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Abstract. We study geodesic flows on compact rank 1 manifolds
and prove that sufficiently regular potential functions have unique
equilibrium states if the singular set does not carry full pressure.
In dimension 2, this proves uniqueness for scalar multiples of the
geometric potential on the interval (−∞, 1), and this is an optimal
result. In higher dimensions, we obtain the same result on a neigh-
borhood of 0, and give examples where uniqueness holds on all of
R. For general potential functions ϕ, we prove that the pressure
gap holds whenever ϕ is locally constant on a neighborhood of the
singular set, which allows us to give examples for which uniqueness
holds on a C0-open and dense set of Hölder potentials.

1. Introduction

We study uniqueness of equilibrium states for the geodesic flow over
a compact rank 1 manifold with nonpositive sectional curvature. In
negative curvature, geodesic flow is Anosov and every Hölder potential
has a unique equilibrium state. In nonpositive curvature, the flow is
nonuniformly hyperbolic and may have phase transitions; the challenge
is to exhibit a class of potential functions where uniqueness holds.

The first major result in this direction was Knieper’s proof of unique-
ness of the measure of maximal entropy using Patterson–Sullivan mea-
sures [16]. We use different techniques, inspired by Bowen’s criteria to
show uniqueness of equilibrium states [3]. This approach has been gen-
eralized by the second and fourth named authors, giving uniqueness of
equilibrium states under non-uniform versions of Bowen’s hypotheses
[6]. We give conditions under which these techniques can be applied to
geodesic flows on rank 1 manifolds, and demonstrate that these condi-
tions are satisfied for a large class of potential functions.
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Throughout the paper, M = (Mn, g) will be a closed connected C∞

Riemannian manifold with nonpositive sectional curvature and dimen-
sion n, and F = (ft)t∈R will denote the geodesic flow on the unit tangent
bundle T 1M . There are two continuous invariant subbundles Es and
Eu of TT 1M , each of dimension n − 1, which are orthogonal to the
flow direction Ec in the natural Sasaki metric; these can be interpreted
as normal vector fields to the stable and unstable horospheres. If the
curvature is strictly negative, F is Anosov and TT 1M = Es⊕Ec⊕Eu

is the Anosov splitting.
In nonpositive curvature, Es

v and Eu
v may have nontrivial intersec-

tion; the rank of a vector v ∈ T 1M is 1 + dim(Es
v ∩Eu

v ). Equivalently,
the rank is the dimension of the space of parallel Jacobi vector fields
for the geodesic through v. The rank of M is the minimum rank over
all vectors in T 1M . We assume that M has rank 1. For a rank 1 man-
ifold, the regular set, denoted Reg, is the set of v ∈ T 1M with rank
1. The singular set, denoted Sing, is the set of vectors whose rank is
larger than 1. If Sing is empty, then the geodesic flow is Anosov; this
includes the negative curvature case. The case when Sing is nonempty
is a prime example of nonuniform hyperbolicity.

We study uniqueness of equilibrium states for the geodesic flow F .
An equilibrium state for a continuous function ϕ : T 1M → R, which we
call a potential function, is an invariant Borel probability measure that
maximizes the free energy hµ(F)+

∫
ϕdµ, where hµ(F) is the measure-

theoretic entropy with respect to the geodesic flow. This maximum is
denoted by P (ϕ) and is called the topological pressure of ϕ with respect
to the geodesic flow F . In the case when ϕ = 0, the topological pres-
sure is the topological entropy htop(F). Since F is entropy expansive,
equilibrium states exist for any continuous function, but uniqueness is
a subtle question beyond the uniformly hyperbolic setting.

The geometric potential ϕu(v) = − limt→0
1
t

log det(dft|Euv ) and its
scalar multiples qϕu (q ∈ R) are of particular interest. When q = 1,
the Liouville measure µL is an equilibrium state for ϕu; in the Anosov
setting, it is the unique equilibrium state. When q = 0, equilibrium
states for qϕu are measures of maximal entropy; uniqueness of the
measure of maximal entropy in rank 1 was proved by Knieper [16]. In
the case of surfaces without focal points, this result has been established
recently using different methods by Gelfert and Ruggiero [12]. When
M is a rank 1 surface, the family qϕu contains geometric information
about the spectrum of the maximum Lyapunov exponent [5].
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We now state our main theorems. Let P (Sing, ϕ) denote the topo-
logical pressure of the potential ϕ|Sing with respect to the geodesic flow
restricted to the singular set (setting P (Sing, ϕ) = −∞ if Sing = ∅).
Theorem A. Let F be the geodesic flow over a closed rank 1 manifold
M and let ϕ : T 1M → R be ϕ = qϕu or be Hölder continuous. If
P (Sing, ϕ) < P (ϕ), then ϕ has a unique equilibrium state µ. This
measure satisfies µ(Reg) = 1, is fully supported, and is the weak∗ limit
of weighted regular periodic orbits (see Section 2.3).

The hypothesis P (Sing, ϕ) < P (ϕ) is a sharp condition for having
a unique equilibrium state which is fully supported. If P (Sing, ϕ) =
P (ϕ), then ϕ has at least one equilibrium state supported on Sing.

For the class of potentials under consideration, Theorem A reduces
the problem of uniqueness of equilibrium states to checking if the pres-
sure gap P (Sing, ϕ) < P (ϕ) holds. The following result establishes
this gap, and hence uniqueness of equilibrium states, for a large class
of Hölder continuous potentials.

Theorem B. With F and M be as above, let ϕ : T 1M → R be a
continuous function that is locally constant on a neighborhood of Sing.
Then P (Sing, ϕ) < P (ϕ).

The case ϕ = 0 recovers Knieper’s result that the singular set has
smaller entropy than the whole system. In Knieper’s work [16], this
was obtained as a consequence of the uniqueness result. The argument
presented here gives the first direct proof of the entropy gap.

We now state our results for the family of potentials qϕu. In dimen-
sion 2, it is easy to check that P (Sing, qϕu) = 0, and that P (qϕu) > 0
for q < 1. Thus, the following result is a corollary of Theorem A.

Theorem C. If M is a closed rank 1 surface, then the geodesic flow has
a unique equilibrium state µq for the potential qϕu for each q ∈ (−∞, 1).
This equilibrium state satisfies µq(Reg) = 1, is fully supported, and
is the weak∗ limit of weighted regular periodic orbits. Moreover, the
function q 7→ P (qϕu) is C1 for q ∈ (−∞, 1).

It follows from work of Ledrappier, Lima, and Sarig [18, 17] that
these equilibrium states are Bernoulli, see §9. For rank 1 surfaces, this
uniqueness result is optimal; any invariant measure supported on Sing
is an equilibrium state for qϕu when q ≥ 1. In higher dimensions,
Sing can have positive entropy, but we can still exploit the entropy
gap htop(Sing) < htop(F). An easy argument, which we give in §9,
gives the following result on qϕu for higher dimensional manifolds as a
consequence of the entropy gap.
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Theorem D. Let F be the geodesic flow for a closed rank 1 manifold.
There exists q0 > 0 such that the potential qϕu has a unique equilibrium
state µq for each q ∈ (−q0, q0). The function q 7→ P (qϕu) is C1 for
q ∈ (−q0, q0). Each µq gives full measure to Reg, is fully supported,
and is obtained as the weak∗ limit of weighted regular periodic orbits.

The entropy gap, and hence the q0 provided by this theorem, may
be arbitrarily small, see §9. If htop(Sing) = 0, we observe in §9 that
the gap holds on (−q0, 1), and in §10.2 we give a 3-dimensional M
for which Sing 6= ∅ but the gap holds for all q ∈ R. It is an open
question whether the inequality P (Sing, qϕu) < P (qϕu) always holds
for all q ∈ (−∞, 1) when dim(M) > 2.

As a final application, we prove in §10.1 that if the singular set is
a finite union of periodic orbits, then our uniqueness results hold for
C0-generic Hölder potentials; this includes the case when dimM = 2
and the metric is real analytic.

The proof of Theorem A uses general machinery developed by the
second and fourth authors [6], which was inspired by Bowen’s work on
uniqueness using the expansivity and specification properties [3] and its
extension to flows by Franco [11]. The results in [6] use weaker versions
of these properties which are formulated at the level of finite-length
orbit segments; see §2.2. This allows us to avoid issues with asymptotic
behavior of orbits that would be hard to control in our setting. The
idea is that every orbit segment can be decomposed into ‘good’ and
‘bad’ parts, where the ‘good’ parts satisfy Bowen’s conditions, and the
‘bad’ parts carry smaller topological pressure than the whole system.

Bowen’s result applies to potentials satisfying a regularity condi-
tion that we call the Bowen property ; our result uses the non-uniform
Bowen property from [6], which holds here for all Hölder potentials.
Verifying this condition for the potentials qϕu is a significant point in
our argument. It is not currently known if horospheres are C2+α for
rank 1 manifolds in dimension greater than 2, which is necessary for
Hölder continuity of the unstable distribution. Even in dimension 2,
where horocycles are known to be C2+ 1

2 by [14], Hölder continuity of
the unstable distribution, and thus ϕu, is an open question.

The outline of the paper is as follows. In §2, we introduce background
material, particularly the existence and uniqueness result from [6]. In
§3, we state our most general theorem on equilibrium states for geodesic
flow, Theorem 3.1. In §§4-6, we build up a proof of Theorem 3.1. In
§7, we investigate regularity of the potentials qϕu. In §8, we prove
Theorem B. In §9, we complete the proofs of Theorems A, C, and D.
In §10, we apply our results to some examples.
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2. Preliminaries

In this section we review definitions and results concerning pressure,
specification, expansivity, geometry, and hyperbolicity.

2.1. Topological Pressure. Let X be a compact metric space, F =
{ft} a continuous flow on X, and ϕ : X → R a continuous function. We
denote the space of F -invariant probability measures on X by M(F),
and note that M(F) =

⋂
t∈RM(ft). We denote the space of ergodic

F -invariant probability measures on X by Me(F).
We recall the definition of the topological pressure of ϕ with respect

to F , referring the reader to [4, 22] for more background. For ε > 0
and t > 0 the Bowen ball of radius ε and order t is

Bt(x, ε) = {y ∈M | d(fsx, fsy) < ε for all 0 ≤ s ≤ t}.
Given ε > 0 and t ∈ [0,∞), a set E ⊂ X is (t, ε)-separated if for all

distinct x, y ∈ E we have y /∈ Bt(x, ε).

We write Φ(x, t) =
∫ t

0
ϕ(fsx) ds for the integral of ϕ along an orbit

segment of length t. Let

(2.1) Λ(ϕ, ε, t) = sup

{∑
x∈E

eΦ(x,t) | E ⊂ X is (t, ε)-separated

}
.

Then the topological pressure of ϕ with respect to F is

P (F , ϕ) = lim
ε→0

lim sup
t→∞

1

t
log Λ(ϕ, ε, t).

The dependence on F will usually be suppressed in the notation.
The variational principle for pressure states that if X is a compact

metric space and F is a continuous flow on X, then

P (F , ϕ) = sup
µ∈M(F)

{
hµ(F) +

∫
ϕdµ

}
.

A measure achieving the supremum is an equilibrium state for ϕ. If
the entropy map µ 7→ hµ is upper semi-continuous then equilibrium
states exist for each continuous potential function. This is the case in
our setting since the flow is C∞.

2.2. Criteria for uniqueness of equilibrium states. We review the
general result proved by the second and fourth authors in [6] concerning
the existence of a unique equilibrium state.

Given a flow (X,F), we think of X × [0,∞) as the space of finite-
length orbit segments by identifying (x, t) with {fs(x) : 0 ≤ s < t}.
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Given C ⊂ X × [0,∞) and t ≥ 0 we let Ct = {x ∈ X : (x, t) ∈ C}. The
partition function associated to C is

Λ(C, ϕ, δ, t) = sup

{∑
x∈E

eΦ(x,t) : E ⊂ Ct is (t, δ)-separated

}
.

When C = X × [0,∞) this reduces to (2.1). The pressure of ϕ on C is

P (C, ϕ) = lim
δ→0

lim sup
t→∞

1

t
log Λ(C, ϕ, δ, t).

For C = ∅ we then define P (∅, ϕ) = −∞.
We can ask for the Bowen property and the specification property,

defined below, to hold only on C rather than the whole space.

Definition 2.1. A collection C ⊂ X × [0,∞) of orbit segments has
specification at scale ρ > 0 if there is τ = τ(ρ) such that for every
(x1, t1), . . . , (xN , tN) ∈ C there exist a point y ∈ X and a sequence
of times τ1, . . . , τN−1 ∈ [0, τ ] such that for s0 = τ0 = 0 and sj =∑j

i=1 ti +
∑j−1

i=1 τi, we have

fsj−1+τj−1
(y) ∈ Btj(xj, ρ)

for every j ∈ {1, . . . , N}. A collection C ⊂ X× [0,∞) has specification
if it has specification at all scales. If C = X × [0,∞) has specification,
then we say the flow has specification.

The definition above extends the specification property for the flow
originally studied by Bowen, see [11, 15]. Even in the case C = X ×
[0,∞), this definition is weaker than Bowen’s, see [6, §2.3].

Definition 2.2. We say that ϕ : X → R has the Bowen property on
C ⊂ X × [0,∞) if there are ε,K > 0 such that for all (x, t) ∈ C and
y ∈ Bt(x, ε), we have supy∈Bt(x,ε) |Φ(x, t)− Φ(y, t)| ≤ K.

If ϕ has the Bowen property on C = X × [0,∞), then our definition
agrees with the original definition of Bowen.

Definition 2.3. A decomposition for X × [0,∞) consists of three col-
lections P ,G,S ⊂ X × [0,∞) for which there exist three functions
p, g, s : X× [0,∞)→ [0,∞) such that for every (x, t) ∈ X× [0,∞), the
values p = p(x, t), g = g(x, t), and s = s(x, t) satisfy t = p+ g+ s, and

(x, p) ∈ P , (fp(x), g) ∈ G, (fp+g(x), s) ∈ S.
The conditions we are interested in depend only on the collections

(P ,G,S) rather than the functions p, g, s. However, we work with a
fixed choice of (p, g, s) for the proof of the abstract theorem to apply.
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We will construct a decomposition (P ,G,S) such that G has specifi-
cation, the function ϕ has the Bowen property on G, and the pressure
on [P ] ∪ [S] is less than the pressure of the entire system, where

[P ] := {(x, n) ∈ X × N : (f−sx, n+ s+ t) ∈ P for some s, t ∈ [0, 1]}
and similarly for [S]. The reason that we control the pressure of [P ]∪[S]
rather than the collection P ∪ S is a consequence of a technical step
in the proof of the abstract result in [6] that required a passage from
continuous to discrete time.

For x ∈ X and ε > 0 we let the bi-infinite Bowen ball be

Γε(x) = {y ∈ X : d(ftx, fty) ≤ ε for all t ∈ R}.
Definition 2.4. The set of non-expansive points at scale ε is

NE(ε) := {x ∈ X | Γε(x) 6⊂ f[−s,s](x) for any s > 0},
where f[a,b](x) = {ftx : a ≤ t ≤ b}.
Definition 2.5. Given a potential ϕ, the pressure of obstructions to
expansivity is P⊥exp(ϕ) := limε→0 P

⊥
exp(ϕ, ε), where

P⊥exp(ϕ, ε) = sup
µ∈Me(F)

{
hµ(f1) +

∫
ϕdµ : µ(NE(ε)) = 1

}
.

The point of this definition is that every ergodic measure whose free
energy exceeds P⊥exp(ϕ) gives zero measure to the non-expansive set,
and thus “sees” only expansive behavior.

We can now state the abstract theorem that we will use to prove our
uniqueness results.

Theorem 2.6. [6, Theorem A] Let (X,F) be a flow on a compact met-
ric space, and ϕ : X → R be a continuous potential function. Suppose
that P⊥exp(ϕ) < P (ϕ) and X × [0,∞) admits a decomposition (P ,G,S)
with the following properties:

(I) G has specification;
(II) ϕ has the Bowen property on G;

(III) P ([P ] ∪ [S], ϕ) < P (ϕ).

Then (X,F , ϕ) has a unique equilibrium state µϕ.

2.3. Pressure and periodic orbits for geodesic flows. We define
the pressure of regular periodic orbits for geodesic flow on a rank 1
manifold. This quantity was studied by Gelfert and Schapira [13],
who called it the Gurevic pressure. It captures the exponential growth
rate of regular closed geodesics, suitably weighted by the potential
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function. Let Per(T,Reg) denote the set of prime closed geodesics of
length bounded above by T which are contained in Reg. We define

(2.2) P ∗Reg(ϕ) = lim sup
T→∞

1

T
log

∑
γ∈Per(T,Reg)

eΦ(γ)

where Φ(γ) is the value given by integrating Φ around the closed geo-
desic (i.e. Φ(γ) := Φ(v, |γ|) where v ∈ T 1M is tangent to γ and |γ| is
the length of γ). It is easy to verify that in (2.2) we can instead sum
over the set of prime closed geodesics of length between T and T + δ,
for any fixed δ > 0. The pigeonhole principle yields the same upper
exponential growth rate as in (2.2).

For a closed geodesic γ, let µγ be the normalized Lebesgue measure
around the orbit. We say the weighted regular periodic orbits equidis-
tribute to a measure µ if in the weak* topology we have

(2.3) µ = lim
T→∞

1

C(T )

∑
γ∈Per(T,Reg)

eΦ(γ)µγ,

where C(T ) is the normalizing constant
∑

γ∈Per(T,Reg) µγ(T
1M). This

phenomenon was first investigated for equilibrium states in a uniformly
hyperbolic setting by Parry [21]. In [13], Gelfert and Schapira observe
that the proof of the variational principle shows that if P ∗Reg(ϕ) = P (ϕ),

then any weak∗ limit of 1
C(T )

∑
γ∈Per(T,Reg) e

Φ(γ)µγ is an equilibrium state

for ϕ. Thus if we know that P ∗Reg(ϕ) = P (ϕ), and that ϕ has a unique
equilibrium state µ, it follows immediately that the weighted regular
periodic orbits equidistribute to µ.

In fact, Gelfert and Schapira explored a variety of definitions of
topological pressure for geodesic flow on rank 1 manifolds [13], giv-
ing inequalities between four a priori different quantities, and giving a
sufficient criterion for all of these to be equivalent. We refer the reader
to [13] for details of all these quantities. The pressure of regular peri-
odic orbits is the smallest of the four quantities they consider. Thus,
if P ∗Reg(ϕ) = P (ϕ), then all of the definitions of topological pressure
considered by Gelfert and Schapira are equal.

2.4. Geometry. Throughout the paper M denotes a compact, con-
nected, boundaryless smooth manifold with a smooth Riemannian met-
ric g, all of whose sectional curvatures are nonpositive at every point.

For each v ∈ TM there is a unique geodesic denoted γv such that
γ̇(0) = v. The geodesic flow F = (ft)t∈R acts on TM by ft(v) = (γ̇v)(t).
The unit tangent bundle T 1M is compact and F -invariant; from now on
we restrict to the flow on T 1M . We recall some well-known properties
of geodesic flow in this setting; see [1, 9] for more details.
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The Riemannian metric on M lifts to the Sasaki metric on TM . We
write dS for the distance function this Riemannian metric induces on
T 1M . Another distance function on T 1M was used by Knieper in [16]:

(2.4) dK(v, w) = max{d(γv(t), γw(t)) | t ∈ [0, 1]}.
We call dK the Knieper metric; it need not be Riemannian. The two
distance functions dS and dK are uniformly equivalent. We will typically
consider Bowen balls with respect to the Knieper metric, so

BT (v, ε) = {w ∈ T 1M : dK(ftw, ftv) < ε for all 0 ≤ t ≤ T}
= {w ∈ T 1M : d(γw(t), γv(t)) < ε for all 0 ≤ t ≤ T + 1}.

A Jacobi field along a geodesic γ is a vector field along γ satisfying

(2.5) J ′′(t) +R(J(t), γ̇(t))γ̇(t) = 0,

where R is the Riemannian curvature tensor on M and ′ represents
covariant differentiation along γ.

If J(t) is a Jacobi field along a geodesic γ and both J(t0) and J ′(t0)
are orthogonal to γ̇(t0) for some t0, then J(t) and J ′(t) are orthogonal
to γ̇(t) for all t. Such a Jacobi field is an orthogonal Jacobi field.

Nonpositivity of the sectional curvatures implies that ‖J(t)‖ and
‖J(t)‖2 are convex functions of t; this and related convexity properties
will be useful in many places below.

For compact rank 1 manifolds, the set of vectors that have dense
forward and backward orbits under F is a dense Gδ set in T 1M . In
particular, Reg is dense since it is open and invariant, and the geodesic
flow is topologically transitive.

2.4.1. Invariant foliations. We describe three important F -invariant
subbundles Eu, Es, and Ec of TT 1M . The bundle Ec is spanned by
the vector field V that generates the flow F . To describe Eu and Es,
we first write J (γ) for the space of orthogonal Jacobi fields for γ; given
v ∈ T 1M there is a natural isomorphism ξ 7→ Jξ between TvT

1M and
J (γv), which has the property that

(2.6) ‖dft(ξ)‖2 = ‖Jξ(t)‖2 + ‖J ′ξ(t)‖2.

An orthogonal Jacobi field J along a geodesic γ is stable if ‖J(t)‖ is
bounded for t ≥ 0, and unstable if it is bounded for t ≤ 0. The stable
and the unstable Jacobi fields each form linear subspaces of J (γ), which
we denote by J s(γ) and J u(γ), respectively. The corresponding stable
and unstable subbundles of TT 1M are

Eu(v) = {ξ ∈ Tv(T 1M) : Jξ ∈ J u(γv)},
Es(v) = {ξ ∈ Tv(T 1M) : Jξ ∈ J s(γv)}.
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The following properties are standard (see [9] for details):

• dim(Eu) = dim(Es) = n− 1, and dim(Ec) = 1;
• the subbundles are invariant under the geodesic flow;
• the subbundles depend continuously on v, see [9, 14];
• Eu and Es are both orthogonal to Ec;
• Eu and Es intersect if and only if v ∈ Sing;
• Eσ is integrable to a foliation W σ for each σ ∈ {u, s, cs, cu};
• the foliations W u and W s are minimal [8, Theorem 6.1].

Almost every v ∈ Reg (with respect to any invariant measure) has
non-zero Lyapunov exponents and a corresponding Oseledets splitting
TvT

1M = Es ⊕ Ec ⊕ Eu that agrees with the one above. However, in
the general setting of Pesin theory, Es and Eu are only measurable and
do not extend beyond the regular set. Here they are continuous and
globally defined, although since Es and Eu are tangent on Sing, the
subbundles do not define a splitting beyond the regular set.

In addition to the metrics dS and dK on T 1M , we will need to consider
for each v ∈ T 1M the intrinsic metric on W s(v) defined by

(2.7) ds(u,w) = inf{`(πγ) | γ : [0, 1]→ W s(v), γ(0) = u, γ(1) = w},
where π : T 1M → M is the canonical projection, ` denotes length of
the curve in M , and the infimum is over all C1 curves γ connecting u
and w in W s(v). In other words, ds(u,w) is the distance between the
footprints π(u) and π(w) when we restrict ourselves to motion along
the horosphere Hs(v) = πW s(v). Given ρ > 0, the local stable leaf
through v of size ρ is

W s
ρ (v) := {w ∈ W s(v) : ds(v, w) ≤ ρ}.

Define du, W u
ρ (v) similarly. Locally, the intrinsic metric on W cs(v) is

dcs(u,w) = |t|+ ds(ftu,w),

where t is the unique value so ftu ∈ W s(w). This extends to a metric
on the whole leaf W cs(v). We define dcu, W cs

ρ (v), W cu
ρ (v) in the obvious

way. If we restrict ρ to be small, then the intrinsic metrics are uniformly
equivalent to dS and dK. They have the useful property that given
v ∈ T 1M and σ ∈ {s, cs}, the function t 7→ dσ(ftu, ftw) is a convex
nonincreasing function of t whenever u,w ∈ W σ(v). Similarly, this
distance function is convex and nondecreasing when σ ∈ {u, cu}.

2.4.2. H-Jacobi fields and the function λ. Our hyperbolicity estimates
will be given in terms of a function λ : T 1M → [0,∞), which we now
describe. Let γ be a unit speed geodesic through p ∈ M , and let
H ⊂ M be a hypersurface orthogonal to γ at p. Let JH(γ) be the set
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of H-Jacobi fields obtained by varying γ through unit speed geodesics
orthogonal to H. This is an (n− 1)-dimensional Lagrangian subspace
of J (γ). Writing Hs,u for the stable and unstable horospheres, we have
JHs,u(γ) = J s,u(γ).

Let U : TpH → TpH be the symmetric linear operator defined by
U(v) = ∇vN , where N is the field of unit vectors normal to H on the
same side as γ̇(t0); this determines the second fundamental form of H.

Lemma 2.7. If J is an H-Jacobi field along γ, then J ′(t0) = U(J(t0)).

Proof. Choose a variation α(s, t) of γ through unit speed geodesics such
that α(s, t0) ∈ H and ∇α

∂s
(s, t0) is a field of unit normals to H. Then

J ′(t0) =
∇
∂t

∂α

∂s
(0, t0) =

∇
∂s

∂α

∂t
(0, t0) = ∇J(t0)N = U(J(t0)). �

The key consequence of Lemma 2.7 is that writing λH for the mini-
mum eigenvalue of the linear map U , every H-Jacobi field J has

(2.8) 〈J, J〉′(t0) = 2〈J,UJ〉(t0) ≥ 2λH〈J(t0), J(t0)〉,
which gives (log ‖J‖2)′(t0) ≥ 2λH , and in particular

(2.9) (log ‖J‖)′(t0) ≥ λH .

Let U s(v) : TπvH
s → TπvH

s be the symmetric linear operator associ-
ated to the stable horosphere Hs, and similarly for Uu. Then Uu and U s
are continuous, Uu is positive semidefinite, U s is negative semidefinite,
and Uu(−v) = −U s(v).

Let Λ be the maximum eigenvalue of Uu(v) for v ∈ T 1M . If Jξ is
a stable or unstable Jacobi field we have ‖J ′ξ(t)‖ ≤ Λ‖Jξ(t)‖ for all t.
Thus if ξ is in Es or Eu, then by (2.6) and Lemma 2.7, ‖dftξ‖ and
‖Jξ(t)‖ are uniformly comparable in the sense that

(2.10) ‖Jξ(t)‖2 ≤ ‖dftξ‖2 ≤ (1 + Λ2)‖Jξ(t)‖2.

Definition 2.8. For v ∈ T 1M , let λu(v) be the minimum eigenvalue
of Uu(v) and let λs(v) = λu(−v). Let λ(v) = min(λu(v), λs(v)).

The functions λu, λs, and λ are continuous by continuity of Uu(v).
By positive (negative) semidefiniteness of Uu,s, we have λu,s ≥ 0. The
following is an immediate consequence of (2.9).

Lemma 2.9. Given v ∈ T 1M , let Ju be an unstable Jacobi field along
γv and Js be a stable Jacobi field along γv. Then

‖Ju(T )‖ ≥ e
∫ T
0 λu(ftv)dt‖Ju(0)‖ and ‖Js(T )‖ ≤ e−

∫ T
0 λs(ftv)dt‖Js(0)‖.

In §3.2 we collect some more properties of the functions λ, λs, λu.
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3. Decompositions for geodesic flow

3.1. Main theorem. Now we state our main uniqueness result, which
we apply to obtain Theorem A.

Theorem 3.1. Let ϕ : T 1M → R be continuous. If P (Sing, ϕ) < P (ϕ),
and for all η > 0 the potential ϕ has the Bowen property on

G(η) =

{
(v, t) :

∫ τ

0

λ(fsv) ds ≥ ητ,

∫ τ

0

λ(f−sftv) ds ≥ ητ ∀τ ∈ [0, t]

}
,

then the geodesic flow has a unique equilibrium state for ϕ. This equi-
librium state is fully supported, has µ(Reg) = 1, and is the weak* limit
of weighted regular periodic orbit measures as in (2.3).

The set of potentials having the Bowen property on G(η) for all η >
0 contains all Hölder potentials, all scalar multiples of the geometric
potential, and all linear combinations of such potentials; see §7.

We build up a proof of Theorem 3.1 in the next few sections. We
start by describing the decomposition we use to apply Theorem 2.6.

v ft(v)

∈ P
∈ Sfp(v)

ft−s(v)

⇓
∈ G

average(λ) ≥ η

average(λ) < η

Figure 3.1. Decomposing an orbit segment.

Given η > 0, let B(η) :=
{

(v, T ) :
∫ T

0
λ(ftv) dt < ηT

}
. We define

maps p, g, s, : X × [0,∞) → [0,∞). Given an orbit segment (v, t),
take p = p(v, t) to be the largest time such that (v, p) ∈ B(η). Let
s = s(v, t) be the largest time in [0, t− p] such that the orbit segment
(ft−s(v), s) is in B(η). The function g determines the remaining part of
the orbit segment denoted (fpv, g), so g = t−p−s. It is easily checked
that (fpv, g) ∈ G(η). Thus the triple (B(η),G(η),B(η)) equipped with
the functions (p, g, s) determines a decomposition for X × [0,∞) in
the sense of Definition 2.3. We will show that if P (Sing, ϕ) < P (ϕ)
and if η > 0 is chosen sufficiently small, then the hypotheses of Theo-
rem 2.6 are satisfied using the decomposition (B(η),G(η),B(η)). This
will guarantee uniqueness of the equilibrium state.
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3.2. Properties of λ.

Lemma 3.2. Given a geodesic γ, the following are equivalent:

• λu(γ′(0)) = 0;
• there is a nontrivial orthogonal Jacobi field J on γ such that
J(t) is constant for all t ≤ 0.

A similar statement holds for λs and t ≥ 0.

Proof. The backward direction is immediate, so we prove the forward.
If λu(v) = 0, then there is a nonzero w ∈ Tγ(0)H

u(v) with Uu(w) = 0.
The corresponding Hu(v)-Jacobi field has J ′(0) = 0 (Lemma 2.7) and
is bounded for t ≤ 0, so by convexity ‖J(t)‖ is constant for t ≤ 0. For
such t this gives 0 = 〈J ′, J〉 = 〈UuftvJ, J〉, hence UuftvJ = 0 since Uu is
positive semidefinite symmetric, so J(t) is constant for t ≤ 0. �

In particular, Lemma 3.2 shows that if λs(v) = 0 then λs(ftv) = 0
for all t ≥ 0, and similarly for λu with t ≤ 0.

Lemma 3.3. The following are equivalent for v ∈ T 1M .

(a) v ∈ Sing.
(b) λs(ftv) = 0 for all t ∈ R.
(c) λu(ftv) = 0 for all t ∈ R.

Proof. If v ∈ Sing, then there is a parallel Jacobi field J(t) along γv(t),
which gives λs = λu = 0. Since Sing is invariant, this gives (b) and (c).

Now we show that (b) implies (a). If λs(ftv) = 0 for every t ∈ R,
then for every T ≥ 0 there is a stable Jacobi field JT along γv that
is constant (with unit length) for t ≥ −T . By compactness we get
a sequence Tk → ∞ for which JTk(0) and J ′Tk(0) converge to some
J(0), J ′(0) ∈ TπvM ; the corresponding Jacobi field J is constant for all
time, so v ∈ Sing. The proof that (c) implies (a) is similar. �

The following is an immediate consequence of Lemmas 3.2 and 3.3.

Corollary 3.4. The function λ : T 1M → [0,∞) vanishes on Sing. If
λ(v) = 0, then there is a nontrivial orthogonal Jacobi field J on γ such
that J(t) is constant for all t ≤ 0 or for all t ≥ 0.

We also have the following quantitative version of Lemma 3.3, and
two corollaries which are useful for our topological pressure estimates.

Proposition 3.5. For any δ > 0, there are η > 0 and T > 0 such
that if λs(ftv) ≤ η for all t ∈ [−T, T ], then dK(v, Sing) < δ. A similar
result holds for λu.
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Proof. Given T, η > 0, consider the open set A(T, η) = {v ∈ T 1M :
λs(ftv) > η for some t ∈ [−T, T ]}. Let K = {v : dK(v, Sing) ≥ δ}. By
compactness and Lemma 3.3 there are T, η such that K ⊂ A(T, η). �

Corollary 3.6. Let λ(v) = 0. Then dK(ftv, Sing) → 0 as t → ∞ or
dK(ftv, Sing)→ 0 as t→ −∞.

Proof. Suppose λs(v) = 0; the case λu(v) = 0 is similar. Given δ > 0,
by Proposition 3.5 there are η, T > 0 such that if λs(ftw) ≤ η for all
t ∈ [−T, T ], then dK(w, Sing) < δ. Thus for every τ ≥ T , we can put
w = fτv and conclude that dK(fτv, Sing) < δ. �

Corollary 3.7. Let µ be an invariant measure such that λ(v) = 0 for
µ almost every v. Then supp(µ) ⊂ Sing.

Proof. By Corollary 3.6, if λ(v) = 0 and v ∈ Reg, then v cannot be
both forward recurrent and backward recurrent. Since µ-a.e. v is both
forward and backward recurrent, we see that µ(Reg) = 0. �

3.3. Uniform estimates on G(η). To go from the Jacobi field esti-
mates in Lemma 2.9 to local estimates near orbit segments in G(η), we
can use uniform continuity of λ: given η > 0, let δ = δ(η) > 0 be small
enough that if v, w ∈ T 1M have dK(v, w) < δeΛ, then |λ(v)− λ(w)| ≤
η
2
. In particular, this applies if w ∈ W s

δ (v) or w ∈ W u
δ (v). Define

λ̃ : T 1M → [0,∞) by λ̃(v) = max(0, λ(v)− η
2
), and observe that

(3.1) λ(w) ≥ λ̃(v) for every v, w ∈ T 1M with dK(v, w) < δ.

In particular, if w ∈ BT (v, δ) then

(3.2)

∫ T

0

λ(ftw) dt ≥
∫ T

0

λ̃(ftv) dt ≥
∫ T

0

λ(ftv) dt− η

2
T.

Now we can integrate the Jacobi field estimates.

Lemma 3.8. Given η, δ as in (3.1), v ∈ T 1M , and w,w′ ∈ W s
δ (v), we

have the following for every t ≥ 0:

(3.3) ds(ftw, ftw
′) ≤ ds(w,w′)e−

∫ t
0 λ̃(fτv) dτ .

Similarly, if w,w′ ∈ W u
δ (v), then for every t ≥ 0 we have

(3.4) du(f−tw, f−tw
′) ≤ du(w,w′)e−

∫ t
0 λ̃(f−τv) dτ .

Proof. We prove (3.3); (3.4) is similar. Recalling the definition of ds

in (2.7), let γ : [0, 1] → W s
δ (v) be a curve that connects w and w′;

then ftγ is a curve on W s(ftv) connecting ftw and ftw
′, and we want

to compare the lengths `(πγ) and `(πftγ). For each r ∈ [0, 1], the
vector γ(r) ∈ T 1M determines a geodesic ζr that is normal to the
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stable horosphere πW s
δ (v); this one-parameter family of geodesics gives

a family of stable Jacobi fields Jr ∈ J s(ζr). By Lemma 2.9, these satisfy

‖Jr(t)‖ ≤ e−
∫ t
0 λ(ζ̇r(τ)) dτ‖Jr(0)‖ ≤ e−

∫ t
0 λ̃(fτv) dτ‖Jr(0)‖,

and integrating over r ∈ [0, 1] gives `(πftγ) ≤ e−
∫ t
0 λ̃(fτv) dτ`(πγ). By

(2.7), taking an infimum over all such γ gives (3.3). �

When (v, T ) ∈ G(η), the following lemma is an immediate conse-
quence of (3.1), (3.2), and Lemma 3.8.

Lemma 3.9. Given η, δ as in (3.1) and (v, T ) ∈ G(η), every w ∈
BT (v, δ) has (w, T ) ∈ G(η

2
). Moreover, for every w,w′ ∈ W s

δ (v) and
0 ≤ t ≤ T we have

(3.5) ds(ftw, ftw
′) ≤ ds(w,w′)e−

η
2
t,

and for every w,w′ ∈ f−TW u
δ (fTv) and 0 ≤ t ≤ T , we have

(3.6) du(ftw, ftw
′) ≤ du(fTw, fTw

′)e−
η
2

(T−t).

3.4. Uniformly regular points. For η > 0, we define

(3.7) Reg(η) = {v : λ(v) ≥ η}.
Note that if (v, t) ∈ G(η) for some t > 0, then λ(v) ≥ η and λ(ftv) ≥ η,
and thus v ∈ Reg(η) and ftv ∈ Reg(η). Note that Reg(η1) ⊂ Reg(η2)
if η1 ≥ η2 and each Reg(η) is compact.

Lemma 3.10. For all η > 0, there exists θ > 0 so that for any v ∈
Reg(η), we have ](Eu(v), Es(v)) ≥ θ.

Proof. The angle is continuous in v and positive on Reg(η). �

Lemma 3.11. {v : λ(v) > 0} =
⋃
η>0 Reg(η) is dense in T 1M .

Proof. Let v be a point whose forward and backward orbits are both
dense. By Corollary 3.6 we have λ(v) > 0, and the same is true for
every ftv. Since {ftv : t ∈ R} is dense in T 1M , we are done. �

Lemma 3.12. Suppose v ∈ Reg(η). Let Ju be an unstable Jacobi field
along γv, and Js be a stable Jacobi field along γv. For all t ≥ 0,

‖Ju(t)‖ ≥ (1 + ηt)‖Ju(0)‖ and ‖Js(−t)‖ ≥ (1 + ηt)‖Js(0)‖.
Proof. Since v ∈ Reg(η), (2.9) gives ‖Ju‖′(0) ≥ η‖Ju(0)‖. Convexity
of ‖Ju(t)‖ gives the first inequality; the second is similar. �

The following proposition and corollary play a crucial role of our
proof of the pressure gap in §8.
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Proposition 3.13. For any R, ε, η > 0 there exists T > 0 such that
if w ∈ Reg(η) and fT (v) ∈ W u

R(fTw), then v ∈ W u
ε (w). Similarly, if

w ∈ Reg(η) and f−T (v) ∈ W s
R(f−Tw), then v ∈ W s

ε (w).

Proof. We prove the first assertion; the second is similar. Fix η > 0
and let δ > 0 be as in (3.1). Given w ∈ Reg(η) and v ∈ W u(w), let
ρ(t) = du(ftv, ftw). We claim that when T > 2R

ηδ
, we have ρ(0) ≤ 2R

Tη
;

this will prove the proposition by taking T > max(2R
ηδ
, 2R
ηε

).

To prove the claim, let γ : [0, 1] → W u(fTw) be a curve connect-
ing fTw to fTv; let ργ(t) = `(ft−Tγ), so that ρ(t) = infγ ργ(t). The
geodesics ζr tangent to γ(r) determine a family of unstable Jacobi fields

Jr ∈ J u(ζr) such that ργ(t) =
∫ 1

0
‖Jr(t)‖ dr, and hence

(3.8) ρ′γ(t) =

∫ 1

0

‖Jr‖′(t) dr ≥
∫ 1

0

λ(ζ̇r(t))‖Jr(t)‖ dr

When t = 0 there are two possibilities: either f−Tγ is contained in
W u
δ (w), or it leaves it at some point. In the first case, λ(ζ̇r(0)) > η

2
for

every r ∈ [0, 1] by (3.1), so (3.8) gives ρ′γ(0) ≥ η
2
ργ(0). In the second

case, let r0 = sup{r1 : f−T (γ(r)) ∈ W u
δ (w) for every r ∈ [0, r1]}; then

(3.1) and (3.8) give ρ′γ(0) ≥
∫ r0

0
η
2
‖Jr(0)‖ dr ≥ η

2
δ. Convexity gives

ρ′γ(t) ≥ ρ′γ(0) ≥ η
2

min(δ, ργ(0))

for every t ≥ 0. In particular, we have

ργ(T ) ≥ Tρ′γ(0) ≥ η
2
T min(δ, ργ(0)),

and taking an infimum over all γ we see that either R ≥ η
2
Tδ or R ≥

η
2
Tρ(0), which proves the claim from the first paragraph. �

Corollary 3.14. For every R > 0 and η > η′ > 0, there is T > 0
such that given any v, w ∈ T 1M with either fT (v) ∈ W u

R(fTw) or
f−T (v) ∈ W s

R(f−Tw), we have λu(v) ≥ η ⇒ λu(w) ≥ η′. Equivalently,
we have λu(w) < η′ ⇒ λu(v) < η.

Proof. By uniform continuity of λu, we can take ε sufficiently small that
if v ∈ W σ

ε (w) for σ ∈ {s, u}, and λu(w) ≥ η, then λu(v) ≥ η′. Suppose
that fT (v) ∈ W u

R(fTw) and w ∈ Reg(η). Then λu(w) ≥ λ(w) ≥
η. By Proposition 3.13, v ∈ W u

ε (w), and thus λu(v) ≥ η′. Thus, if
λu(w) ≥ η, then λu(v) ≥ η′. The argument when f−T (v) ∈ W s

R(f−Tw)
is analogous. �

A similar argument shows that under the hypotheses of the corollary,
λs(v) < η′ ⇒ λs(w) < η, and λ(v) < η′ ⇒ λ(w) < η, although we will
not need these statements in our analysis.
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4. The specification property

This section builds up a proof of the following result, which verifies
condition (I) from Theorem 2.6 by proving specification for G(η).

Theorem 4.1. For geodesic flow on a rank 1 manifold, let C(η) be the
set of orbit segments that both start and end in Reg(η). Then C(η) has
the specification property. In particular, since G(η) ⊂ C(η), it follows
that G(η) has the specification property.

The proof is based on uniformity of the local product structure for
the foliations W u, W cs at the endpoints of orbits in C(η). To make
this idea precise, we define local product structure at a point for a
fixed scale and distortion constant. We work with the Knieper metric
dK from (2.4) and the leafwise metrics ds and du from (2.7). In what
follows, B(v, δ) denotes the ball in the Knieper metric dK.

Definition 4.2. The foliations W u, W cs have local product structure
(LPS) at scale δ > 0 with constant κ ≥ 1 at v ∈ T 1M if for all
w1, w2 ∈ B(v, δ), the intersection W u

κδ(w1)∩W cs
κδ(w2) contains a single

point, which we denote by [w1, w2], and if moreover we have

du(w1, [w1, w2]) ≤ κdK(w1, w2),

dcs(w2, [w1, w2]) ≤ κdK(w1, w2).

If W u, W cs have LPS at scale δ with constant κ at v ∈ T 1M , then
for every ε ∈ (0, δ], they have LPS at scale ε with constant κ at v. Also,
they have LPS at scale δ/2 with constant κ at every w ∈ B(v, δ/2).

We control dK in terms of du and dcs. Given v ∈ T 1M and w ∈
W cs(v), the function t 7→ dcs(ftv, ftw) is non-increasing, so (2.4) gives

(4.1) dK(v, w) ≤ dcs(v, w).

Moreover, writing dt(v, w) = supτ∈[0,t] dK(v, w), monotonicity gives

(4.2) dt(v, w) ≤ dcs(v, w).

For w ∈ W u(v), we use (2.9) and the argument of Lemma 3.9 to get

(4.3)
dK(v, w) ≤ eΛdu(v, w),

dt(v, w) ≤ du(ft+1v, ft+1w) ≤ eΛdu(ftv, ftw)

where Λ is as defined in §2.4.2.
We need a lemma on uniform density of W u at points where the

foliations have LPS at a fixed scale and distortion constant.
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Lemma 4.3. Given κ ≥ 1 and ε > 0, there exists T = T (κ, ε) so that
if W u,W cs have LPS at scale ε with constant κ at v, w ∈ T 1M , then( ⋃

0≤t≤T
ft(W

u
ε (v))

)
∩W cs

ε (w) 6= ∅.

The proof uses the following consequence of transitivity, which is
proved by a standard compactness argument.

Claim 4.4. Let F be a continuous flow on a compact metric space
X, and let x0 ∈ X have dense forward orbit. Then for all ε > 0, there
exists T such that for all x, y ∈ X, there exists a point x on the forward
orbit of x0 and a time t ∈ [0, T ] so that x ∈ B(x, ε) and ftx ∈ B(y, ε).

Proof of Lemma 4.3. Let ε′ = ε/(4κ2), and use Claim 4.4 to find T =
T (ε′) and (v, τ) with τ ∈ [0, T ] so that v ∈ B(v, ε′) and fτv ∈ B(w, ε′).

Let u1 = [v, v], i.e. u1 ∈ W u
κε′(v) ∩W cs

κε′(v). Since u1 ∈ W cs
κε′(v),

fτu1 ∈ B(fτv, κε
′) ⊂ B(w, 2κε′).

Let u2 = [fτu1, w], i.e. u2 ∈ W u
ε/2(fτu1)∩W cs

ε/2(w), where we recall that

ε/2 = 2κ2ε′. Then we have f−τu2 ∈ W u
ε/2(u1), and since u1 ∈ W u

κε′(v) ⊂
W u
ε/2(v), it follows that f−τu2 ∈ W u

ε (v). Thus u2 is in the intersection
we want to show is non-empty. �

Corollary 4.5. Given η > 0, there exists δ > 0 so that if v, w ∈
Reg(η), and v′, w′ satisfy dK(v, v′) < δ, and dK(w,w′) < δ, then for
any ρ ∈ (0, δ], there exists T so that( ⋃

0≤t≤T
ft(W

u
ρ (v′))

)
∩W cs

ρ (w′) 6= ∅.

Proof. Lemma 3.10 gives a uniform lower bound on the angle of inter-
section of W u and W cs for v ∈ Reg(η), so there are δ > 0 and κ ≥ 1
such that at every v ∈ Reg(η), W u and W cs have LPS at scale 2δ with
constant κ. Thus, at v′, w′, W u and W cs have LPS at scale ρ with
constant κ for any ρ ∈ (0, δ]. Thus, Lemma 4.3 applies. �

In particular, if (v, s), (w, t) ∈ C(η), then Corollary 4.5 applies at the
points fsv, w. We are now ready to prove the specification property
on C(η). First fix (v0, t0) ∈ C(η) with t0 ≥ 1, and let ε > 0 be small
enough that λ ≥ η/2 on W s

ε (v0) and W u
ε (ft0v0). Let α = 1 + ηt0/2;

it follows from Lemma 3.12 and the arguments in §3.3 that for every
w,w′ ∈ f−t0W u

ε (ft0v0) we have

(4.4) du(ft0w, ft0w
′) ≥ αdu(w,w′).
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Fix 0 < ρ < min(δ, ε), and let ρ′ = ρ/(6eΛ
∑∞

i=1 α
−i). Take T given

by Corollary 4.5 so that
(⋃

0≤t≤T ft(W
u
ρ′(v))

)
∩W cs

ρ′ (w) 6= ∅ whenever
v, w are within distance δ of points in Reg(η). We show that C(η) has
specification at scale ρ with transition time 2T + t0.

Given any (v1, t1), . . . , (vk, tk) ∈ C(η), we construct orbit segments
(wj, sj) iteratively such that the orbit segment (wj, sj) shadows first
(v1, t1), then (v0, t0), then (v2, t2), then (v0, t0), then (v3, t3), and so on
up through (vj, tj).

Start by letting w1 = v1 and s1 = t1. Applying Corollary 4.5 at fs1w1

and v0 gives τ1 ∈ [0, T ] such that (fτ1(W
u
ρ′(fs1w1))) ∩W cs

ρ′ (v0) 6= 0; in
particular, there is u1 such that

fs1u1 ∈ W u
ρ′(fs1w1) and fs1+τ1u1 ∈ W cs

ρ′ (v0).

Now applying Corollary 4.5 at fs1+τ1+t0u1 and v2, we get τ ′1 ∈ [0, T ]
and w2 such that

fs1+τ1+t0w2 ∈ W u
ρ′(fs1+τ1+t0u2) and fs1+τ1+t0+τ ′1

w2 ∈ W cs
ρ′ (v2).

We continue this procedure recursively to obtain a sequence of points
wj, uj. That is, we produce points wj, uj and times τj, τ

′
j such that

writing s′j = sj + τj + t0 and sj+1 = s′j + τ ′j + tj+1, we have

fsj(uj) ∈ W u
ρ′(fsj(wj)) and fsj+τj(uj) ∈ W cs

ρ′ (v0),(4.5)

fs′j(wj+1) ∈ W u
ρ′(fs′j(uj)) and fs′j+τ ′j(wj+1) ∈ W cs

ρ′ (vj+1).(4.6)

To guarantee that such points and times exist for all 1 ≤ j ≤ k, we
observe that once wj is chosen, we have fsjwj ∈ W cs

ρ′ (ftjvj). Since
ρ′ < δ, then dK(fsjwj, ftjvj) < δ. Thus, Corollary 4.5 applies to give
the existence of uj and τj satisfying (4.5). Once uj is chosen, the same
argument shows that there are wj+1 and τ ′j satisfying (4.5).

We show that (wk, sk) is the orbit we want for the specification prop-
erty. All of the points wj, uj lie on W u(v1). We have expansion by a
factor of α whenever the orbit passes near (v0, t0); thus by (4.5) and
the fact that du is non-increasing in backwards time, we have

ρ′ ≥ du(fsjuj, fsjwj) ≥ αdu(fsj−1
uj, fsj−1

wj)

≥ · · · ≥ αjdu(fs1uj, fs1wj).

Similarly, (4.6) and α-expansion gives du(fsjwj+1, fsjuj) ≤ ρ′α−1. Iter-
ating, we obtain the following estimates for all 1 ≤ i ≤ j:

(4.7)
du(fsiuj, fsiwj) ≤ ρ′α−(j−i),

du(fsiwj+1, fsiuj) ≤ ρ′α−(1+j−i).
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Summing these gives

du(fsiwj, fsiwi) ≤
j−1∑
`=i

du(fsiw`+1, fsiu`) + du(fsiu`, fsiw`)

≤
j−1∑
`=i

ρ′(α−(`−i) + α−(1+`−i)) ≤ 2ρ′
∞∑
n=0

α−n =
ρ

3eΛ
.

Together with (4.3), this gives

dti(fsi−tiwj, fsi−tiwi) ≤ eΛdu(fsiwj, fsiwi) ≤ ρ/3.

Recall from (4.6) that fsi−tiwi = fs′i−1+τ ′i−1
wi ∈ W cs

ρ′ (vi), so (4.2) gives

dti(fsi−tiwi, vi) ≤ ρ′. Summing the two bounds gives dti(fsi−tiwj, vi) <
ρ. In the case j = k, this shows that (wk, sk) is the orbit required for
specification at scale ρ; the transition times are τj+t0+τ ′j ∈ [0, 2T+t0].
Since ρ can be taken arbitrarily small, this proves Theorem 4.1.

With a little modification, the proof of Theorem 4.1 yields the fol-
lowing result, which we will need in §8.

Proposition 4.6. For every ρ > 0 there is τ > 0 such that for every
(v1, t1), . . . , (vk, tk) ∈ C(η) and every τ1, τ2, . . . , τk ∈ R with the property
that τj+1 ≥ τj + tj + τ for all 1 ≤ j < k, there are τ ′j ∈ [τj, τj + τ ] and

w ∈ T 1M such that fτ ′j(w) ∈ Btj(v, ρ) for all 1 ≤ j ≤ k.

The additional ingredient in this statement over the specification
property is that instead of asking that the transition times lie in the in-
terval [0, τ ], we can choose each transition time to be contained in a pre-
scribed non-negative interval of length τ . To obtain this from the proof
of Theorem 4.1, we modify the construction by gluing more than one
copy of (v0, t0) between (vi−1, ti−1) and (vi, ti); we keep adding copies
of (v0, t0) until the prescribed window of time for (vi, ti) is reached.

4.1. Closing lemma. Orbit segments in C(η) yield periodic orbits.

Lemma 4.7. For all ε, η > 0, there exists T = T (ε) so that for every
(v, t) ∈ C(η), there are w ∈ Bt(v, ε) and τ ∈ [0, T ] such that ft+τw = w.

Proof. We follow the proof of the Anosov closing lemma based on the
Brouwer fixed point theorem. Without loss of generality, assume that
ε > 0 is small enough that for (v, t) ∈ C(η), the foliations W u,W cs

have local product structure at v, ftv at scale ε with constant κ, and
so do the foliations W s, W cu.

By Theorem 4.1, C(η) has specification at scale ε/4κ; let T0 be the
transition time. Fix (v0, t0) ∈ C and α > 1 such that t0 ≥ 1 and

(4.8) ds(ft0u, ft0u
′) ≤ α−1ds(u, u′)
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for all u, u′ ∈ W s
ε (v0). Let n ∈ N satisfy αn > 2κ. By the specification

property, there is a point w0 whose forward orbit ε/4κ-shadows first
(v, t), then (v0, t0), then (v0, t0) again, and so on until (v0, t0) has been
shadowed n times, and then finally shadows (v, t) once more. In par-
ticular, we have dt(v, w0) < ε/4κ, and there is τ ∈ [nt0, n(t0 +T0) +T0]
such that ft+τ (w0) ∈ B(v, ε/4κ), so dK(w0, ft+τw0) < ε/2κ.

With w0 fixed, consider the map W s
ε (w0) → W s

ε (w0) defined by
u 7→ W s

ε (w0) ∩W cu
ε (ft+τu). This is well-defined because

dK(ft+τu,w0) ≤ dK(ft+τu, ft+τw0) + dK(ft+τw0, w0)

≤ α−ndK(u,w0) + ε/2κ ≤ ε/κ,

where the second inequality uses (4.8). By continuity of the map, the
Brouwer fixed point theorem gives w1 ∈ W s

ε (w0) with w1 ∈ W cu
ε (ft+τw1),

and thus w1 ∈ W u
ε (ft+τ+rw1) for some |r| < ε. Using (4.4), we get

f−t−τ−r(W
u
2ε(ft+τ+rw1)) ⊂ W u

2αnε(w1) ⊂ W u
ε (w1) ⊂ W u

2ε(ft+τ+rw1),

and thus f−t−τ−r sends W u
2ε(ft+τ+rw1) to itself continuously, so again

the Brouwer fixed point theorem gives a fixed point w. This is periodic
with period t+τ+r, and τ+r ≤ n(t0 +T0)+T0 +ε =: T . Furthermore,
since du(w1, s0) ≤ ε and dcs(ft+1w, ft+1w1) ≤ 2ε, (4.2) and (4.3) give

dt(v, w) ≤ dt(v, w0) + dt(w0, w1) + dt(w1, w)

< ε/4κ+ ds(w0, w1) + du(ft+1w1, ft+1w) ≤ 4ε,

where the bound on dt(w1, w) is because f−τ−rw ∈ W u
2ε(ftw1), so w =

f−t−τ−rw ∈ Bt(w1, 2δ). �

5. Pressure estimates

5.1. General estimates. We start with a general result for a contin-
uous flow F on a compact metric space X, which relates pressure for
a collection of orbit segments to the free energies for an associated col-
lection of measures. Given a collection C of orbit segments, let M(C)
denote the set of F -invariant measures on X that are obtained as limits
of convex combinations of empirical measures along orbit segments in
C. That is, for each (x, t) ∈ C define the empirical measure Ex,t by∫

ψ dEx,t =

∫ t

0

ψ(fsx) ds,

for all ψ ∈ C(X). Consider for each t ≥ 0 the convex hull

Mt(C) =

{
k∑
i=1

aiExi,ti : ai ≥ 0,
∑

ai = 1, (xi, ti) ∈ C
}
.
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We use the following set of F -invariant Borel probability measures:

(5.1) M(C) =
{

lim
k→∞

µtk : tk →∞, µtk ∈Mtk(C)
}
.

Note that M(C) is non-empty as long as C contains arbitrarily long
orbit segments (which happens whenever P (C, ϕ) > −∞).

Proposition 5.1. If ϕ is a continuous potential, then

P (C, ϕ) ≤ sup
µ∈M(C)

Pµ(ϕ),

where we write Pµ(ϕ) = hµ(F) +
∫
ϕdµ for convenience.

Proof. For an arbitrary fixed ε > 0, and any t > 0, let Et be a (t, ε)-
separated set for Ct of maximal cardinality with

log
∑
y∈Et

eΦ(y,t) > log Λ(C, ϕ, ε, t)− 1.

Then there is tk →∞ such that

(5.2) lim
k→∞

1

tk

∑
y∈Etk

eΦ(y,tk) ≥ lim
k→∞

1

tk
(log Λ(C, ϕ, ε, tk)−1) = P (C, ϕ, ε).

Consider the measures

µt =

∑
y∈Et e

Φ(y,t)Ey,t∑
y∈Et e

Φ(y,t)
.

By passing to a subsequence if necessary, we can assume that µtk →
µ ∈M(C). The second half of the proof of the variational principle [22,
Theorem 9.10] shows that h(µ)+

∫
ϕdµ ≥ lim infk→∞

1
tk

∑
y∈Etk

eΦ(y,tk),

so (5.2) gives Pµ(ϕ) ≥ P (C, ϕ, ε). Taking ε > 0 arbitrarily small gives
the required result. �

5.2. Pressure estimates for bad orbits. Now we consider the geo-
desic flow and estimate the pressure of the ‘bad’ orbit segments.

Proposition 5.2. With B(η) as in §3.1 and ϕ : T 1M → R continuous,
we have limη→0 P ([B(η)], ϕ) = P (Sing, ϕ). In particular, if P (Sing, ϕ) <
P (ϕ), then there exists some η > 0 such that P ([B(η)], ϕ) < P (ϕ).

Proof. Since the function λ vanishes on Sing, we have Sing × N ⊂
[B(η)] for all η > 0, which immediately gives P (Sing, ϕ) ≤ P ([B(η)], ϕ).
Thus it suffices to show that for every ε > 0 we have P ([B(η)], ϕ) <
P (Sing, ϕ) + ε whenever η > 0 is sufficiently small.
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To this end, consider for each η > 0 the set of measures Mλ(η) =
{µ ∈M(T 1M) :

∫
λ dµ ≤ η}. Given (v, t) ∈ [B(η)], we have∫ t

0

λ(fsv) ds ≤ tη + 2‖λ‖,

where the last term comes from the fact that we are considering [B(η)]
instead of B(η). By convexity, we have

∫
λ dµt ≤ η + 2

t
‖λ‖ for every

ηt ∈ Mt([B(η)]), and thus every µ ∈ M([B(η)]) satisfies
∫
λ dµ ≤ η,

proving the inclusionM([B(η)]) ⊂Mλ(η). By Proposition 5.1 we have

P ([B(η)], ϕ) ≤ sup
µ∈M([B(η)])

Pµ(ϕ) ≤ sup
µ∈Mλ(η)

Pµ(ϕ),

and so it suffices to show that for every ε > 0 this last quantity can be
made smaller than P (Sing, ϕ) + ε by taking η > 0 sufficiently small.

Note that Mλ(η) is weak*-compact by continuity of λ. Moreover,
M(Sing) ⊂Mλ(η) for all η > 0, and by Lemma 3.7, we see that every
µ with

∫
λ dµ = 0 is supported on Sing, whence we conclude that

(5.3) M(Sing) =
⋂
η>0

Mλ(η).

Let D be a metric on M(T 1M) compatible with the weak∗ topology.
Since Mλ(η) is compact for each η > 0, (5.3) gives

D(Mλ(η),M(Sing))→ 0 as η → 0.

By [16, Proposition 3.3], ft is h-expansive, so the entropy function
µ 7→ h(µ) is upper semi-continuous, as is µ 7→ Pµ(ϕ). Thus, for any
ε > 0, there exists γ > 0 so that D(µ, ν) < γ implies Pµ(ϕ) < Pν(ϕ)+ε.
Choosing η small enough so that D(Mλ(η),M(Sing)) < γ, we obtain

sup
µ∈Mλ(η)

Pµ(ϕ) ≤ sup
µ∈M(Sing)

Pµ(ϕ) + ε = P (Sing, ϕ) + ε.

Since ε > 0 was arbitrary, this completes the proof. �

5.3. Pressure of obstructions to expansivity. We now prove that
P⊥exp(ϕ) ≤ P (Sing, ϕ). This is a corollary of the following lemma.

Lemma 5.3. Suppose µ ∈ Me(F) satisfies µ(NE(ε)) = 1 for some
ε > 0. Then µ ∈M(Sing).

Proof. Given v ∈ T 1M and w ∈ Γε(v) and ε be sufficiently small.
Suppose that γv and γw are different geodesics. Then by the flat strip
theorem (see e.g. Proposition 1.11.4 of [10]), they bound a flat strip
in the universal cover. Thus, v has a parallel Jacobi field, and hence
v ∈ Sing. Thus, NE(ε) ⊂ Sing. In particular, µ(Sing) = 1. �

As a corollary, we have the following.
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Proposition 5.4. For a continuous potential ϕ, P⊥exp(ϕ) ≤ P (Sing, ϕ).

Proof. By Lemma 5.4 and the Variational Principle, for any ε > 0,

P⊥exp(ϕ, ε) = sup
µ∈Me(F)

{
hµ(f1) +

∫
ϕdµ : µ(NE(ε)) = 1

}
≤ sup

µ∈M(Sing)

{
hµ(f1) +

∫
ϕdµ

}
= P (Sing, ϕ). �

6. Completing the proof of Theorem 3.1

Now we can apply Theorem 2.6, using the decomposition (P ,G,S) =
(B(η),G(η),B(η)) described in §3.1. By Proposition 4.1, G(η) has
specification all η. By Proposition 5.2, for sufficiently small η we
have P ([P ] ∪ [S], ϕ) = P ([B(η)], ϕ) < P (ϕ). By Proposition 5.4,
P⊥exp(ϕ) ≤ P (Sing, ϕ). This verifies the hypotheses of Theorem 2.6,
and thus we conclude that ϕ has a unique equilibrium state µ.

To prove the remaining properties of µ stated in Theorem 3.1, we
start by observing that µ is ergodic, and thus either µ(Sing) = 0 or
µ(Sing) = 1. Suppose the second case holds. Then by the variational
principle, it would follow that P (Sing, ϕ) ≥ hµ(F) +

∫
ϕdµ = P (ϕ).

This contradicts the hypothesis of the theorem, and thus µ(Reg) = 1.
To prove µ is fully supported, and that weighted regular periodic

orbits equidistribute to µ, we recall details from [6]. Given a decompo-
sition (P ,G,S) and M > 0, we write GM for the set of orbit segments
(x, t) whose decomposition satisfies p(x, t), s(x, t) ≤M . When the hy-
potheses of Theorem 2.6 are satisfied, GM has the following properties.

Lemma 6.1. For sufficiently large M , we have P (GM , ϕ) = P (ϕ).
We have the lower Gibbs property on GM : for all ρ > 0, there exists
Q, T,M > 0 such that for every (v, t) ∈ GM with t ≥ T ,

µ(Bt(v, ρ)) ≥ Qe−tP (ϕ)+Φ(v,t).

As a consequence of the lower Gibbs property, if (v, t) ∈ G and t is
sufficiently large, then µ(B(v, ρ)) > 0.

Proof. For sufficiently largeM , [6, Lemma 4.12] shows that P (GM , ϕ) =
P (ϕ). The lower Gibbs property for GM is provided by [6, Lemma 4.16].
That lemma also involves a scale δ < ρ/2, at which G is required have
specification, and at which the pressure gap holds, see [6, Remark 4.13];
both of these conditions hold here for arbitrarily small δ, so [6, Lemma
4.16] applies. Finally, note that G ⊂ GM for all M . Thus, if (v, t) ∈ G
and t ≥ T , then µ(B(v, ρ)) ≥ µ(Bt(v, ρ)) ≥ Qe−tP (ϕ)+Φ(v,t) > 0. �

We also need the following consequence of Theorem 4.1.



EQUILIBRIUM STATES FOR RANK 1 GEODESIC FLOWS 25

Lemma 6.2. Given η, ρ > 0, there is η0 > 0 such that for every
v ∈ Reg(η) and every T > 0, there are t ≥ T and w ∈ B(v, ρ) such
that (w, t) ∈ G(η0).

Proof. By Lemma 3.9, we can decrease ρ if necessary and assume that
if (u, t) ∈ G(η/2) and u′ ∈ Bt(u, ρ), then u′ ∈ G(η/4). Let τ be the
transition time for the specification property for G(η/2) at scale ρ. Let
v ∈ Reg(η). Then using the modulus of continuity for λ, we can find
a fixed ε > 0 (independent of v) so that (v, ε) ∈ G(η/2). Fix (u, t0) ∈
G(η/2), and let k ∈ N be such that kt0 ≥ T . By the specification
property, we can find a point w that shadows (v, ε), and then shadows
k copies of (u, t0). Then for each j ≥ 1, (fsj+τjw, t0) ∈ G(η/4). Using
this fact, and the definition of G, it is not hard to show the existence
of a constant η0 so that (w, t) ∈ G(η0) where t = kt0 + ε+

∑k−1
j=1 τj, and

η0 depends only on ρ, η, τ . �

We are now ready to prove the following.

Proposition 6.3. The unique equilibrium state µ provided by Theorem
3.1 is fully supported.

Proof. We exhibit a dense set Z such that for every v ∈ Z and ρ > 0
we have µ(B(v, 2ρ)) > 0. Take Z = {v : λ(v) > 0}. By Lemma 3.11,
Z is dense, and by Lemma 6.2, for every v ∈ Z and ρ > 0 there exists
η0 > 0 such that for every T > 0, there are t ≥ T and w ∈ B(v, ρ) such
that (w, t) ∈ G(η0). The decomposition (B(η0),G(η0),B(η0)) satisfies
the conditions of Theorem 2.6, and so Lemma 6.1 applies. We are free
to assume that (w, t) is chosen with t as large as we like, so Lemma 6.1
shows that µ(B(v, 2ρ)) ≥ B(w, ρ)) > 0. �

Proposition 6.4. The unique equilibrium measure µ is the weak∗ limit
of weighted regular periodic orbit measures.

Proof. By the discussion in §2.3, it suffices to prove P ∗Reg(ϕ) = P (ϕ).

Lemma 6.1 gives M so that P (GM , ϕ) = P (ϕ). Given ε > 0, by
continuity of the flow, there exists ε′ > 0 such that dK(v, w) < ε′ implies
that dK(ftv, ftw) < δ for every t ∈ [−M,M ]. Let (v, t) ∈ GM with
t > 2M . We show that (v, t) can be ε-shadowed by a regular periodic
orbit. There exists p, s ≤ M so that (v′, t′) = (fpv, t − p − s) ∈ G.
By Lemma 4.7, we know that there exists w with ft′+τw = w, where
τ ∈ [0, T (ε′)], and dt′(v

′, w) < ε′. It follows that dt(v, f−pw) < ε, and
thus (v, t) can be ε′-shadowed by a regular periodic orbit whose length
is at most t+ T (ε′). It follows that P ∗Reg(ϕ) ≥ P (GM , ϕ) = P (ϕ). �
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7. The Bowen property

We show that Hölder continuous potentials on T 1M have the Bowen
property on G(η). Then we show that the geometric potential has the
Bowen property on G(η), despite the fact that it is not known whether
this potential is Hölder continuous. It is immediate from these results
that any potential of the form pϕ+qϕu, where ϕ is Hölder and p, q ∈ R,
has the Bowen property.

7.1. Hölder continuous potentials. We start by working along sta-
ble and unstable leaves, then use the local product structure.

Definition 7.1. A potential ϕ : T 1M → R is Hölder along stable leaves
if there are C, θ, ε > 0 such that for any v ∈ T 1M and w ∈ W s

ε (v), we
have |ϕ(v)−ϕ(w)| ≤ Cds(v, w)θ. Similarly, ϕ is Hölder along unstable
leaves if there are C, θ, ε > 0 such that |ϕ(v) − ϕ(w)| ≤ Cdu(v, w)θ

whenever v ∈ T 1M and w ∈ W u
ε (v).

By (4.1) and (4.3), which bound dK in terms of du and ds, a Hölder
continuous potential is Hölder along both stable and unstable leaves.

Definition 7.2. A potential ϕ has the Bowen property along stable
leaves with respect to C ⊂ T 1M × [0,∞) if there are δ,K > 0 such that

sup{|Φ(v, t)− Φ(w, t)| : (v, t) ∈ C, w ∈ W s
δ (v)} ≤ K.

A potential ϕ has the Bowen property along unstable leaves with respect
to C if there are δ,K > 0 such that

sup{|Φ(v, t)− Φ(w, t)| : (v, t) ∈ C, w ∈ f−tW u
δ (ftv)} ≤ K.

Lemma 7.3. If ϕ is Hölder along stable leaves (respectively unstable
leaves), then it has the Bowen property along stable leaves (respectively
unstable leaves) with respect to G(η) for any η > 0.

Proof. We give the proof for stable leaves; the unstable case is similar.
Let δ > 0 be as in Lemma 3.9. Let (v, T ) ∈ G(η) and w ∈ W s

δ (v).
By Lemma 3.9 and the Hölder property along stable leaves, we have
|ϕ(ftv)− ϕ(ftw)| ≤ Ce−

η
2
θt for each t ∈ [0, T ]. Thus, we have

|Φ(v, T )− Φ(w, T )| ≤ C

∫ T

0

e−
η
2
θt dt ≤ C

∫ ∞
0

e−
η
2
θt dt.

This bound is independent of v and T , which proves the lemma. �

Lemma 7.4. Given η > 0, suppose that ϕ : T 1M → R has the Bowen
property on G(η/2) with respect to both stable and unstable leaves. Then
ϕ has the Bowen property on G(η).
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Proof. Since curvature of horospheres is uniformly bounded on T 1M ,
there are δ0, C > 0 such that for every v ∈ T 1M and w ∈ W u(v)
with du(v, w) ≤ δ0, we have du(v, w) ≤ CdK(v, w).Let δ1 > 0 be such
that for every (v, T ) ∈ G(η), the foliations W u, W cs have local product
structure at scale δ1 with constant κ at both v and fTv. By Lemma
3.9, there exists δ2 > 0 so that for (v, T ) ∈ G(η), every w ∈ BT (v, δ2)
has (w, T ) ∈ G(η/2). Let δ3, K > 0 be the constants associated to the
Bowen property for φ with respect to G(η/2) along stable and unstable
leaves, and assume without loss of generality that δ3 < δ0.

Now take 0 < δ < min(δ0, δ1, δ2, δ3/(2κC)). Fix (v, T ) ∈ G(η) and
w ∈ BT (v, δ). By LPS, there is v′ ∈ W cs

δκ(v) ∩W u
δκ(w). We claim that

fTv
′ ∈ W u

δ3
(fTw). Suppose this fails; then there is t ∈ [0, T ] such that

(7.1) δ3 < du(ftv
′, ftw) ≤ δ0

but since v′ ∈ W cs
δκ(v) ⊂ BT (v, δκ), we have

dK(ftv
′, ftw) ≤ dK(ftv

′, ftv) + dK(ftv, ftw) ≤ 2δκ,

and so du(ftv
′, ftw) ≤ 2δκC < δ3, contradicting (7.1). It follows that

v′ ∈ f−TWδ3(w). Let ρ ∈ [−κδ, κδ] be such that fρ(v
′) ∈ W s

δ3
(v); then

|Φ(v, T )−Φ(w, T )| ≤ |Φ(v, T )−Φ(fρv
′, T )|+ |Φ(fρv

′, T )−Φ(v′, T )|
+ |Φ(v′, T )− Φ(w, T )| ≤ K + 2κδ‖ϕ‖+K. �

The following is an immediate consequence of Lemmas 7.3 and 7.4.

Corollary 7.5. If ϕ is Hölder continuous, then it has the Bowen prop-
erty with respect to G(η) for any η > 0.

7.2. The geometric potential. The geometric potential for geodesic
flow is given by

ϕu(v) = − lim
t→0

1

t
log det(dft|Euv ) = − d

dt

∣∣∣
t=0

log det(dft|Euv ).

When M has dimension 2, the function ϕu is Hölder along unstable
leaves [14, Proposition III], and so the problem of proving the Bowen
property for ϕu on G(η) reduces to proving it along stable leaves, where
it is not known whether ϕu is Hölder. In higher dimensions, it is not
known whether ϕu is Hölder continuous on either stable or unstable
leaves; an advantage of our approach is that we sidestep the question
of Hölder regularity by proving the Bowen property on G directly.

We will find it more convenient to work with the potential function

(7.2) ψu(v) = − lim
t→0

1

t
log det(Juv,t) = − d

dt

∣∣∣
t=0

log det(Juv,t),
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where Juv,t : v
⊥ → (ftv)⊥ is the linear map that takes w ∈ v⊥ to the

value at t of the unstable Jacobi field along γv that has value w at 0.

Lemma 7.6. There exists K so that |
∫ T

0
ϕu(ftv) dt−

∫ T
0
ψu(ftv) dt| ≤

K for all v ∈ T 1M and T > 0.

Proof. Given v ∈ T 1M , let ω be the volume form on Eu
v ⊂ TvT

1M
induced by the Sasaki metric, and let ω′ be the volume form on v⊥ ⊂
TπvM induced by the Riemannian metric. The canonical projection
π : T 1M → M has derivative dπ : TT 1M → TM that takes Eu

v to v⊥

and pushes forward ω to a volume form (dπ)∗ω on v⊥; this need not be
the same volume form as ω′, but by considering each volume form as
a wedge product of 1-forms associated to unit vectors, it follows from
(2.10) that there is C > 0 such that ω′πv ≤ (dπ)∗ωv ≤ Cω′πv for every

v. The lemma follows since
∫ T

0
ϕu(ftv) dt = log

(
(dft)∗ωv/ωftv

)
, and

similarly for ψu and ω′. �

It follows that qϕu and qψu share the same equilibrium states for
any q ∈ R, and that qϕu has the Bowen property on G(η) if and only
if ψu does. From now on, we work with ψu. Let Uuv (t) be the second
fundamental form of the unstable horosphere Hu(ftv), as in §2.4.2, so
Uuv (t) is a positive semidefinite symmetric linear operator on (ftv)⊥ such
that if J(t) is an unstable Jacobi field along γv, then J ′(t) = Uuv (t)J(t);
see Lemma 2.7. Now (7.2) gives ψu(v) = − trUuv (0), so

(7.3)

∫ T

0

ψu(ftv) dt = −
∫ T

0

trUuv (t) dt.

The rest of this section is devoted to proving the following.

Proposition 7.7. For every η > 0 there are δ,Q, ξ > 0 such that
given any (v, T ) ∈ G(η), w ∈ W s

δ (v), and w′ ∈ f−TW u
δ (fTv), for every

0 ≤ t ≤ T we have

| trUuv (t)− trUuw(t)| ≤ Qe−ξt,(7.4)

| trUuv (t)− trUuw′(t)| ≤ Q
(
e−ξt + e−ξ(T−t)

)
.(7.5)

Since
∫ T

0
ψu(ftv) dt = −

∫ T
0

trUuv (t) dt, (7.4) shows that ψu has the
Bowen property on G(η) along stable leaves, and (7.5) gives it along
unstable leaves. Thus, by Lemma 7.4, ψu has the Bowen property on
G(2η), so we obtain the desired result:

Corollary 7.8. For every η > 0, the potential ψu, and thus the poten-
tial ϕu, has the Bowen property on G(η).
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To prove Proposition 7.7, we study Uuv (t) by using the fact that its
time evolution is governed by a Riccati equation, which we now de-
scribe. For v ∈ T 1M , let K(v) : v⊥ → v⊥ be the symmetric linear map
such that 〈K(v)X, Y 〉 = 〈R(X, v)v, Y 〉 for X, Y ∈ v⊥. The eigenvalues
of K(v) are sectional curvatures of planes containing v. Consequently
K(v) is negative semidefinite. Recalling (2.5), we see that Jacobi fields
along γv evolve according to J ′′(t) +K(ftv)J(t) = 0.

Lemma 2.7 shows that if J(t) arises from varying γ = γv through
unit speed geodesics orthogonal to a hypersurface H, then then J ′(t) =
U(t)J(t), where U(t) is the second fundamental form of ftH. Differen-
tiating this, the second-order ODE above becomes

0 = J ′′(t) +K(γ̇(t))J(t) = (U ′(t) + U2(t) +K(γ̇(t)))J(t).

This shows that U(t) is a solution of the Riccati equation along γ:

(7.6) U ′(t) + U2(t) +K(γ̇(t)) = 0.

Using parallel translation along γ to identify the spaces γ̇(t)⊥, we can
represent U and K by symmetric (n− 1)× (n− 1) matrices. Note that
Uuγ̇(0)(t) is the unique solution of (7.6) that is positive semidefinite for
all t ∈ R and bounded for t ≤ 0.

When M is a surface, the Riccati equation (7.6) along γv becomes

(7.7) U ′(t) + U2(t) +K(ftv) = 0,

where K(ftv) is the Gaussian curvature at γv(t). A nice exposition of
the Riccati equation for non-positive curvature surfaces is in [19].

We now prove Proposition 7.7. Let V be the space of symmetric
(n− 1)× (n− 1) matrices, equipped with the semi-metric

ρ(A,B) = | trA− trB|.
Given v ∈ T 1M and s ≤ t ∈ R, let Rv

s,t : V → V denote the time-
evolution map from time s to time t for the nonautonomous ODE

(7.8) U ′(τ) + U2(τ) +K(fτv) = 0.

That is, Rv
s,t(U0) = U(t), where U is the solution of (7.8) with U(s) =

U0. Then given v, w ∈ T 1M , we have

(7.9) ρ(Uuv (t),Uuw(t)) = ρ(Rv
0,tUuv (0),Rw

0,tUuw(0))

≤ ρ(Rv
0,tUuv (0),Rv

0,tUuw(0)) + ρ(Rv
0,tUuw(0),Rw

0,tUuw(0)).

To estimate the first term, we will establish contraction properties of
Rv

0,t on a suitable subset of V . Given A,B ∈ V , write A < B if A−B is
positive semi-definite and A � B if A−B is positive definite. Similarly,
write A 4 B if A− B is negative semi-definite and A ≺ B if A− B is
negative definite. Fix b > 0 such that −b2 is a strict lower bound for
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the sectional curvatures of M , and let D = {U ∈ V : 0 4 U 4 bI}. The
following lemma, proved in §7.3, shows that D is a forward-invariant
domain for the maps Rv

s,t.

Lemma 7.9. For every v ∈ T 1M and s ≤ t ∈ R, we have Rv
s,tD ⊂ D.

Henceforth, we use the letter Q generically for a constant whose
precise value will be different at different occurrences. Recall that the
function λ̃ ≥ 0 was defined in §3.3 as λ̃(v) = max(0, λ(v) − η

2
). The

following lemma allows us to estimate the first term in (7.9).

Lemma 7.10. For every η > 0, there is a constant Q > 0 such that
for every v ∈ T 1M , s ≤ t ∈ R, and U0,U1 ∈ D, we have

(7.10) ρ(Rv
s,tU0,Rv

s,tU1) ≤ Qe−
∫ t
s λ̃(fτv) dτ‖U0 − U1‖.

We prove Lemma 7.10 in §7.4. To estimate the second term in (7.9),
we fix v, w ∈ T 1M , t ≥ 0, and U0 ∈ D, and consider the function
R = Rv,w,t

U0 : [0, t]→ D given by

(7.11) R(s) = Rv
s,tRw

0,sU0,

so R(s) evolves U0 by the Ricatti equation for w until time s, then
evolves by the Ricatti equation for v from time s to time t. Our proof of
Lemma 7.10 shows that Uuw(0) ∈ D, so we can set U0 = Uuw(0) to obtain
a path in D that connects R(0) = Rv

0,tUuw(0) to R(t) = Rw
0,tUuw(0). Thus

we can estimate the second term in (7.9) by bounding the length of the
path R in the pseudo-metric ρ.

Lemma 7.11. Given any v, w ∈ T 1M and t ≥ 0, the function R =
Rv,w,t
Uuw(0) satisfies the following bound for all 0 ≤ s1 ≤ s2 ≤ t:

(7.12) ρ(R(s1), R(s2)) ≤
∫ s2

s1

Qe−
∫ t
s λ̃(fτv) dτ‖K(fsv)−K(fsw)‖ ds.

We prove Lemma 7.11 in §7.5. We now explain how to prove Propo-
sition 7.7 from Lemmas 7.10 and 7.11. Given η > 0, let δ > 0 be as in
(3.1). Given (v, T ) ∈ G and w ∈ W s

δ (v), smoothness of K : T 1M → V
together with (3.3) gives

‖K(fsv)−K(fsw)‖ ≤ QdK(fsv, fsw) ≤ Qds(fsv, fsw) ≤ Qδe−
∫ s
0 λ̃(fτv) dτ

for all s ∈ [0, T ]. We conclude that for every t ∈ [0, T ], the integrand
in (7.12) is bounded above by

Qe−
∫ t
0 λ̃(fτv) dt ≤ Qe−

∫ t
0 λ(fτv) dt+ η

2
t ≤ Qe−

η
2
t,
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where the last inequality holds because (v, T ) ∈ G(η). Thus, (7.12)
gives ρ(R(s1), R(s2)) ≤ (s2 − s1)Qe−

η
2
t. Fixing ξ < η

2
, and setting

s1 = 0, s2 = t, we obtain

ρ(Rv
0,tUuw(0),Rw

0,tUuw(0)) ≤ Qte−
η
2
t < Qe−ξt,

which bounds the second term of (7.9). By (7.10), we have

(7.13) ρ(Rv
0,tUuv (0),Rv

0,tUuw(0)) ≤ Qe−
∫ t
0 λ(fτv) dτ ≤ Qe−ηt,

which bounds the first term of (7.9). Thus, both terms of (7.9) are
bounded above by Qe−ξt,which proves the first half of Proposition 7.7.

To prove (7.5), first observe that when (v, T ) ∈ G and fTw
′ ∈

W u
δ (fTv), we can use (3.6) to get

‖K(fsv)−K(fsw
′)‖ ≤ Qe−

∫ T
s λ̃(ftw′) dt ≤ Qe−

η
2

(T−s).

Now letting R = Rv,w′,t
Uu
w′ (0) and t ∈ [0, T ], (7.12) gives the bound

ρ(R(0), R(t)) ≤ Q

∫ t

0

‖K(fsv)−K(fsw
′)‖ ds

≤ Q

∫ t

0

e−
η
2

(T−s) ds ≤ Qe−
η
2

(T−t).

Thus, ρ(Rv
0,tUuw′(0),Rw′

0,tUuw′(0)) ≤ Qe−
η
2

(T−t). Also, (7.13) holds with
w′ in place of w. Using these bounds in (7.9) gives (7.5) with ξ = η

2
.

Modulo the proofs of Lemmas 7.9, 7.10 and 7.11, which are given in
the next sections, this completes the proof of Proposition 7.7.

7.3. Proof of Lemma 7.9. The following three lemmas give forward-
invariance of the domain D under the maps Rv

s,t for any v ∈ T 1M .

Lemma 7.12. [7, p. 50] Suppose U1(t) and U2(t) are symmetric so-
lutions of (7.6) with U1(t0) < U2(t0). Then U1(t) < U2(t) for all t.
Similarly, if U1(t0) � U2(t0), then U1(t) � U2(t) for all t.

Proof. Both D(t) = U1(t) − U2(t) and M(t) = 1
2
(U1(t) + U2(t)) are

symmetric and by a straightforward computation, satisfy

D′ +DM+MD = 0.

Let X (t) be the solution of X ′(t) = M(t)X (t) with X (t0) = I. Then
X (t) is non-singular for all t and, since M is symmetric,

(X ∗DX )′ = X ∗(D′ +DM+MD)X = 0.

Thus X ∗DX (t) is constant, so the signature of D(t) is constant. �

Lemma 7.13. Let U(t) be a symmetric solution of (7.6) with U(t0) <
0. Then U(t) < 0 for all t ≥ t0.
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Proof. Let Uε(t) be the (symmetric) solution of

(7.14) U ′ε(t) + U2
ε (t) +K(γ̇(t))− ε2I = 0

with Uε(t0) = U(t0) < 0. Then limε→0 Uε(t) = U(t) for all t, so it
suffices to prove that Uε(t) < 0 for all t ≥ t0 and ε > 0. Let

S = {t ≥ t0 | Uε(t1) < 0 for all t1 ∈ [t0, t]}.
Suppose S is bounded above, and let t1 = supS. Let U1

ε be the solution
of (7.14) with U1

ε (t1) = 0. By Lemma 7.12, we have Uε(t) < U1
ε (t) for

all t ∈ R. However, (U1
ε )′(t1) = −K(γ̇(t)) + ε2I is positive definite, so

there is some t2 > t1 with the property that U1
ε (t) � 0 for all t ∈ (t1, t2],

and consequently Uε(t) < 0 for all t ∈ (t1, t2]. This means that t2 ∈ S,
contradicting maximality of t1. We conclude that S = [t0,∞), which
proves the lemma. �

Recall that b > 0 was chosen so that −b2 is a strict lower bound for
the sectional curvatures of M .

Lemma 7.14. Suppose U(t) is a solution of (7.6) with bI < U(t0).
Then bI < U(t) for t ≥ t0.

Proof. Proceed as in Lemma 7.13 by observing that U ′(t) = −U2(t)−
K(γ̇(t)) ≺ 0 if U(t) = bI and applying Lemma 7.12. �

We conclude that D is an invariant domain for evolution under the
Ricatti equation (7.6). Thus, for every v ∈ T 1M and s ≤ t ∈ R, we
have Rv

s,tD ⊂ D.

7.4. Proof of Lemma 7.10. We begin by proving convergence results
to Uu for Ricatti solutions with positive semi-definite initial conditions.

Lemma 7.15. Let Uuv,τ be the solution of the Riccati equation along
γv such that Uuv,τ (−τ) = 0. Then Uuv,τ (0) → Uuv (0) as τ → ∞. The
convergence is uniform in v.

Proof. We have Uuv,τ (−τ) = 0 4 Uuv (f−τv) = Uuv (−τ). It follows from
Lemma 7.12 that Uuv,τ (t) 4 Uuv (t) for all t, in particular when t = 0.
On the other hand, Lemma 7.13 tells us that Uuv,τ (t) < 0 for t ≥ −τ .
It follows that if 0 ≤ τ1 ≤ τ2, then 0 4 Uuv,τ1(0) 4 Uuv,τ2(0) 4 Uuv (0). We
would like to deduce that Uuv,τ (0) converges to Uuv (0) as τ →∞.

Observe that for every x ∈ Rn−1, the sequence 〈x,Uuv,τ (0)x〉 is mono-
tonic in τ , and hence has a limit as τ →∞. Since this holds for every
x, we conclude that limτ→∞ Uuv,τ (0) exists and that it is 4 Uuv (0); it
remains to show that the limit is in fact Uuv (0) for each v.

Let Jv,w,τ be a Jacobi field along γv such that Jv,w,τ (0) = w ∈ v⊥ and
J ′v,w,τ (−τ) = 0. Since the norm of a Jacobi field is a convex function,
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we have ‖Jv,w,τ (t)‖ ≤ ‖w‖ for −τ ≤ t ≤ 0. If τk is a sequence such that
τk → ∞ and Jv,w,τk is a sequence that converges to a Jacobi field J ,
then ‖J(t)‖ ≤ ‖J(0)‖ for all t ≤ 0, and hence J is the unstable Jacobi
field with initial value w. Since we have the same limit for any such
subsequence, it follows that Jv,w,τ converges as τ →∞ to the unstable
Jacobi field with initial value w. Thus Uuv,τ (0)→ Uuv (0) for each v.

Now given any x ∈ Rn−1, we can use Dini’s theorem to conclude that
〈x,Uuv,τ (0)x〉 → 〈x,Uuv (0)x〉 uniformly in v. Since a symmetric matrix
U is completely determined by 〈x, Ux〉 for a finite number of values of
x, this shows that Uuv,τ (0)→ Uuv (0) uniformly in v. �

Corollary 7.16. For any v ∈ T 1M , Uuv (0) ∈ D.

Proof. Lemma 7.9 tells us that Uuv,τ (0) ∈ D for all τ . Since D is com-
pact, it follows from Lemma 7.15 that Uuv (0) ∈ D. �

Proposition 7.17. For each ε > 0 there is τ0(ε) > 0 such that if U(t)
is a solution of the Riccati equation along the geodesic γv and t0 ∈ R
is such that U(t0) < 0, then U(t) < Uuv (t)− εI for every t ≥ t0 + τ0(ε).

Proof. Lemma 7.15 gives τ0 = τ0(ε) such that Uuw,τ (0) < Uuw(0)− εI for

all w ∈ T 1M and τ ≥ τ0(ε). Let w = fτv and τ = t. �

To prove Lemma 7.10, it suffices to consider the case when s = 0; to
obtain the result when s 6= 0, replace v ∈ T 1M by fsv. By Proposition
7.17, there is τ0 = τ0(η

2
) such that for any v ∈ T 1M and U0 ∈ D,

we have Rv
0,tU0 < Uuv (t) − η

2
I for all t ≥ τ0. We start by proving an

estimate that is useful for controlling the pseudo-metric ρ locally. For
U ∈ D, we write U(t) to denote Rv

0,tU .

Lemma 7.18. If U ,U ∈ D have U 4 Uj 4 U for j = 0, 1, then

(7.15) ρ(U0(t),U1(t)) ≤ eτ0‖λ‖e−
∫ t
0 λ̃(fτv) dτ (trU − trU).

Proof. By Lemma 7.12, we have U(t) 4 Uj(t) 4 U(t) for all t ∈ R and
j = 0, 1. Thus Weyl’s inequality gives

ρ(U0(t),U1(t)) = | trU0(t)− trU1(t)| ≤ trU(t)− trU(t) =: ∆(t).

Writing λ1(t) ≤ λ2(t) ≤ · · · ≤ λn−1(t) for the eigenvalues of U(t), and

similarly for the eigenvalues of U(t), we have

∆′(t) = tr(U ′(t)− U ′(t)) = tr(U(t)2 − U(t)2)

= −
(

tr(U(t)2)− tr(U(t)2)
)

= −
n−1∑
i=1

(λi(t)
2 − λi(t)2) = −

n−1∑
i=1

(λi(t)− λi(t))(λi(t) + λi(t)).
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Weyl’s inequality gives λi(t) ≥ λi(t) ≥ 0, so ∆′(t) ≤ 0 for all t ≥ 0.
Moreover, since U(0) ∈ D, Proposition 7.17 gives λi(t) ≥ λ(ftv) − η

2

for all t ≥ τ0, and thus λi(t) ≥ λ̃(ftv). Thus, for t ≥ τ0, we have

∆′(t) ≤ −
n−1∑
i=1

2λ̃(ftv)(λi(t)− λi(t)) ≤ −2λ̃(ftv)∆(t),

and so

ρ(U0(t),U1(t)) ≤ ∆(τ0)e
−

∫ t
τ0

2λ̃(fτv) dτ

≤ ∆(0)e
∫ τ0
0 λ̃(fτv) dτe−

∫ t
0 λ̃(fτv) dτ

≤ (trU − trU)eτ0‖λ‖e−
∫ t
0 λ̃(fτv) dτ . �

We now apply the estimate (7.15) locally on the interior of D, and
show how to use this to obtain the global estimate (7.10). First assume
that U0,U1 are positive definite, and let ε > 0 be such that U0,U1 < εI
and n = ‖U0 − U1‖/ε is an integer. Given q ∈ (0, 1), let Uq = (1 −
q)U0 + qU1 and observe that Uq < εI. For every 0 ≤ k < n, we have
‖U(k+1)/n − Uk/n‖ < ε.

Now let Uk = Uk/n− εI and Uk = Uk/n + εI. For j = k/n, (k+ 1)/n,

we have Uk 4 Uj 4 Uk , so writing Uq(t) = Rv
0,t(Uq) for q ∈ [0, 1], and

applying Lemma 7.18 gives

ρ(Uk/n(t),U(k+1)/n(t)) ≤ eτ0‖λ‖e−
∫ t
0 λ̃(fτv) dτ2ε.

Summing over all k, and using the fact that nε = ‖U0 − U1‖, gives

ρ(U0,U1) ≤ 2eτ0‖λ‖e−
∫ t
0 λ̃(fτv) dτ‖U0 − U1‖.

This proves (7.10) when U0,U1 are positive definite. For the positive
semidefinite case, replace Uj with U δj := Uj + δI for δ > 0, and observe

that limδ→0Rv
0,tU δj = Rv

0,tUj. This completes the proof of Lemma 7.10.

7.5. Proof of Lemma 7.11. Fixing v, w ∈ T 1M and t ≥ 0, let
R : [0, t]→ D be as in (7.11), and define G : [0, t]→ [0,∞) by

(7.16) G(s) = Qe−
∫ t
s λ̃(fτv) dτ‖K(fsv)−K(fsw)‖.

We start by showing that ρ(R(s1), R(s2)) can be controlled in terms
of G(s1) when s2 − s1 is small. First we need a uniform continuity
property of the map (v, s,U) 7→ ‖Rv

0,sU‖.
Lemma 7.19. For every ε > 0 there is δ > 0 such that given any
v, w ∈ T 1M , U ∈ D, and s ∈ [0, δ], we have ‖Rv

0,sU − Rw
0,sU‖ ≤

(‖K(v)−K(w)‖+ ε)s.
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Proof. Given v ∈ T 1M and U ∈ D, let Uv(s) = Rv
0,sU . Then for every

v, w ∈ T 1M and every s ∈ [0, δ1), we have

‖U ′v(s)− U ′w(s) ≤ ‖U2
v (s)− U2

w(s)‖+ ‖K(fsv)−K(fsw)‖.
Since ‖U‖ ≤ b for all U ∈ D, we get ‖(Uv−Uw)′(s)‖ ≤ 4b2 +2‖K‖ =: L,
so ‖U2

v (s)− U2
w(s)‖ ≤ 2b‖Uv(s)− Uw‖ ≤ 2bLs, and

(7.17) ‖(Uv − Uw)′(s)‖ ≤ 2bLs+ ‖K(fsv)−K(fsw)‖.
Fix ε > 0. Uniform continuity of K gives ε′ > 0 such that dK(v1, v2) < ε′

implies ‖K(v1)−K(v2)‖ < ε
4
. Uniform continuity of the flow gives δ1 >

0 such that ‖K(fsv)−K(v)‖ < ε
4

for every v ∈ T 1M and |s| < δ1. Let
δ = min( ε

4bL
, δ1). For any 0 ≤ s ∈ [0, δ), (7.17) gives ‖(Uv −Uw)′(s)‖ ≤

‖K(v)−K(w)‖+ ε, and integrating proves the lemma. �

Now fix ε > 0, and let Q be the constant from Lemma 7.10. By
Lemma 7.19, there is δ > 0 such that for every v, w ∈ T 1M , U0 ∈ D,
and 0 ≤ s0 ≤ s ≤ s0 + δ, noting that Rw

0,sU0 = Rw
s0,s
Rw

0,s0
U0, we have

(7.18) ‖Rv
s0,s
Rw

0,s0
U0−Rw

0,sU0‖ ≤ (‖K(fs0v)−K(fs0w)‖+ε/Q)(s−s0).

If s ≤ t, then letting R = Rv,w,t
U0 , we have

ρ(R(s0), R(s)) = ρ(Rv
s0,t
Rw

0,s0
U0,Rv

s,tRw
0,sU0)

= ρ(Rv
s,t(Rv

s0,s
Rw

0,s0
U0),Rv

s,t(Rw
0,sU0)),

and so applying Lemma 7.10 and the estimate (7.18) gives

ρ(R(s0), R(s)) ≤ Qe−
∫ t
s λ̃(fτv) dτ‖Rv

s0,s
Rw

0,s0
U0 −Rw

0,sU0‖
≤ (G(s0) + ε)(s− s0),

where G is as in (7.16). Now given any 0 ≤ s1 ≤ s2 ≤ t as in the
statement of Lemma 7.11, let n be large enough that (s2 − s1)/n ≤ δ,
and put s∗i = s1 + i

n
(s2 − s1) for 0 ≤ i ≤ n; we obtain

ρ(R(s1), R(s2)) ≤
n∑
i=1

ρ(s∗i−1, s
∗
i ) ≤

n∑
i=1

(G(s∗i−1) + ε)
(s2 − s1

n

)
.

Sending n→∞, the Riemann sum converges to
∫ s2
s1

(G(s) + ε) ds since

G is continuous. Since ε > 0 was arbitrary, this proves (7.12).

8. Pressure gap

In this section we prove Theorem B. The main idea is to approximate
orbit segments in the singular set with ones in C(η); that is, orbits that
start and end in Reg(η) ⊂ Reg. We then use the specification prop-
erty of C(η) to generate a collection of orbits with greater topological
pressure than the singular set.
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8.1. Replacing singular orbit segments with regular ones. If η0

is small and R is large, the following shows that the stable and unstable
leaves of radius R through any v must both intersect Reg(η0).

Proposition 8.1. There exist R, η0 > 0 such that for every v ∈ T 1M ,
there exist ws ∈ W s

R(v) and wu ∈ W u
R(v) satisfying λ(ws), λ(wu) ≥ η0.

Proof. Let Reg′ := {v ∈ T 1M | λ(v) > 0}, and note that Reg′ ⊂ Reg.
Since Reg′ is open and non-empty, and W s,u are uniformly dense, there
exists R > 0 such that W s

R(v) ∩ Reg′ 6= ∅ and W u
R(v) ∩ Reg′ 6= ∅ for

every v ∈ T 1M . Fix such an R, and define η̄ : T 1M → (0,∞) by

η̄(v) = min
(

max{λ(w) : w ∈ W s
R(v)}, max{λ(w) : w ∈ W u

R(v)}
)
.

Then η̄ depends continuously on v and is always positive. Since T 1M
is compact, there is η0 > 0 such that η̄(v) > η0 for every v ∈ T 1M . �

By Proposition 8.1, we can define maps Πs,Πu : T 1M → Reg(η0)
such that Πσ(v) ∈ W σ

R(v) for every v ∈ T 1M and σ = s, u. Given
t > 0, we use these to define a map Πt : Sing→ Reg by

(8.1) Πt = f−t ◦ Πu ◦ ft ◦ Πs.

That is, given v ∈ Sing we choose v′ = Πs(v) ∈ W s
R(v) with λ(v′) ≥ η0,

and w = f−t(Πu(ftv
′)) such that ftw ∈ W u

R(ftv
′) and λ(ftw) ≥ η0. We

can also think of this procedure as acting on orbit segments by writing
Π((v, t)) = (Πt(v), t); the next result shows that for η < η0, this gives a
map Π: Sing× [T,∞)→ C(η) when T is large enough. When we prove
the pressure gap below, we will focus on orbit segments with integer
lengths, and so we will consider the maps Πn for n ∈ N.

Theorem 8.2. Let R, η0,Πn be as above. Then for every δ > 0 and
η ∈ (0, η0), there is T > 0 such that for every v ∈ Sing and n > 2T ,
the image w = Πn(v) has the following properties:

(1) w, fn(w) ∈ Reg(η);
(2) dK(ft(w), Sing) < δ for all t ∈ [T, n− T ];
(3) for every t ∈ [T, n− T ], ft(w) and v lie in the same connected

component of B(Sing, δ) := {w ∈ T 1M : dK(w, Sing) < δ)}.
Observe that Theorem 8.2 does not allow us to conclude that ft(w) is

close to ft(v); all we know is that ft(w) is close to some singular vector
for t ∈ [T, n− T ]. For example, if ft(v) is in the middle of a flat strip,
then ft(w) will be close to the edge of the flat strip for t ∈ [T, n− T ].

Proof of Theorem 8.2. Let δ, η, η0 be as in the statement of the theo-
rem. For property (1), it is immediate from the definition of Πn that
λ(fnw) ≥ η. Applying Corollary 3.14 with η0 > η > 0, we obtain T0



EQUILIBRIUM STATES FOR RANK 1 GEODESIC FLOWS 37

such that λ(v′) ≥ η0 and fT0(w) ∈ W u
R(fT0v

′) imply that λ(w) ≥ η.
Thus, item (1) of the theorem holds for any n ≥ T0.

We turn our attention to item (2). By Proposition 3.5, there are
η1, T1 > 0 such that

(8.2) if λu(ftv) ≤ η1 for all |t| ≤ T1, then dK(v, Sing) < δ.

We apply Corollary 3.14 twice to obtain T2 > 0 such that if v, w ∈ T 1M
have f−t(v) ∈ W s

R(f−tw) or ft(v) ∈ W u
R(ftw) for some t ≥ T2, then the

following two properties hold:

λu(v) <
η1

4
⇒ λu(w) <

η1

2
,(8.3)

λu(v) <
η1

2
⇒ λu(w) < η1.(8.4)

Given v ∈ Sing, we have Πs(v) = v′ ∈ W s
R(v), and λ(ftv) = 0 for all t.

For t ≥ T2 we have ftv ∈ ft(W s
R(v′)), so (8.3) gives λu(ftv

′) < η1/2.
Now w = Πn(v) = f−nΠu(fnv

′) satisfies fnw ∈ W u
R(fnv

′), so (8.4)
gives λu(ftw) ≤ η1 for all t ∈ [T2, n − T2]. Applying (8.2) gives
dK(ftw, Sing) < δ for all t ∈ [T2 + T1, n − T2 − T1]. Thus, taking
T = max(T0, T2 + T1), assertions (1) and (2) follow for n > 2T .

For item (3) of the theorem, we observe that v and w can be con-
nected by a path u(s) that follows first W s

R(v), then f−n(W u
R(fnv

′)), and
that the arguments giving dK(ftw, Sing) < δ also give dK(ftu(s), Sing) <
δ for every t ∈ [T, n−T ] and every s. We conclude that ftv and ftw lie
in the same connected component of B(Sing, δ) for every such t. �

8.1.1. Controlling the multiplicity of the map Πn. Recall that dn(v, w) =
max{dK(ftv, ftw) : t ∈ [0, n]} = max{d(γv(t), γw(t)) : t ∈ [0, n+1]}.We
bound the number of v ∈ Sing whose images under Πn are close in the
dn metric.

Proposition 8.3. For every ε > 0, there exists C = C(M,R, ε) > 0
such that if En ⊂ Sing is an (n, 2ε)-separated set for some n > 0, then
for every w ∈ T 1M , we have #{v ∈ En | dn(w,Πnv) < ε} ≤ C.

Proof. Let M̃ be the universal cover of M and B ⊂ M̃ a fundamental

domain. Define Π̃s,u and Π̃n in the obvious way, by lifting Πs,u and Πn

to the universal cover. We write d̃ for the lift of the Riemannian metric
d to M̃ , and d̃n for the lift of the metric dn. Every ṽ ∈ T 1M̃ has

d̃(πṽ, πΠ̃nṽ) ≤ d̃(πṽ, πΠ̃sṽ) + d̃(πΠ̃sṽ, πΠ̃nṽ)

≤ ds(v,Πsv) + du(Πsv,Πnv) ≤ 2R,
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recalling that πṽ ∈ M̃ is the footprint of ṽ. Given v ∈ T 1M , let

ṽB ∈ T 1M̃ be the lift of v with πṽB ∈ B; then we have πΠ̃nṽB ∈
A2R :=

⋃
x∈B Bd̃(x, 2R).

Fix ε > 0 and let Λ = Λ(2R+ε),B := {g ∈ π1(M) | gB ∩ A2R+ε 6= ∅}.
Note that #Λ < ∞ because B̄ is compact. For n > 0, let En ⊂ Sing
be any (n, 2ε)-separated set, and fix an arbitrary w ∈ T 1M . We define

Ew,ε
n := {v ∈ En | dn(w,Πnv) < ε}.

Let X ⊂ B and Y ⊂ A2R+ε be finite ε-dense sets. We will show that
#Ew,ε

n ≤ (#Λ)(#X)(#Y ) =: C.

Since dn(w,Πnv) < ε, there exists a lift w̃ of w with d̃n(w̃, Π̃nṽB) < ε.
It follows that πw̃ ∈ A2R+ε, and thus πw̃ ∈ gB for some g ∈ Λ. Thus,
En =

⋃
g∈ΛE

g
n, where

Eg
n = {v ∈ Ew,ε

n | d̃n(w̃, Π̃nṽ) < ε where w̃ is the lift of w to gB}.
For a fixed g ∈ Λ and v ∈ Eg

n, we approximate ṽB and fnṽB using the
sets X and Y . Recall that πṽB ∈ B by definition, and we will show that

the location of fnṽB in T 1M̃ is controlled by using fnw̃ as a reference

point. Given v ∈ Eg
n, let x = x(v) ∈ X be such that d̃(x, πṽB) < ε.

Let h be the unique element of π1(M) so that πfnw̃ ∈ hB. Then

d̃(hB, πfn(Π̃nṽB)) < ε, and thus πfnṽB ∈ h(A2R+ε). Thus, there is a

unique y = y(v) ∈ Y such that d̃(πfnṽB, h(y)) < ε.
Now we show that the map x× y : Eg

n → X × Y is injective. Given

v1, v2 ∈ Eg
n and t ∈ [0, n], let ρ(t) = d̃(γṽ1(t), γṽ2(t)) and note that ρ is

convex. In particular, it takes its maximum value at an endpoint. If
x(v1) = x(v2), then ρ(0) < 2ε, and if y(v1) = y(v2), then ρ(n) < 2ε.

Thus if v1, v2 have the same image under x×y, we get d̃n((ṽ1)B, (ṽ2)B) <
2ε, and thus dn(v1, v2) < 2ε. Since Eg

n is (n, 2ε)-separated, this gives
v1 = v2. Injectivity shows that #Eg

n ≤ (#X)(#Y ) for every g ∈ Λ,
which proves Proposition 8.3 with C = #Λ#X#Y . �

8.2. Creating entropy. First, we obtain a lower bound on certain
partition sums for the singular set. By [16, Proposition 3.3], the flow is
entropy-expansive and thus there exists ε > 0 such that P (Sing, ϕ) =
P (Sing, ϕ, ε). We consider the following partition sum:

Λ̃(X, ε, t, ϕ) := sup

{∑
x∈E

esupy∈Bt(x,ε) Φ(y,t) | E ⊂ X is (t, ε)-separated

}
.

The argument in [6, Lemmas 4.1 and 4.2] proves that

(8.5) Λ̃(Sing, ε, n, ϕ) ≥ enP (Sing,ϕ).
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Fix η0 > 0 as in Proposition 8.1, and choose δ > 0 small enough that:

• Λ̃(Sing, 2δ, n, ϕ) ≥ enP (Sing,ϕ) for every n;
• ϕ is locally constant on B(Sing, 2δ);
• λ(v) < η0/2 for all v ∈ B(Sing, 2δ).

Let U1, . . . , Uk be the components of B(Sing, 2δ), and let Φi ∈ R be
the (constant) value that ϕ takes on Ui. By (8.5), for every n, there
exists an (n, 2δ)-separated set En ⊂ Sing such that

(8.6)
k∑
i=1

enΦi#(En ∩ Ui) ≥ enP (Sing,ϕ).

We consider the image of En under the map Πn. Fix η ∈ (η0/2, η0),
and let T = T (η, δ) be as in Theorem 8.2. Write E ′n = Πn(En); then

(8.7) w, fn(w) ∈ Reg(η) for every w ∈ E ′n with n > 2T.

By Theorem 4.1, {(w, n) : w ∈ E ′n} has the specification property.
Given v ∈ En∩Ui, the third item of Theorem 8.2 shows that for any

u ∈ Bn(Πnv, δ), we have

(8.8)

∫ n

0

ϕ(ftu) dt ≥ (n− 2T )Φi − 2T‖ϕ‖ ≥ nΦi − 4T‖ϕ‖.

By Proposition 8.3, for each w ∈ E ′n there are at most C = C(M,R, δ)
elements w′ ∈ E ′n with dn(w,w′) < δ; this leads to the following lemma.

Lemma 8.4. For every n, there is an (n, δ)-separated set E ′′n ⊂ E ′n
such that, setting β = C−1e−4T‖ϕ‖, we have

(8.9)
∑
w∈E′′n

einfu∈Bn(w,δ)

∫ n
0 ϕ(ftu) dt ≥ βenP (Sing,ϕ).

Proof. Given 1 ≤ i ≤ k, let E ′n,i = Πn(En ∩ Ui) and take a maximal
(n, δ)-separated subset E ′′n,i ⊂ E ′n,i. Now #E ′n ∩ Bn(w, δ) ≤ C for all

w ∈ E ′′n,i and E ′′n,i is (n, δ)-spanning for E ′n,i, so #E ′′n,i ≥ C−1#E ′n,i.

Sum over i and use (8.6) and (8.8) to get (8.9) for E ′′n =
⋃k
i=1 E

′′
n,i. �

The proof of Theorem B will be completed by using the partition
sum estimate (8.9) together with the specification property to produce
more topological pressure as follows.

• Fix α > 0, and then for each N , split [0, N ] into αN pieces of
lengths n1, . . . , nαN .
• Fill in each of the pieces with a trajectory originating in E ′′nj .
• Use the specification property for C(η) to find a single trajectory

(u,N) that shadows this sequence of trajectories.
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• This procedure gives λ(ftu) > η if and only if t is close to a
surgery time; we use this to show that distinct choices of length
data n1, . . . , nαN yield distinct orbit segments (u,N) no matter
which elements of E ′′nj were chosen above.

• Using the fact that
(
N
αN

)
≈ e(−α logα)N , conclude that T 1M has

an (N, δ/5)-separated set FN with (roughly)∑
w∈FN

e
∫N
0 ϕ(ftw) dt ≥ e−(α logα)Ne−QαNeNP (Sing,ϕ),

where the constant Q is independent of α. For small α, this
gives P (ϕ) ≥ α(− logα−Q) + P (Sing, ϕ) > P (Sing, ϕ).

In the final estimate, we need α to be small because the transition times
in the specification property give αN time intervals where (u,N) is not
controlled. The error introduced in this way is the price we pay for
creating new orbits. This is why α must be chosen small; exponential
growth comes from the

(
N
αN

)
≈ e(−α logα)N term. The details of this

scheme are carried out in the next section.

8.2.1. Details of entropy production scheme. Recall that η, δ > 0 are
chosen such that

(8.10) d(v, Sing) < 2δ ⇒ λ(v) < η.

By Proposition 4.6, there is τ such that the following specification
property holds on C(η) = {(v, t) ∈ T 1M × (0,∞) | v, ftv ∈ Reg(η)}:
for every {(vj, tj)}kj=1 ⊂ C(η) and every s1, s2, . . . , sk with the property

that sj+1 ≥ sj + tj + 2τ , there are τj ∈ [0, τ ] and w ∈ T 1M such that

(8.11) fsj+τj(w) ∈ Btj(vj, δ/5) for all 1 ≤ j ≤ k.

Without loss of generality we assume that T = T (η, δ) from Theorem
8.2 satisfies T ≥ 2τ .

Let α > 0 be rational and let N ∈ N be large, with the property
that αN ∈ N. Consider the set

A = {4T, 8T, 12T, . . . , 4(N − 1)T} ⊂ [0, 4NT ],

which we designate as the collection of “times which could be marked
for performing surgery”. We will select αN − 1 of the N − 1 elements
in A as times where an orbit segment (x, 4NT ) is marked for surgery.
We write JαN = {J ⊂ A | #J = αN − 1} for this collection of possible
marker placements, and note that #JαN =

(
N−1
αN−1

)
.

We now obtain estimates for a fixed placement of these markers.
Given J ∈ Jαn, let n1, . . . , nαN ∈ N be such that the gaps between suc-

cessive elements of J are 4niT , so that writing Nj =
∑j

i=1 ni, we have
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J = {4N1T, . . . , 4NαN−1T}, and NαN = N . Using the specification
property for orbits in C(η), together with the partition sum estimate
(8.9), we will now prove the following.

Proposition 8.5. There is a constant Q, depending only on T , τ , β,
and the modulus of continuity for the flow ft, such that the following
is true. For every N,α > 0 and every J ∈ JαN , there is a (4NT, δ/5)-
separated set XJ with the property that

(8.12)
∑
w∈XJ

e
∫ 4NT
0 ϕ(ftw) dt ≥ e−αNQe4NTP (Sing,ϕ),

and moreover, every w ∈ XJ satisfies

(8.13)
d(ftw, Sing) > 9δ/5 for some t ∈ [s, s+ T ] if s ∈ J,
d(ftw, Sing) < 6δ/5 for every t ∈ [s, s+ T ] if s ∈ A \ J.

Proof. We apply the specification property to elements of E ′′(4nj−1)T ; we

use (8.11) with sj = 4Nj−1T and tj = (4nj − 1)T , so that

sj + tj + 2τ ≤ 4Nj−1T + (4nj − 1)T + T = 4NjT = sj+1,

and conclude that for every choice of vj ∈ E ′′(4nj−1)T , there are τj ∈ [0, T ]

and w ∈ T 1M such that

(8.14) f4Nj−1T+τj(w) ∈ B(4nj−1)T (vj, δ/5) for all 1 ≤ j ≤ αN.

We prove that each such w satisfies (8.13). If s ∈ J , then we have s =
4NjT for some j, and writing t = s+ tj, (8.14) gives d(ft(w), vj) < δ/5;
since vj ∈ Reg(η), this gives d(ftw,Reg(η)) < δ/5; by (8.10), this is
enough. If s ∈ A\J , then we have s = 4nT for some n ∈ {1, . . . , N−1},
and moreover there is j such that Nj < n < Nj+1. Again we use (8.14)
to conclude that for every t ∈ [s, s+T ], we can write t′ = t−(4NjT+tj)
and get d(ft(w), ft′(vj)) < δ/5; since

t′ ≥ 4(n−Nj)T ≥ T,

t′ ≤ 4(n−Nj)T + T ≤ 4(nj − 1)T + T ≤ (4nj − 1)T − T,
our construction of vj using Theorem 8.2 gives d(ft′(vj), Sing) < δ,
which establishes the other half of (8.13).

It remains to produce a (4NT, δ/5)-separated set satisfying the par-

tition sum estimate (8.12). Write G :
∏αN

j=1 E
′′
(4nj−1)T → T 1M×[0, T ]αN

for the map that takes (v1, . . . , vαN) to (w, τ1, . . . , ταN). We would like
to say that the set of all w produced in this way is (4NT, δ/5)-separated,
but because τj can vary for different choices of vi, we cannot immedi-
ately conclude this. Rather, we use uniform continuity of the flow to
find K ∈ N such that d(v, ftv) < δ/5 whenever |t| < T/K =: ε, and
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then consider the map (0, T ]→ {1, 2, 3, . . . , K} given by x 7→ dx/εe, so
every x ∈ ((k − 1)ε, kε] is taken to the integer k. Composing this with
the map G gives

H :
αN∏
j=1

E ′′(4nj−1)T → T 1M × {1, 2, . . . , K}αN ,

(v1, . . . , vαN) 7→ (w, k1, . . . , kαN),

with the property that by (8.14) and the choice of K, we have

(8.15) f4Nj−1T+kjε(w) ∈ B(4nj−1)T (vj, 2δ/5) for all 1 ≤ j ≤ αN.

Given k ∈ {1, . . . , K}αN , let X k
J be the set of all w ∈ T 1M such that

(w,k) is in the image of the map H.

Lemma 8.6. X k
J is (4NT, δ/5)-separated.

Proof. Given w1 6= w2 ∈ X k
J , there are v1 6= v2 ∈ ∏αN

j=1 E
′′
(4nj−1)T such

that H(vi) = (wi,k). Each of the sets E ′′(4nj−1)T is ((4nj − 1)T, δ)-

separated, so there are j ∈ {1, . . . , αN} and t ∈ [0, (4nj − 1)T ] such
that d(ftv

1
j , ftv

2
j ) ≥ δ. Together with (8.15), this gives

d(f4Nj−1T+kjε+tj(w
1), f4Nj−1T+kjε+tj(w

2))

≥ d(ftj(v
1
j ), ftj(v

2
j ))−

2∑
i=1

d(f4Nj−1T+kjε+tj(w
i), ftj(v

i
j)) ≥ δ/5,

which proves the lemma. �

We estimate
∫ 4NT

0
ϕ(ftw) dt by breaking the integral over [0, 4NT ]

into pieces corresponding to the intervals [4Nj−1T + kjε, (4Nj − 1)T +
kjε], on which the orbit of u is within 2δ/5 of the orbit of vj; the leftover
pieces have a total length of ≤ αNT , and so for (w,k) = H(v), we get∫ 4NT

0

ϕ(ftw) dt ≥ −αNT‖ϕ‖+
αN∑
j=1

inf
w∈Btj (vj ,2δ/5)

∫ tj

0

ϕ(ftvj) dt,

where we write tj = (4nj − 1)T . Using this together with the partition
sum estimate (8.9) gives

∑
k

∑
w∈Xk

J

e
∫ 4NT
0 ϕ(ftw) dt ≥

∑
v

e−αNT‖ϕ‖
αN∏
j=1

e
infw∈Btj (vj,2δ/5)

∫ tj
0 ϕ(ftvj) dt

≥ e−αNT‖ϕ‖
αN∏
j=1

βetjP (Sing,ϕ) ≥ eαN(log β−2T‖ϕ‖)e4NTP (Sing,ϕ).
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Finally, since there are KαN choices for k, we conclude that there is k
such that XJ := X k

J has

(8.16)
∑
w∈XJ

e
∫ 4NT
0 ϕ(ftw) dt ≥ K−αNeαN(log β−2T‖ϕ‖)e4NTP (Sing,ϕ),

which proves Proposition 8.5 with Q = log β − logK − 2T‖ϕ‖. �

We now show how to sum over all the permitted possibilities for
placing markers for surgery. The following consequence of Proposition
8.5 shows that we can recover the choice of J from any of the v ∈ XJ .

Lemma 8.7. If J 6= J ′ ∈ JαN and v ∈ XJ , w ∈ XJ ′, then there is
t ∈ [0, 4NT ] such that d(ftv, ftw) ≥ δ/5.

Proof. Since J 6= J ′, there is s ∈ A such that s ∈ J and s /∈ J ′.
By (8.13), we have d(ftv, Sing) > 9δ/5 for some t ∈ [s, s + T ], while
d(ftw, Sing) < 6δ/5 for every t ∈ [s, s+ T ]. Choosing the t that makes
both inequalities true, we have d(ftv, ftw) ≥ 3δ/5. �

It follows immediately that the set FN :=
⋃
J∈JαN

XJ is (4NT, δ/5)-

separated. Moreover, (8.12) gives

(8.17)
∑
w∈FN

e
∫ 4NT
0 ϕ(ftw) dt ≥

(
N − 1

αN − 1

)
e−αNQe4NTP (Sing,ϕ).

Standard estimates on factorials and binomial coefficients give
(
N−1
αN−1

)
≥

e(−α logα)N+o(N) so that (8.17) gives

Λ(T 1M,ϕ, δ/5, 4NT ) ≥ e(−α logα)N+o(N)e−αNQe4NTP (Sing,ϕ).

Taking a logarithm, dividing by 4NT , and sending N →∞ gives

P (ϕ) ≥ − α
4T

logα− αQ
4T

+ P (Sing, ϕ).

For sufficiently small values of α, the right-hand side is greater than
P (Sing, ϕ), which completes the proof of Theorem B.

9. Proof of Theorems A, C and D

Now we apply Theorem 3.1 to obtain Theorems A, C and D.

Proof of Theorem A. By Corollaries 7.5 and 7.8, if ϕ is Hölder contin-
uous or ϕ = qϕu, then it has the Bowen property on G(η) for all η > 0.
Then Theorem 3.1 applies, yielding the statement of Theorem A. �

Proof of Theorem C. For surfaces, we have htop(Sing) = 0 and ϕu(v) =
0 for all v ∈ Sing, so P (Sing, qϕu) = 0 for all q ∈ R. We show
that P (qϕu) > 0 for all q ∈ (−∞, 1). The Liouville measure µL has
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0 <
∫
ϕu dµL = −

∫
λ+(µL) = −hµL(F) by the Pesin entropy formula,

so for every q ∈ (−∞, 1) we have

P (qϕu) ≥ hµL(F) +

∫
qϕu dµL > hµL +

∫
ϕu dµL = 0 = P (Sing, qϕu).

Then Theorem A gives uniqueness and the desired properties for µq.
Since the flow is entropy expansive, the entropy map is upper semi-

continuous, and so by work of Walters [23], the function q 7→ P (qϕu)
is C1 on any interval where each qϕu has a unique equilibrium state.
In particular, it is C1 on (−∞, 1). �

To show that the equilibrium states µ obtained in Theorem C are
Bernoulli, we apply a result by Ledrappier, Lima, and Sarig [17] show-
ing that if M is any 2-dimensional manifold, ϕ : T 1M → R is Hölder or
a scalar multiple of ϕu, and µ is a positive entropy ergodic equilibrium
measure for the geodesic flow on T 1M , then µ is Bernoulli. Although
their result is stated for positive entropy measures, this assumption
is only used to guarantee that the measure has a positive Lyapunov
exponent, see [18, Theorem 1.3]. Since our measure µ has µ(Reg) = 1
and hence µ(Sing) = 0, it has a positive exponent, so [17] applies.

We now prove Theorem D, and investigate the pressure gap for the
potentials qϕu for higher dimensional manifolds.

Proof of Theorem D. For the proof of Theorem D, first observe that
given any continuous ϕ, the set {q ∈ R : P (Sing, qϕ) < P (qϕ)} is
open since both sides of the inequality vary continuously in q. Then
Theorem D is a direct consequence of Theorems A and B. �

As remarked after the statement of Theorem D, if M is a rank 1
manifold such that htop(Sing) = 0, then we have P (Sing, qϕu) ≤ 0 for
all q ≥ 0 since ϕu ≤ 0. Thus, the argument in the proof of Theorem C
gives the pressure gap on [0, 1). Since the gap is an open condition, it
holds on (−q0, 1) for some q0 > 0. Finally, we show that the pressure
gap holds under a bounded range condition.

Lemma 9.1. Let M be a closed rank 1 manifold and ϕ : T 1M → R be
continuous. If

(9.1) sup
v∈Sing

ϕ(v)− inf
v∈T 1M

ϕ(v) < htop(F)− htop(Sing),

then P (Sing, ϕ) < P (ϕ).

If dim(M) = 2, then htop(Sing) = 0, so the right hand side of (9.1)
is just htop(F). If ϕ = qϕu or is Hölder, the bounded range hypotheses
(9.1) gives another criterion which ensures that Theorem A applies. In
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particular, it follows that the value of q0 in Theorem D can be taken
with q0 ≥ (htop(F)− htop(Sing))/2‖ϕu‖.

Proof of Lemma 9.1. First rewrite (9.1) as

(9.2) htop(Sing) + sup
v∈Sing

ϕ(v) < htop(F) + inf
v∈T 1M

ϕ(v).

The variational principle for F|Sing gives

P (Sing, ϕ) = sup
ν∈M(F|Sing)

{
hν(F) +

∫
ϕdν

}
≤ htop(Sing) + sup

v∈Sing
ϕ(v).

Now let m be the measure of maximal entropy for F . Then

htop(F) + inf ϕ = hm(F) + inf ϕ ≤ hm(F) +

∫
ϕdm ≤ P (ϕ).

Together with (9.2), these give P (Sing, ϕ) < P (ϕ). �

We note that Gromov’s example [16, §6] can be modified to make
htop(F) − htop(Sing) arbitrarily small, so there is no hope that (9.1)
yields a universal lower bound on q0. We do not know if a small entropy
gap restricts the value of q0. Understanding this issue for the Gromov
example would give insight into the general case.

10. Examples

In this section, we investigate examples of the geodesic flow on rank
1 manifolds with Sing 6= ∅. First, we give a class of manifolds for
which we establish the existence of unique equilibrium states for a
C0-generic set of potential functions. This class includes any rank 1
surface equipped with an analytic metric. The second example is a
modification of an example due to Heintze in which we establish the
uniqueness of an equilibrium state for qϕu for all q ∈ R.

10.1. Examples where pressure gap holds generically. We show
that when the singular set is a finite union of disjoint compact sets,
on each of which the geodesic flow is uniquely ergodic, then the set of
Hölder potentials for which there is a pressure gap is C0-generic.

Proposition 10.1. Suppose that Sing is a union of disjoint compact
sets Z1, . . . , Zk, on each of which the geodesic flow is uniquely ergodic.
Let H0 ⊂ C(T 1M) be the set of all ψ that are constant on a neigh-
borhood of each Zi, and let H ⊂ C(T 1M) be the set of all ϕ that are
cohomologous to some ψ ∈ H0. Then H is C0-dense in C(T 1M).
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Proof. Given ϕ ∈ C(T 1M) and T > 0, consider the ergodic average

function ϕT (v) := 1
T

∫ T
0
ϕ(fsv) ds. Then ϕ and ϕT are cohomologous;

indeed, writing ζ(v) := 1
T

∫ T
0

(T − s)ϕ(fsv) dv, an elementary computa-
tion shows that the derivative of ζ in the flow direction is ϕT − ϕ.

Let µi be the unique invariant measure on Zi, and write ci =
∫
ϕdµi.

Given ε > 0, there are T1, . . . , Tk such that for every T ≥ Ti, we have
|ϕT (v)− ci| < ε for every v ∈ Zi. Let T = maxi Ti, and let ψ = ϕT .

There is a function ψ̃ ∈ H0 taking the value ci on a neighborhood of

Zi and having ‖ψ̃−ψ‖C0 < ε. Let ϕ̃ = ψ̃+ϕ−ψ, then ϕ̃ is cohomologous

to ψ̃, so ϕ̃ ∈ H, and we have ‖ϕ̃− ϕ‖C0 = ‖ψ̃ − ψ‖C0 < ε. �

Under the hypotheses of Proposition 10.1, every ϕ ∈ H is cohomolo-
gous to some ψ ∈ H0 to which Theorem B applies, giving P (Sing, ϕ) =
P (Sing, ψ) < P (ψ) = P (ϕ). Since P (ϕ) and P (Sing, ϕ) vary contin-
uously as ϕ varies (w.r.t. C0), the set of potentials with the pressure
gap is C0-open, and since it contains H, it is C0-dense. Writing Ch for
the space of Hölder potentials on T 1M , observe that Ch is C0-dense in
C(T 1M), so the intersection H∩Ch is C0-dense in Ch. This shows that
the set of Hölder potentials for which the pressure gap holds, which is
clearly C0-open in the space of Hölder potentials, is C0-dense.

Analytic metrics on surfaces. For a rank 1 surfaces with an analytic
metric, it is a folklore result that Sing is a finite union of periodic orbits;
we sketch the idea of proof. If Sing is a not a finite union of periodic
orbits, then the geodesic flow has a transversal whose intersection with
Sing is not discrete. In particular, there is a geodesic segment T and
vectors vn, v ∈ Sing, vn 6= v, such that T is orthogonal to v, transverse
to vn, and vn → v. Locally, the geodesics γvn intersect γv at most once,
and so for almost all t close to 0, a short geodesic segment orthogonal
to ft(v) contains a sequence of points xn such that xn → πgt(v) and the
Gaussian curvature of M at xn is 0. Since curvature is real analytic,
it must vanish along each of these geodesic segments and hence it is
constant in a neighborhood of π(v); since M is connected, it must
vanish everywhere, which is a contradiction. Thus, Sing is a finite
union of periodic orbits and so Proposition 10.1 applies.

Non-generic pressure gap and questions. The pressure gap does not
hold generically if the manifold has a flat strip. One can take a po-
tential ϕ supported near a periodic trajectory in the middle of the
strip; if the support is small enough and the size of the potential large
enough, one can guarantee that any regular trajectory has an ergodic
average much smaller than the average along the periodic orbit, and
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conclude that P (Sing, ϕ) > P (Reg, ϕ). This inequality is stable un-
der C0-perturbations of ϕ, so there is a C0-open set of potentials ψ for
which P (Sing, ψ) = P (ψ). It would be interesting to further investigate
which classes of rank 1 manifolds have the pressure gap for C0-generic
(or Cα-generic) Hölder potentials.

10.2. Heintze example. The following example of a rank 1 manifold
is attributed to Heintze and described by Ballmann, Brin, and Eberlein
[2, Example 4]. Consider an n-dimensional manifold N of constant
negative curvature and finite volume with only one cusp. The cross
section of the cusp is a flat (n − 1)-dimensional torus T . Next cut off
the cusp and flatten the manifold near the cut so the resulting manifold
is locally isometric to the direct product of T and the unit interval. Now
consider another copy of the same manifold and identify the two copies
along T to obtain a manifold M with nonpositive sectional curvature.
The rank of any tangent vector to a geodesic in T is n; however, any
tangent vector to a geodesic transverse to T has rank 1.

Figure 10.1. Modified Heintze’s example

We now modify this example. We first assume for simplicity that
n = 3 and the cross-section is a 2-torus T . Start by perturbing the
metric on a compact subset ofN so that there are two periodic orbits for
which the corresponding invariant measures µ1 and µ2 have

∫
ϕu dµ1 <∫

ϕu dµ2. Then choose T as above; by choosing T to lie far enough
out in the cusp we can guarantee that curvature is still constant in
a neighborhood of T . Instead of flattening the metric near the cut,
replace the direct product metric on T × [0, 1] with a warped product,
see for instance [20, p. 204] in which the tori are scaled by χ cosh(d)
where d is the distance from the center 2-torus and χ > 0. The fact
that cosh(d) has a minimum at d = 0 means that the central 2-torus is
totally geodesic; all of the vectors tangent to it are singular and have
exponent zero in the direction tangent to the 2-torus. However now the
sectional curvature in the direction orthogonal to the central 2-torus is
negative and gives a nonzero Lyapunov exponent, see Figure 10.1.
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For this modified example, Sing consists of vectors tangent to the
center 2-torus. Every v ∈ Sing has zero Lyapunov exponent in the
center direction, but the other Lyapunov exponents are nonzero since
the sectional curvature corresponding to these directions is nonzero.
By the warped product construction every vector in Sing will have the
same positive Lyapunov exponent λ > 0, and since h(Sing) = 0, we
know P (Sing, qϕu) = −qλ for all q ∈ R. By varying the parameter χ
in the construction, we can vary λ so that

∫
ϕu dµ1 < −λ <

∫
ϕu dµ2.

Thus for all q > 0 we have

P (qϕu) ≥ q

∫
ϕu dµ2 > −qλ = P (Sing, qϕu),

and the corresponding inequality for q < 0 follows by considering µ1.
Finally, since htop(F) = P (0) > 0 we see that P (qϕu) > P (Sing, qϕu)

for all q ∈ R. Thus we have an example of a compact smooth 3-manifold
M that is rank 1 of nonpositive curvature for which Sing 6= ∅, and in-
deed M does not support a metric of strictly negative curvature (since
π1(M) contains Z2), but on the other hand qϕu has a unique equilib-
rium state for every q ∈ R, which is fully supported. In particular, the
Liouville measure is the unique equilibrium state for ϕu.
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