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Our seminar series is taking a hiatus from spectral methods for a couple
weeks – these will return eventually, but in the meantime we’ll spend some
time with the idea of coupling as a method for deriving statistical properties.
In this week’s post, based on Matt Nicol’s talk, we discuss Markov chains
and the idea of mixing times.

1 Markov chains and probability distributions

For our purposes, a Markov chain is a (finite or countable) collection of
states S and transition probabilities pij, where i, j ∈ S. We write P = [pij]
for the matrix of transition probabilities. Elements of S can be interpreted
as various possible states of whatever system we are interested in studying,
and pij represents the probability that the system is in state j at time n+ 1,
if it is state i at time n. We will think of a Markov chain as a stochastic
process with state space SN, representing all sequences X0, X1, X2, . . . , where
Xn is the state of the system at time n. The characterisation just given of
the transition probabilities can be expressed as

P (Xn+1 = j | Xn = i) = pij, (1)

where P (· | ·) represents conditional probability. It is a key feature of a
Markov chain (as opposed to other kinds of stochastic processes) that once
Xn is known, Xn+1 is completely independent of any information on what
happened before time n – that is, conditioning the probability in (1) on any
events involving X0, . . . , Xn−1 does not change its value.

It is tempting to phrase the above property as “Xn+1 depends only on
Xn”. However, this formulation is a little misleading, as it gives the im-
pression that the sequence Xn ∈ S evolves deterministically, whereas it is of
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course a stochastic process. To make a correct statement along these lines,
we must say that “the probability distribution of Xn+1 depends only on the
probability distribution of Xn”.

Let us expand this idea. If we write pn(j) for the probability that the
system is in state j at time n, then pn : S → [0, 1] has the property that∑

j∈S pn(j) = 1. That is, pn is an element of the unit simplex in Rd (if S

has d elements) or in `1 (if S is countably infinite). Write ∆ for this unit
simplex: then the sequence of probability distributions pn can be viewed as
a sequence of points in ∆.

Now the Markov property – the fact that the probability in (1) does
not change if we condition on Xk for k < n – can be reformulated as the
property that pn+1 ∈ ∆ depends only on pn ∈ ∆, and not on pk for any
k < n. In particular, the Markov chain can be viewed as a (deterministic!)
map T : ∆ → ∆, so once we specify the initial probability distribution p0,
subsequent distributions are determined by pn = T np0. Our goal will be to
understand how the distributions pn evolve in time – that is, what are the
dynamics of the map T .

The map T is determined by the transition probabilities pij (and vice
versa). In fact, it can be written in terms of the matrix P using the fact that

pn+1(j) = P (Xn+1 = j)

=
∑
i∈S

P (Xn+1 = j | Xn = i) · P (Xn = i)

=
∑
i∈S

pijpn(i),

so that using the language of matrix multiplication we have

pn+1 = pnP, T (µ) = µP, (2)

where µ represents an arbitrary distribution in ∆. We conclude that iterates
of the map T correspond to powers of the matrix P .

2 Stationary distribution(s)

It is natural to ask if there is a stationary distribution – that is, a distribution
µ ∈ ∆ such that if we start the Markov chain in this distribution and then
run it forward in time, we keep the same distribution, so that P (Xn = j) =
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P (X0 = j) for every j ∈ S and n ∈ N. If the chain is in such a distribution,
then we have a prediction of the long-term behaviour – at any time n, no
matter how far in the future, we know how likely it is to find the system in
a given state.

A related question is to ask about the long-term behaviour when the
initial distribution is not stationary. If we start the chain in a distribution
p0 such that p1 6= p0, and the probabilities really are changing in time, what
happens to pn(j) as n grows? Does the probability of finding the system in
state j at some later time n depend critically on just when we decide to make
our observation? Or does pn(j) converge to some asymptotic probability?

We will answer the first question (existence of stationary distributions)
in this section, and address the second later on.

A distribution µ ∈ ∆ is stationary for the Markov chain if and only if
T (µ) = µ – that is, µ is a fixed point for T . In any convex space (such as ∆),
there is a method for looking for fixed points: begin with any distribution µ,
and then consider the Cèsaro averages

µn =
1

n

n−1∑
k=0

T k(µ). (3)

It is not difficult to show that any limit point of this sequence is a fixed point
for T – that is, T (π) = π if π = lim`→∞ µn`

for some n` →∞.
To prove this one first needs to clarify what notion of convergence is being

used. Consider for now the case when S is finite, say #S = d. In this case
µn ∈ Rd and we can use the usual topology from Rd, so that in particular
the simplex ∆ is compact and the sequence µn has a convergent subsequence
µn`

. It is a worthwhile exercise to check that the limit π = lim`→∞ µn`
is in

fact a fixed point, π = πP .
Thus we have existence of a stationary distribution when S is finite.

There are several natural questions to ask at this point, and we address each
in turn.

1. Is the stationary distribution unique? Or can there be multiple sta-
tionary distributions?

2. What happens when S is countably infinite? Is there a stationary
distribution? Is it unique?

3. If the stationary distribution π is unique, then the averaged distribu-
tions µn from (3) converge to π. What about the distributions T k(µ)
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themselves, which are just the observations made at time k, without
averaging over k? Do these converge to π?

The answers to these questions are as follows: definitions of the relevant
terms will come in a moment.

1. The stationary distribution is unique if the Markov chain is irreducible.

2. If S is countably infinite then there is a stationary distribution if and
only if the Markov chain is positive recurrent. If in addition the Markov
chain is irreducible then this stationary distribution is unique. For null
recurrent and transient chains, there is no stationary distribution.

3. If the Markov chain is aperiodic, then the distributions T k(µ) converge
to π for every initial distribution µ.

3 Irreducibility

One can associate a directed graph G to a Markov chain by taking S for the
set of vertices and drawing an edge from i to j if and only if the transition
probability pij is non-zero.

Now the Markov chain can be interpreted as a random walk on the graph
G. If at time n the random walker is at the vertex labeled i, then the
probability that he walks to vertex j at time n+ 1 is given by the transition
probability pij.

Definition 1 The Markov chain is irreducible if its associated graph G is
strongly connected – that is, there is a path from any vertex to any other
vertex.

The path in Definition 1 may be of any length: an equivalent formulation
is that the Markov chain is irreducible if and only if for every i, j ∈ S there
exists n ∈ N such that P (Xn = j | X0 = i) > 0.

Theorem 2 If S is finite and the Markov chain is irreducible, then there is
a unique stationary distribution π = πP on S.

Theorem 2 is part of the Perron–Frobenius theorem in linear algebra.
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4 An example – card shuffling

Consider a deck of n cards, and let S be the set of all possible orderings of
those cards, so that #S = n!. The act of shuffling the deck can be described
as a Markov chain with state space S: if i ∈ S represents the current order
of the cards, then the acts of shuffling once changes the order to some other
element of S, and the probability of transitioning from the ordering i ∈ S
to the ordering j ∈ S encodes some properties of the method of shuffling
employed.

One of the simplest possible shuffles is the top-down shuffle – given a deck
in state i, choose a card at random, remove it from the deck, and place it on
the top. Thus there are n possible states that can be reached in a single step
from the current state, and each one is equally likely. In terms of the random
walk on a graph described in the previous section, we have a directed graph G
with n! vertices, each with outgoing degree n, and the random walker selects
one of the n outgoing edges uniformly at random at each step.

It is easy to see that this Markov chain is irreducible – given any two
states it is possible to go from one to the other (in enough steps) with pos-
itive probability. So there is a unique stationary distribution. What is it?
Intuitively we feel as though the shuffling process is symmetric enough (blind
enough to the details of the arrangement at any given time) that all arrange-
ments of the cards should be equally likely. In other words, we expect that
the stationary distribution is the π ∈ ∆ defined by π(i) = π(j) for all i, j ∈ S
– that is, π(j) = 1

n!
for all j.

To see that this distribution is stationary, define for each j ∈ S the set
I(j) = {i ∈ S | i → j is an edge in G} of configurations of the deck from
which the configuration j can be reached with a single step of the shuffle
(a single selection of a card). Observe that I(j) has exactly n elements,
corresponding to the n positions in the deck from which the top card in
configuration j could have been prior to the last shuffle. Thus every vertex
in the graph G has the same incoming degree n, and we can compute πP as

(πP )(j) =
∑
i∈I(j)

πipij =
1

n!
= π(j).

Thus π is indeed the unique stationary distribution.

Remark 3 The result that every vertex has the same incoming degree can
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also be derived more abstractly as a consequence of the fact that the symmetric
group on n elements acts transitively on the graph G.

It is natural to ask how many times we must shuffle in order to feel
confident that the resulting distribution is “random enough”. In terms of
the random walk on the graph G, the act of shuffling looks like this: we
start with a probability distribution concentrated on a single vertex j ∈ S,
corresponding to the initial ordering of the cards. After a single shuffle, that
distribution is evenly distributed over the n vertices that can be reached from
j in a single step. After a second shuffle, it is evenly distributed over the n2

vertices that can be reached from j in two steps – except that it is not quite
an even distribution now, because some vertices can be reached in multiple
ways via a path of length two. For example, j itself can be reached in two
ways (select the top card twice, or select the second card from the top twice).

As the number of shuffles increases, the distribution gets spread out over
more and more vertices, but there is also this phenomenon of recurrence
where it comes back to certain vertices more quickly than to others, and
does not spread out completely evenly. We would like to understand if it
eventually approaches the stationary distribution π, which is the uniform
distribution on S, and if so, how quickly it does so. We will return to this
below.

5 Recurrence and transience

When the set of states S is infinite, the simplex ∆ ⊂ `1 is no longer compact,
and so the sequence µn in (3) does not necessarily have a convergent sub-
sequence. In particular, the proof of existence for a stationary distribution
given above does not immediately go through.

Indeed, consider the Markov chain with state space S = N and transition
probabilities pij = 1(j = i + 1), 0 (otherwise). Then the walk is not so
random – the walker simply goes from state i to state i+1 at each time step,
and in particular we have P (Xn ≤ n) = 0, so limn→∞ µn(j) = 0 for every
j ∈ S, and we see that the distributions µn converge pointwise to the zero
distribution. This is not a probability distribution (the total mass is 0, not
1), and informally we may say that the missing mass has escaped to infinity.

So we need something to replace compactness of ∆, something that will
guarantee that no mass escapes to infinity. We may think of this in the
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language of the previous post – how do we gaurantee precompactness of
the sequence µn? What conditions on a subset of `1 guarantee that it is
precompact?

First we note that because we are now in `1, not Rd, the notion of con-
vergence and of metric have changed. The relevant metric in this case is the
`1 metric

d`1(ν, µ) = ‖ν − µ‖`1 =
∑
j∈S

|ν(j)− µ(j)|. (4)

It is helpful to interpret this metric in light of the fact that ν, µ ∈ ∆ are to
be thought of as probability distributions. Upon restriction to ∆, the metric
(4) (or rather, 1

2
this metric) becomes the total variation metric on the space

of probability measures:

dV (ν, µ) =
1

2
d`1(ν, µ) = sup

A⊂S
|ν(A)− µ(A)| = sup

A⊂S
(ν(A)− µ(A)), (5)

where we will prove momentarily that the last three expressions are equiva-
lent. First note that 0 ≤ dV (ν, µ) ≤ 1 for all ν, µ ∈ S. Moreover, if X, Y are
random variables on S distributed according to ν, µ respectively, then

d(ν, µ) = sup
A⊂S
|P (X ∈ A)− P (Y ∈ A)|,

and once again the supremum is unchanged if we remove the absolute value
signs, as we now see.

Proposition 4 The quantities in (5) all coincide.

Proof: To see that the last two coincide, we observe that if Ac = S \ A is
the complement of A, then because µ, ν are probability distributions we have

ν(Ac)− µ(Ac) = (1− ν(A))− (1− µ(A)) = µ(A)− ν(A).

Thus the set over which the last supremum is taken is symmetric around 0.
To see that this supremum coincides with 1

2
d`1(ν, µ), we observe that

ν(A)− µ(A) =
∑
i∈S

1A(i)[ν(i)− µ(i)],
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and the right-hand side is maximised when A = {i ∈ S | ν(i) ≥ µ(i)}.
Writing Â for this set, we have

sup
A⊂S

(ν(A)− µ(A)) = ν(Â)− µ(Â)

=
1

2
[(ν(Â)− µ(Â)) + (µ(Âc)− ν(Âc))]

=
1

2

∑
i∈S

[
1Â(ν(i)− µ(i)) + 1Âc(µ(i)− ν(i))

]
=

1

2

∑
i∈S

|ν(i)− µ(i)| = 1

2
d`1(ν, µ).

�

If µn, µ ∈ ∆ are such that dV (µn, µ) → 0 as n → ∞, then we say
that µn converges to µ in the total variation norm. This implies pointwise
convergence (µn(j) → µ(j) for every j ∈ S), but is stronger. For example,
the sequence of distributions at the beginning of this section converges to 0
pointwise, but not in total variation.

Now that we know what metric we are using, we can return to the ques-
tion of precompactness. In fact it turns out that the same Kolmogorov–Riesz
theorem that was mentioned in the previous post on compactness comes to
our rescue here, although we need a different aspect of it. In that setting,
we worked with Lp spaces over a probability measure, and found that pre-
compactness of F ⊂ Lp was equivalent to boundedness and uniformly small
variation under small perturbations of the argument. In our setting here,
boundedness is guaranteed by the fact that every µ ∈ ∆ ⊂ `1 has ‖µ‖`1 = 1,
and interpreting sequences in `1 as functions N → R, we see that the ar-
gument is discrete, and so that there are no small perturbations to worry
about.

However, in our case the underlying measure of the Lp space (`1) is
the counting measure on the integers, which is not a probability measure,
but rather is σ-finite. For such measures there is an extra condition in the
Kolmogorov–Riesz compactness theorem, which for `1 can be stated as fol-
lows.

Theorem 5 A subset F ⊂ ∆ ⊂ `1 is precompact if and only if for every
ε > 0, there exists N ∈ N such that

∑
j≥N µ(j) < ε for all µ ∈ F .
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A set F satisfying the hypothesis of Theorem 5 is called tight. If Xµ is
a random variable on S distributed according to µ, then tightness can be
reformulated as the requirement that for every ε > 0, there exists a finite
subset K ⊂ S such that P (Xµ /∈ K) < ε for all µ ∈ F . This is the precise
condition that keeps the sequence of measures from “escaping to infinity”.

Remark 6 One can formulate the condition of tightness for measures on
any topological space, by demanding that the subset K be compact (which is
equivalent to finite when the space has the discrete topology, as with our state
space S). For measures on a separable metric space, Prokhorov’s theorem
states that tightness is equivalent to precompactness in the weak* topology.
In general this is weaker than precompactness in the total variation norm,
because a sequence of measures can converge in the weak* topology without
converging in total variation. However, for `1 the two topologies coincide
because the underlying metric space S is discrete.

How do we verify tightness for the sequence of measures µn in (3)? Al-
though we shall not describe the entire theory here, it is worth at least
mentioning some of the relevant terminology.

Given a Markov chain with countably infinite state space S, fix a state
j0 ∈ S and consider the random walk on the associated graph G that is
associated to the Markov chain. Let R(j0) be a random variable describing
the first time at which the walk returns to j0 – that is,

R(j0) = min{n ≥ 1 | Xn = j0},

where X0 = j0 with probability 1. Note that R(j0) takes the value ∞ if the
walk never returns to j0. Given n ≥ 1, let Wn(j0) = P (R(j0) > n) be the
probability that the walker has not returned to state j0 by time n – this can
be computed from the graph G by taking a sum over all paths of length n
that start at the vertex j0 and do not return to it.

Now one of the following three things happens, and it turns out that
which of these three cases happens does not depend on the choice of j0 (as
long as the chain is irreducible):

•
∑

n≥1Wn(j0) < ∞. In this case the chain is called positive recurrent :
the return time R(j0) is finite with probability 1, and the expected
value of R is also finite.
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• Wn(j0)→ 0 but
∑

n≥1Wn(j0) =∞. In this case the chain is called null
recurrent : the return time is finite with probability 1, but the expected
value of R is infinite.

• Wn(j0) 6→ 0. In this case the chain is called transient : the return time
is infinite with probability 1.

It turns out (though we shall not prove it here) that the chain has a
stationary probability distribution π if and only if it is positive recurrent,
and that in this case (given irreducibility) π is unique.

6 Aperiodicity and mixing times

From now on we assume that the Markov chain has a unique stationary
distribution – that is, it is irreducible and either S is finite or the chain is
positive recurrent. Then we have µn → π, the unique stationary distribution,
for the sequence (3), no matter what the initial distribution µ is. But what
happens to T n(µ) = µP n, the probability distribution of Xn when X0 is
distributed according to µ? Do we really need the averaging process in (3)
to get convergence? Or do we get convergence if we take measurements at a
single time n?

Definition 7 A Markov chain is aperiodic if there is no integer > 1 that
divides the length of every cycle in the associated directed graph.

The Perron–Frobenius theorem, mentioned above, states that if π is the
unique stationary distribution for an aperiodic Markov chain and µ ∈ ∆ is
any initial distribution, then µP n → π in total variation norm as n→∞.

Given x ∈ S, let pmx be the distribution that results from starting at state
x and running the Markov chain for m steps. Consider the quantities

Dx(m) = dV (pmx , π),

D(m) = sup
x∈S

Dx(m),

τx(ε) = min{m | Dx(m) ≤ ε},
τ(ε) = sup

x∈S
τx(ε).

Then τ(ε) is the minimum time required for every initial condition to lead
to a probability distribution that is within ε of the stationary distribution
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(using the total variation norm). This is the mixing time of the Markov
chain.

As ε decreases, τ(ε) increases, and we are interested in this rate of growth.
If τ(ε) grows polynomially in − log ε, then the Markov chain is called rapidly
mixing. We will study this property more in next week’s talk. For now we
just observe that in the card-shuffling example, this will give us a reasonable
measure of how many shuffles it takes for the deck to be “well shuffled”.

Note that in that example, the requirement that dV (pmx , π) < ε is quite
strong. The underlying graph has n! vertices, and the stationary distribution
gives each one weight 1

n!
. Thus the initial distribution, which is a delta

distribution on a single vertex, must spread out until every vertex has a
weight pmx (j) ∈ [ 1

n!
− ε, 1

n!
+ ε].

As an example of how the total variation norm behaves in this case, notice
that if we play with a regulation deck of 52 cards and consider a probability
distribution µ on the space S of all possible orderings for which a particular
card, say the ace of spades, is on the top of the deck with probability 1, then
we can estimate the total variation distance from π by using the event B =
{j ∈ S | the ace of spades is on top of the deck in the ordering j}, and get

dV (µ, π) ≥ µ(B)− ν(B) ≥ 1− 51!

52!
=

51

52
.

Thus µ is almost as far from π as is possible in this metric, and being within a
small ε of π corresponds to having almost no information about the ordering
of the cards.
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