe that the strong law of large numbers can
be viewed as a special case of the Birkhoff ergodic theorem, and then give
a proof of this result. First we state the ergodic theorem (or at least, the
version of it that is most relevant for us).

Theorem 1 Let (X,F , µ) be a probability space and f : X → X a measur-
able transformation. Suppose that µ is f -invariant and ergodic. Then for
any ϕ ∈ L1(µ), we have

1

n
Snϕ(x)→

∫
ϕdµ (7)

for µ-a.e. x ∈ X, where Snϕ(x) = ϕ(x) + ϕ(fx) + · · ·+ ϕ(fn−1x).

Before giving a proof, we describe how the strong law of large numbers is
a special case of Theorem 1. Let Xn be a sequence of IID random variables
Ω→ R, and define a map π : Ω→ X := RN by

π(ω) = (X1(ω), X2(ω), . . . ).

Let ν be the probability measure on Ω that determines P, and let µ = π∗ν =
ν ◦ π−1 be the corresponding probability measure on X.

Because the variablesXn are independent, µ has the form µ = ν1×ν2×· · · ,
and because they are identically distributed, all the marginal distributions
νj are the same, so in fact µ = νN for some probability distribution ν on R.

The measure µ is invariant and ergodic with respect to the dynamics
on X given by the shift map f(x1, x2, x3, . . . ) = (x2, x3, x4, . . . ) (this is an
example of a Bernoulli measure). Writing x = (x1, x2, x3, . . . ) ∈ X and
putting ϕ(x) = x1, we see that for x = π(ω) we have

X1(ω) + · · ·+Xn(ω) = Snϕ(x).

In particular, the convergence in (7) implies the strong law of large numbers.
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4 Proving the ergodic theorem

To prove the ergodic theorem, it suffices to consider a function ϕ ∈ L1(µ)
with

∫
ϕdµ = 0 and show that the set

Xε =

{
x ∈ X | lim

n→∞

1

n
Snϕ(x) > ε

}
has µ(Xε) = 0 for every ε > 0. Indeed, the set of points where (7) fails is
the (countable) union of the sets X1/k for the functions ±(ϕ−

∫
ϕdµ), and

thus has µ-measure zero if this result holds.
Note that Xε is f -invariant, and so by ergodicity we either have µ(Xε) = 0

or µ(Xε) = 1. We assume that µ(Xε) = 1 and derive a contradiction by
showing that this implies

∫
ϕdµ > 0.

The assumption on µ(Xε) implies that limn→∞ Sn(ϕ − ε)(x) = ∞ for
µ-a.e. x. The key step now is to use this fact to show that∫

ϕdµ ≥ ε; (8)

this is the content of the maximal ergodic theorem.
Proving the maximal ergodic theorem requires a small trick. Let ψ = ϕ−ε

and let ψn(x) = max{Skψ(x) | 0 ≤ k ≤ n}. Then

ψn+1 = ψ + max{0, ψn ◦ f}, (9)

and because ψn(x)→∞ for µ-a.e. x, this implies that ψn+1−ψn◦f converges
µ-a.e. to ψ. Now we want to argue that∫

ψ dµ = lim
n→∞

∫
(ψn+1 − ψn ◦ f) dµ, (10)

because the integral on the right is equal to
∫

(ψn+1−ψn) dµ by f -invariance
of µ, and this integral in turn is non-negative because ψn is non-decreasing.
So if (10) holds, then we have

∫
ψ dµ ≥ 0, which implies (8).

Pointwise convergence does not always yield convergence of integrals, so
to verify (10) we need the Lebesgue dominated convergence theorem. Using
(9) we have

ψn+1 − ψn ◦ f = ψ + max{0, −ψn ◦ f}
≤ ψ + max{0, −ψ ◦ f},
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which is integrable, and so the argument just given shows that (10) holds
and in particular

∫
ϕdµ ≥ ε, contradicting the assumption on ϕ. This proves

that µ(Xε) = 0, which as described above is enough to prove that (7) holds
µ-a.e.
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