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The previous post introduced the idea of coupling for Markov chains as a
method for estimating mixing times. Here we mention a particular example
of a coupling that is often useful – this is the classical coupling, or Doeblin
coupling, after Wolfgang Doeblin.

Let Xn be a Markov chain with state space S and transition probability
matrix P . As usual, assume that P is irreducible and aperiodic, so that there
is a unique stationary distribution π, and let λ be the initial distribution of
Xn.

Let Yn be another Markov chain over P , with initial distribution π. Let
Xn and Yn evolve independently of each other, and consider the stopping
time

T = min{m ≥ 0 | Xm = Ym}. (1)

The time T is a random variable, and we can define a new stochastic process
Zn, depending on Xn, Yn, and T , by

Zn =

{
Xn n < T,

Yn n ≥ T.
(2)

Now the pair (Yn, Zn) is a coupling of the Markov chain. Each of Yn, Zn

evolves according to the transition probabilities in P , but after time T the
pair (Yn, Zn) lives on the diagonal of S × S, and so in particular if we write
λn for the distribution of Xn, the general coupling bound from the previous
post gives

dV (λn, π) ≤ P(T > n).
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This bound can be computed directly as follows: for any A ⊂ S we have

|λn(A)− π(A)| = |P(Zn ∈ A)− P(Yn ∈ A)|
= |P(Zn ∈ A and T ≤ n) + P(Zn ∈ A and T > n)

− P(Yn ∈ A and T ≤ n)− P(Yn ∈ A and T > n)|
= |P(Zn ∈ A and T > n)− P(Yn ∈ A and T > n)|
≤ P(T > n),

where the third equality uses the fact (from the definition of Zn) that Zn = Yn

whenever n ≥ T .
Now suppose that instead of beginning in the stationary distribution π,

the Markov chain Yn begins in another distribution λ′. We would like to
estimate the distance between the distributions λn = λP n and λ′

n = λ′P n,
which corresponds to memory loss in the Markov chain. If we define the
hitting time T by (1) and the coupling Zn by (2), then the same argument
gives

dV (λn, λ
′
n) ≤ P(T > n),

and so we see that coupling techniques also estimate the memory loss in the
Markov chain.

We remark that it can be shown that for each x ∈ S, not only does the
quantity ∆x(m) = dV (pm

x , π) converge to 0, but it does so monotonically.
Later on in this series, we will explore the connection between these tech-

niques and smooth dynamics. For uniformly hyperbolic maps, Markov par-
titions can be used to connect the dynamics of a diffeomorphism to a finite-
state Markov chain. For non-uniformly hyperbolic maps, the situation is more
subtle and a countable-state Markov chain must be used – this will lead us
to a discussion of Young towers and subexponential decay of correlations,
for which coupling techniques can be used to get results even when spectral
techniques fail because the transfer operator does not act with a spectral
gap.
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