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Abstract. We show that the robustly transitive diffeomorphisms
constructed by Bonatti and Viana have unique equilibrium states
for natural classes of potentials. In particular, we characterize the
SRB measure as the unique equilibrium state for a suitable geomet-
ric potential. The techniques developed are applicable to a wide
class of DA diffeomorphisms, and persist under C1 perturbations
of the map. These results are an application of general machinery
developed by the first and last named authors.

1. Introduction and statement of results

An equilibrium state for a diffeomorphism f : M →M and a poten-
tial ϕ : M → R is an invariant Borel probability measure that maxi-
mizes the quantity hµ(f)+

∫
ϕdµ. Results on existence and uniqueness

of equilibrium states have a long history [5, 20, 23, 9, 39, 18, 31, 46],
and are one of the main goals in thermodynamic formalism. Such re-
sults are a powerful tool to understand the orbit structure and global
statistical properties of dynamical systems, and often lead to further
applications, including large deviations principles, central limit theo-
rems, and knowledge of dynamical zeta functions [30, 45].

The benchmark result of this type is that there is a unique equi-
librium state µ when (M, f) is uniformly hyperbolic, mixing, and ϕ
is Hölder continuous. When ϕ is the geometric potential ϕ(x) =
− log det(Df |Eu(x)), this unique equilibrium state is the SRB measure
[41, 5, 37]. Extending this type of result beyond uniform hyperbolic-
ity is a major challenge in the field. The first and third authors have
developed techniques to establish existence and uniqueness of equilib-
rium states in the presence of non-uniform versions of specification and
expansivity [19]. The purpose of this paper is to show how these re-
sults can be applied to higher dimensional smooth systems with weak
forms of hyperbolicity, where alternative approaches based on symbolic
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dynamics or transfer operators appear to meet with fundamental diffi-
culties. While thermodynamic formalism for one-dimensional systems
is well developed, and there have been major recent breakthroughs
in dimension two by Buzzi, Crovisier, and Sarig [40, 11], the higher-
dimensional case remains poorly understood.

We focus on the class of Bonatti–Viana diffeomorphisms [4]; these
are robustly transitive, derived from Anosov (DA), diffeomorphisms of
T4. These are the model examples of robustly transitive DA systems
with a dominated splitting that are not partially hyperbolic. This
setting demonstrates the flexibility of our methods while having the
advantage of being concrete. To the best of our knowledge, no other
techniques for uniqueness are available for the class of Bonatti–Viana
diffeomorphisms, or indeed any natural class of smooth systems on T4

beyond uniform hyperbolicity.
The Bonatti–Viana construction [4, 12] is a C0 perturbation of a

4-dimensional toral automorphism fA with a hyperbolic splitting Es⊕
Eu, where dimEs = dimEu = 2. The perturbation has a dominated
splitting Ecs ⊕Ecu and can be characterized by two parameters ρ and
λ: the parameter ρ > 0 is the size of the balls B(q, ρ) ∪ B(q′, ρ) inside
which the perturbation takes place, where q, q′ are fixed points; the
parameter λ > 1 is the maximum of expansion in the centre-stable and
expansion in backwards time in the centre-unstable. The construction
can be carried out with both ρ and log λ arbitrarily small if required.

For fixed λ > 1 and ρ > 0, we write fBV ∈ Fλ,ρ for a diffeomorphism
provided by the Bonatti–Viana construction for which these parame-
ters are bounded above by these values of λ and ρ. Our results give
quantitative criteria for existence and uniqueness of the equilibrium
state in terms of a function Φ which depends on the size of the pertur-
bation from the original Anosov map (via the parameters ρ and λ), the
norm and variation of the potential, and the tail entropy of the system.

Theorem A. Let fBV ∈ Fλ,ρ be a diffeomorphism obtained by the
Bonatti–Viana construction and g be a C1 perturbation of fBV . Let
ϕ : T4 → R be a Hölder continuous potential function. There is a
function Φ = Φ(ϕ; g), given explicitly at (4.6), such that

(1) limλ→1,ρ→0 sup{Φ(ϕ; f) : f ∈ Fλ,ρ} = max{ϕ(q), ϕ(q′)} < P (ϕ; fA);
(2) Φ(ϕ; g) varies continuously under C0 perturbation of the potential

function and C1 perturbation of the map;

and if Φ(ϕ; g) < P (ϕ; g), then (T4, g, ϕ) has a unique equilibrium state.

A more precise statement of this result, including the definition of
Φ, is given as Theorem 4.1. In §5, by analyzing the function Φ and the
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topological pressure P (ϕ; g), we give two corollaries of this result: in
Corollary 5.1, we show that for a fixed diffeomorphism g which is a C1

perturbation of fBV , every Hölder continuous ϕ satisfying a bounded
range condition has a unique equilibrium state; in Corollary 5.2, we
show that for a fixed Hölder continuous potential then there is a unique
equilibrium state with respect to fBV as long as the parameters ρ, log λ
in the Bonatti-Viana construction are sufficiently small.

We also consider potential functions ϕ which are scalar multiples of
the geometric potential ϕgeo(x) = − log det(Df |Ecu(x)). We obtain the
following results.

Theorem B. Let fBV ∈ Fλ,ρ with log λ, ρ sufficiently small. Then for
every C2 diffeomorphism g which is a sufficiently small C1 perturbation
of fBV , the following are true.

• t = 1 is the unique root of the function t 7→ P (tϕgeo
g ; g).

• There is an ε > 0 such that tϕgeo
g has a unique equilibrium state

µt for each t ∈ (−ε, 1 + ε).
• µ1 is the unique SRB measure for g.

Our results are proved using general machinery developed by the first
and last named authors [19]. The idea is to find a ‘good’ collection of
orbit segments on which the map has uniform expansion, contraction,
and mixing properties, and demonstrating that this collection is large
in the sense that any orbit segment can be decomposed into ‘good’ and
‘bad’ parts in such a way that the collection of ‘bad’ orbit segments
has smaller topological pressure than the entire system.

The diffeomorphisms we consider are not expansive. In particular, a
C1 perturbation of a diffeomorphism fBV may not even be asymptot-
ically h-expansive, and thus may have positive tail entropy [12]. We
handle this by showing that any measure with large enough free energy
is almost expansive (Definition 2.3), so the failure of expansivity does
not affect equilibrium states. A significant technical point in our ap-
proach is that we carry out all our estimates coarsely at a definite fixed
scale which is too large to ‘see’ the bad dynamics that may occur at
small scales or infinitesimally. We control the smaller scales indirectly
using bounds on the tail entropy. The need to be precise and careful
about scales leads to substantial technicalities in our arguments.

We now review the relevant results in the literature. For systems
with a dominated splitting, there are some known results on unique-
ness of the measure of maximal entropy although these mostly require
partial hyperbolicity [2, 43, 36], and the case of equilibrium states for
ϕ 6= 0 have been largely unexplored. For the Bonatti–Viana examples,
the existence of a unique MME was obtained in [12], using a technique
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that is not suited to generalization to equilibrium states. Existence of
equilibrium states for partially hyperbolic horseshoes was studied by
Leplaideur, Oliveira, and Rios [26], but they do not deal with unique-
ness. Results for uniqueness of equilibrium states for frame flows have
been obtained recently by Spatzier and Visscher [42]. Other references
which apply in higher dimensional settings include [14, 46]. In particu-
lar, Pesin, Senti and Zhang [46] have used tower techniques to develop
thermodynamic formalism for the Katok map, which is a non-uniformly
hyperbolic DA map of the 2-torus.

The theory of SRB measures has received much more attention. The
fact that there is a unique SRB measure for the examples we study fol-
lows from [4]. The connection between SRB measures and equilibrium
states is given by the Ledrappier–Young formula and the Margulis–
Ruelle inequality. However, even when there is known to be a unique
SRB measure, the characterization of the SRB as an equilibrium state
of a continuous potential function requires a non-trivial proof because
the number of positive Lyapunov exponents can be different for differ-
ent measures. For diffeomorphisms with a dominated splitting, Car-
valho [15] has showed that the SRB measure for a DA system obtained
along an arc of C∞ diffeomorphisms is an equilibrium state. Along a
Cr arc, her result only applied at first bifurcation. To the best of our
knowledge, our results in §7 are the first that characterize the SRB
measure as a unique equilibrium state for a class of diffeomorphisms
with a dominated splitting beyond uniform hyperbolicity.

The techniques introduced in this paper are robust and apply for
other DA systems. In [17], we use the tools and ideas introduced in this
paper to study the partially hyperbolic Mañé family of diffeomorphisms
[27]. This family is significantly easier to study than the Bonatti–Viana
family, and we are able to derive stronger results in that setting. Almost
Anosov diffeomorphisms, Katok maps, and the Shub class of robustly
transitive diffeomorphisms [22] are other classes of DA systems where
these techniques can be explored.

In §2, we give the necessary background material from [19] on ther-
modynamic formalism. In §3, we prove general pressure estimates for
C0-perturbations of Anosov systems. In §4, we provide details of the
Bonatti–Viana construction, and state a more precise version of The-
orem A. In §5, we prove corollaries of Theorem A. In §6, we prove our
main theorem. In §7, we prove Theorem B on SRB measures. In §8,
we provide proofs for a few technical lemmas.
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2. Background

In this section, we state definitions and results that we will need
throughout the paper.

2.1. Pressure. Let X be a compact metric space and f : X → X be
a continuous map. Henceforth, we will identify X × N with the space
of finite orbit segments for a map f via the correspondence

(2.1) (x, n) ←→ (x, f(x), . . . , fn−1(x)).

For a continuous potential function ϕ : X → R we write

Snϕ(x) = Sfnϕ(x) =
n−1∑
k=0

ϕ(fkx)

for the ergodic sum along an orbit segment, and given η > 0, we write

Var(ϕ, η) = sup{|ϕ(x)− ϕ(y)| : x, y ∈ X, d(x, y) < η}.
Given n ∈ N and x, y ∈ X, we write

dn(x, y) = max{d(fkx, fky) : 0 ≤ k < n}.
Given x ∈ X, ε > 0, and n ∈ N, the Bowen ball of order n with center
x and radius ε is

Bn(x, ε) = {y ∈ X : dn(x, y) < ε}.
We say that E ⊂ X is (n, ε)-separated if dn(x, y) ≥ ε for all x, y ∈ E.

We will need to consider the pressure of a collection of orbit segments.
More precisely, we interpret D ⊂ X × N as a collection of finite orbit
segments, and write Dn = {x ∈ X : (x, n) ∈ D} for the set of initial
points of orbits of length n in D. Then we consider the partition sum

Λsep
n (D, ϕ, ε; f) = sup

{∑
x∈E

eSnϕ(x) : E ⊂ Dn is (n, ε)-separated

}
.

When there is no confusion in the map we will sometimes omit the
dependence on f from our notation. We will also sometimes require a
partition sum Λspan

n defined with (n, ε)-spanning sets. Given Y ⊂ X,
n ∈ N, and δ > 0, we say that E ⊂ Y is an (n, δ)-spanning set for Y if⋃
x∈E Bn(x, δ) ⊃ Y . Write

Λspan
n (D, ϕ, δ; f) = inf

{∑
x∈E

eSnϕ(x) : E ⊂ Dn is (n, δ)-spanning

}
.

We will use the following basic result relating Λsep
n and Λspan

n , which
is proved in §8.
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Lemma 2.1. For any D ⊂ X × N, ϕ : X → R, and δ > 0, we have

Λspan
n (D, ϕ, δ) ≤ Λsep

n (D, ϕ, δ),
Λsep
n (D, ϕ, 2δ) ≤ enVar(ϕ,δ)Λspan

n (D, ϕ, δ).
The pressure of ϕ on D at scale ε is

P (D, ϕ, ε; f) = lim
n→∞

1

n
log Λsep

n (D, ϕ, ε),

and the pressure of ϕ on D
P (D, ϕ; f) = lim

ε→0
P (D, ϕ, ε; f).

The above definition is a non-stationary version of the usual upper
capacity pressure [32]. For a set Z ⊂ X, we let P (Z, ϕ, ε; f) := P (Z ×
N, ϕ, ε; f), and thus P (Z, ϕ; f) is the usual upper capacity pressure.

When ϕ = 0 the above definition gives the entropy of D:

(2.2) h(D, ε; f) = h(D, ε) := P (D, 0, ε) and h(D) = lim
ε→0

h(D, ε).

We letM(f) denote the set of f -invariant Borel probability measures
and Me(f) the set of ergodic f -invariant Borel probability measures.
The variational principal for pressure [44, Theorem 9.10] states that if
X is a compact metric space and f is continuous, then

P (ϕ; f) = sup
µ∈M(f)

{
hµ(f) +

∫
ϕdµ

}
= sup

µ∈Me(f)

{
hµ(f) +

∫
ϕdµ

}
.

A measure achieving the supremum is an equilibrium state, and these
are the objects whose existence and uniqueness we wish to study.

2.2. Expansivity and tail entropy. Given a homeomorphism f : X →
X and ε > 0, consider for each x ∈ X and ε > 0 the set

Γε(x) := {y ∈ X : d(fkx, fky) < ε for all n ∈ Z}
is the (bi-infinite) Bowen ball of x of size ε. Note that f is expansive
if and only if there exists ε > 0 so that Γε(x) = {x} for all x ∈ X.

For systems that fail to be expansive, it is useful to consider the tail
entropy of f at scale ε > 0 is

(2.3) h∗f (ε) = sup
x∈X

lim
δ→0

lim sup
n→∞

1

n
log Λspan

n (Γε(x)× N, 0, δ; f).

This quantity was introduced in [6]; equivalent definitions can also be
formulated using open covers [29].

The map f is entropy-expansive if h∗f (ε) = 0 for some ε > 0, and
is asymptotically h-expansive if h∗f (ε) → 0 as ε → 0. See [8, 10] for



UNIQUE EQUILIBRIUM STATES 7

connections between these notions and the theory of symbolic exten-
sions. An interesting result of [8] is that positive tail entropy rules
out the existence of a principal symbolic extension, and thus symbolic
dynamics fails in a strong way for such systems.

Given a collection D ⊂ X ×N and scales 0 < δ < ε, the tail entropy
allows us to control pressure at scale δ in terms of pressure at scale ε.
The following is proved in §8.

Lemma 2.2. Given any D ⊂ X × N and 0 < δ < ε, we have

P (D, ϕ, δ; f) ≤ P (D, ϕ, ε; f) + h∗f (ε) + Var(ϕ, ε) + Var(ϕ, δ).

In particular, P (D, ϕ; f) ≤ P (D, ϕ, ε; f) + h∗f (ε) + Var(ϕ, ε).

2.3. Obstructions to expansivity, specification, and regularity.
It was shown by Bowen [7] that (X, f, ϕ) has a unique equilibrium
state whenever (X, f) has expansivity and specification, and ϕ is suffi-
ciently regular. We require the results from [19], which give existence
and uniqueness as long as ‘obstructions to specification and regularity’
and ‘obstructions to expansivity’ have smaller pressure than the whole
system. We recall the necessary definitions, which can be found in [19].

2.3.1. Expansivity. We introduce the following quantity associated with
the set of non-expansive points.

Definition 2.3. For f : X → X the set of non-expansive points at
scale ε is NE(ε) := {x ∈ X : Γε(x) 6= {x}}. An f -invariant measure
µ is almost expansive at scale ε if µ(NE(ε)) = 0. Given a potential ϕ,
the pressure of obstructions to expansivity at scale ε is

P⊥exp(ϕ, ε) = sup
µ∈Me(f)

{
hµ(f) +

∫
ϕdµ : µ(NE(ε)) > 0

}
= sup

µ∈Me(f)

{
hµ(f) +

∫
ϕdµ : µ(NE(ε)) = 1

}
.

This is monotonic in ε, so we can define a scale-free quantity by

P⊥exp(ϕ) = lim
ε→0

P⊥exp(ϕ, ε).

2.3.2. Specification. We define specification for a collection of orbit seg-
ments.

Definition 2.4. A collection of orbit segments G ⊂ X × N has speci-
fication at scale ε if there exists τ ∈ N such that for every {(xj, nj) :
1 ≤ j ≤ k} ⊂ G, there is a point x in

k⋂
j=1

f−(mj−1+τ)Bnj(xj, ε),
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where m0 = −τ and mj =
(∑j

i=1 ni

)
+ (j − 1)τ for each j ≥ 1.

The above definition says that there is some point x whose trajectory
shadows each of the (xi, ni) in turn, taking a transition time of exactly
τ iterates between each one. The numbers mj for j ≥ 1 are the time
taken for x to shadow (x1, n1) up to (xj, nj).

It is sometimes convenient to consider collections G in which only
long orbit segments have specification.

Definition 2.5. A collection of orbit segments G ⊂ X × N has tail
specification at scale ε if there exists N0 ∈ N so that the collection
G≥N0 := {(x, n) ∈ G | n ≥ N0} has specification at scale ε.

2.3.3. Regularity. We require the following regularity condition for the
potential ϕ on the collection G.

Definition 2.6. Given G ⊂ X×N, a potential ϕ has the Bowen prop-
erty on G at scale ε if

V (G, ϕ, ε) := sup{|Snϕ(x)− Snϕ(y)| : (x, n) ∈ G, y ∈ Bn(x, ε)} <∞.
We say ϕ has the Bowen property on G if there exists ε > 0 so that ϕ
has the Bowen property on G at scale ε.

If G has the Bowen property at scale ε, it has it for all smaller scales.

2.4. General results on uniqueness of equilibrium states. We
prove existence and uniqueness of equilibrium states by using Theorem
5.6 of [19]. The idea is to find a collection of orbit segments G ⊂
X × N that satisfies specification and the Bowen property, and that
is sufficiently large in an appropriate sense. To make this precise, we
need the following definition. We denote N0 = N ∪ {0}.
Definition 2.7. A decomposition for (X, f) consists of three collec-
tions P ,G,S ⊂ X × N0 and three functions p, g, s : X × N → N0 such
that for every (x, n) ∈ X × N, the values p = p(x, n), g = g(x, n), and
s = s(x, n) satisfy n = p+ g + s, and

(2.4) (x, p) ∈ P , (fp(x), g) ∈ G, (fp+g(x), s) ∈ S.
Given a decomposition (P ,G,S) and M ∈ N, we write GM for the set
of orbit segments (x, n) for which p ≤M and s ≤M .

Note that the symbol (x, 0) denotes the empty set, and the functions
p, g, s are permitted to take the value zero.

Theorem 2.8 (Theorem 5.6 of [19]). Let X be a compact metric space
and f : X → X a homeomorphism. Let ϕ : X → R be a continuous
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potential function. Suppose there exists ε > 0 such that P⊥exp(ϕ, 100ε) <
P (ϕ) and X × N admits a decomposition (P ,G,S) with the following
properties:

(1) For each M ≥ 0, GM has tail specification at scale ε;
(2) ϕ has the Bowen property at scale 100ε on G;
(3) P (P ∪ S, ϕ, ε) + Var(ϕ, 100ε) < P (ϕ).

Then there is a unique equilibrium state for ϕ.

We comment on these hypotheses. The transition time τ for specifi-
cation for GM depends on M . If G had specification at all scales, then a
simple argument [19, Lemma 2.10] based on modulus of continuity of f
shows that the first hypothesis of the theorem is true for any ε. Thus,
considering GM for all M at a fixed scale stands in for controlling G at
all scales. The Bonatti–Viana example is a situation where we do not
expect to find G with specification at all scales, but where specification
for GM for all M at a fixed scale is verifiable.

There are two scales present in the theorem: ε and 100ε. We require
specification at scale ε, while expansivity and the Bowen property are
controlled at the larger scale 100ε. There is nothing fundamental about
the constant 100, but it is essential that expansivity and the Bowen
property are controlled at a larger scale than specification. This is
because every time we use specification in our argument to estimate an
orbit, we move distance up to ε away from our original orbit, and we
need to control expansivity and regularity properties for orbits after
multiple applications of the specification property. The Var(ϕ, 100ε)
term appears because we must control points that are distance up to
100ε from a separated set for P ∪ S.

3. Perturbations of Anosov Diffeomorphisms

In this section, we collect some more background material about
weak forms of hyperbolicity, and perturbations of Anosov diffeomor-
phisms. We also establish a pressure estimate for C0 perturbations of
Anosov diffeomorphisms that plays a key role in our results.

3.1. Dominated splittings. Let M be a compact manifold and let
f : M → M be a diffeomorphism. A Df -invariant vector bundle E ⊆
TM has a dominated splitting if

E = E1 ⊕ · · · ⊕ Ek,
where each subbundle Ei is Df -invariant with constant dimension, and
there exists an integer ` ≥ 1 with the following property: for every
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x ∈ M , all i = 1, . . . , (k − 1), and every pair of unit vectors u ∈
E1(x)⊕ · · · ⊕ Ei(x) and v ∈ Ei+1(x)⊕ · · · ⊕ Ek(x), it holds that

|Df `x(u)|
|Df `x(v)| ≤

1

2
.

See for example [38] or [3, Appendix B, Section 1] for some properties
of systems with a dominated splitting.

For us, k = 2, and we obtain a dominated splitting TM = Ecs⊕Ecu,
and there exist invariant foliations W cs and W cu tangent to Ecs and Ecu

respectively that we call the centre-stable and centre-unstable foliations.
For x ∈ M we let W σ(x) be the leaf of the foliation σ ∈ {cs, cu}
containing x when this is defined. Given η > 0, we write W σ

η (x) for
the set of points in W σ(x) that can be connected to x via a path along
W σ(x) with length at most η. Suppose W 1,W 2 are foliations of M .
The standard notion of local product structure for W 1,W 2 says that
for every x, y ∈M that are close enough to each other, the local leaves
W u

loc(x) and W s
loc(y) intersect in exactly one point. Our definition of

local product structure additionally keeps track of the scales involved.
We say that W 1,W 2 have local product structure at scale η > 0 with
constant κ ≥ 1 if for every x, y ∈ M with ε := d(x, y) < η, the leaves
W 1
κε(x) and W 2

κε(y) intersect in a single point.

3.2. Constants associated to Anosov maps. Let f : M →M be a
transitive Anosov diffeomorphism. A constant that will be important
for us is the constant C = C(f) arising from the Anosov shadowing
lemma [24], [33, Theorem 1.2.3].

Lemma 3.1 (Anosov Shadowing Lemma). Let f be a transitive Anosov
diffeomorphism. There exists C = C(f) so that if 2η > 0 is an ex-
pansivity constant for f , then every η

C
-pseudo-orbit {xn} for f can be

η-shadowed by an orbit {yn} for f .

Another constant that will appear in our analysis is L = L(f, η)
associated with the growth of certain partition sums for f . Recall that
f is expansive and has the specification property, and let h = htop(f)
be the topological entropy . For any η > 0 smaller than the expansivity
constant for f , there is a constant L = L(f, η) so that

(3.1) Λsep
n (M × N, 0, η; f) ≤ Lenh

for every n. See, e.g. [7, Lemma 3]. The constant L can be determined
explicitly in terms of the transition time in the specification property.
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3.3. Partition sums for C0 perturbations. Let f : M → M be a
transitive Anosov diffeomorphism of a compact manifold. Using the
Anosov shadowing lemma, we show that there is a C0-neighborhood
U of f such that for every g ∈ U , there is a natural map from g to
f given by sending a point x to a point whose f -orbit shadows the
g-orbit of x. It is a folklore result that this map is a semi-conjugacy
when U is sufficiently small. For example, this follows from the proof
of [13, Proposition 4.1]. This allows us to control partition sums of g
at large enough scales from above, and the pressure at all scales from
below; the following lemma is proved in §8.

Lemma 3.2. Let f be a transitive Anosov diffeomorphism. Let C =
C(f) be the constant from the Anosov shadowing lemma, and 3η > 0 be
an expansivity constant for f . If g ∈ Diff(M) is such that dC0(f, g) <
η/C, then:

(i) P (ϕ; g) ≥ P (ϕ; f)− Var(ϕ, η);
(ii) Λsep

n (ϕ, 3η; g) ≤ Λsep
n (ϕ, η; f)enVar(ϕ,η).

It follows from (ii) that

(3.2) P (ϕ, 3η; g) ≤ P (ϕ; f) + Var(ϕ, η).

However, it may be that P (ϕ; g) is greater than P (ϕ, 3η; g) due to
the appearance of entropy at smaller scales for g. Nonetheless, we
can obtain an upper bound on P (ϕ; g) which involves the tail entropy;
Lemma 2.2 and (3.2) together give the bound

(3.3) P (ϕ; g) ≤ P (ϕ; f) + h∗g(3η) + 2 Var(ϕ, 3η).

The pressure of g, and consequently the tail entropy term, can be
arbitrarily large for a C0 perturbation of f . For example, f can be
perturbed continuously in a neighborhood of a fixed point to create a
whole disc of fixed points, and then composed with a homeomorphism
of this disc that has arbitrarily large entropy.

3.4. Pressure estimates. The examples that we consider are ob-
tained as C0-perturbations of Anosov maps, where the perturbation
is made inside a small neighborhood of some fixed points. Our strat-
egy is to apply the abstract uniqueness results of Theorem 2.8 when
P ,S are orbit segments spending a large proportion of their time near
the fixed points. In this section we give an estimate on the pressure
carried by such orbit segments. We fix the following data.

• Let f : M → M be a transitive Anosov diffeomorphism of a
compact manifold, with topological entropy h = htop(f).
• Let q be a fixed point for f .
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• Let 3η be an expansivity constant for f .
• Let C = C(f) be the constant from the shadowing lemma.
• Let L = L(f, η) be a constant so that (3.1) holds.

Now we choose g, C, and ϕ:

• Let g : M →M be a diffeomorphism with dC0(f, g) < η/C.
• Let ρ < 3η.
• Let r > 0 be small, and let C = C(q, r; g) = {(x, n) ∈ M × N :
Sgnχq(x) < nr}, where χq is the indicator function of M\B(q, ρ).
• Let ϕ be any continuous function.

We write H(r) = −r log r − (1 − r) log(1 − r). We have the following
entropy and pressure estimates on C.
Theorem 3.3. Under the assumptions above, we have the inequality

(3.4) h(C, 6η; g) ≤ r(htop(f) + logL) +H(2r),

and the inequality that for any scale δ > 0,

(3.5) P (C, ϕ, δ; g) ≤ (1− r) sup
x∈B(q,ρ)

ϕ(x) + r sup
x∈M

ϕ(x) + h(C, δ; g),

and thus it follows that

P (C, ϕ; g) ≤ h∗g(6η)+(1−r) sup
x∈B(q,ρ)

ϕ(x)+r(sup
x∈M

ϕ(x)+h+logL)+H(2r).

Proof. First we prove the entropy estimate (3.4). For each (x, n) ∈
C, we partition its orbit into segments entirely in B(q, ρ), and seg-
ments entirely outside B(q, ρ). More precisely, given (x, n) ∈ C, let
((xi, ni), (yi,mi))

`
i=1 be the uniquely determined sequence such that

• x0 = x and
∑`

i=1(ni +mi) = n;
• gni(xi) = yi and gmi(yi) = xi+1;
• xi ∈ Bni(q, ρ) (letting n0 = 0 if x /∈ B(q, ρ));
• (yi,mi) corresponds to an orbit segment entirely contained in
M \B(q, ρ) (letting m` = 0 if gn−1x ∈ B(q, ρ)).

Note that ` = `(x, n) satisfies ` − 1 ≤ ∑`
i=1mi = Sgnχ(x) < nr. For

(x, n) ∈ C, let

t(x, n) = (`,m,n) = (`, (m1, . . . ,m`), (n1, . . . , n`))

be the time data obtained this way. Given n ∈ N and r > 0, let

J r
n = {(`,m,n) : 1 ≤ ` ≤ nr + 1,

∑
(mi + ni) = n,

∑
mi < nr}.

Writing (Cn)`,m,n = {(x, n) ∈ Cn : t(x, n) = (`,m,n)}, we have

Cn =
⋃

(`,m,n)∈J rn

(Cn)`,m,n.
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Thus we can estimate Λsep
n (Cn, 0, 6η) in terms of Λsep

n ((Cn)`,m,n, 0, 6η)
and #J r

n .
For the first of these, let En ⊂ Cn be (n, 6η)-separated, and let Fn be

maximally (n, 3η)-separated, and thus (n, 3η)-spanning, for M . Note
that if z1, z2 ∈ (Cn)`,m,n, then dni(g

si−1z1, g
si−1z2) < 2ρ < 6η at times

si which correspond to the orbits entering Bni(q, ρ); that is, for s0 = 0

and si−1 =
∑i−1

j=1(nj+mj). Thus, if z1, z2 ∈ En∩(Cn)`,m,n with z1 6= z2,

then there exists i with d(giz1, g
iz2) > 6η, and the time i can occur

only when the orbit segments are outside B(q, ρ). More precisely, let

r0 = n1, r1 = n1 +m1 + n2, and ri =
∑i+1

j=1 ni +
∑i

j=1mi. There must

exist i so that dmi(g
ri−1z1, g

ri−1z2) > 6η.
We define a map π : (Cn)`,m,n → Fm1×· · ·×Fm` by choosing πi(z) ∈

Fmi with the property that dmi(g
ri−1z, πi(z)) ≤ 3η. It follows from the

above that if z1, z2 ∈ En ∩ (Cn)`,m,n with z1 6= z2, there exists i with
dmi(g

ri−1z1, g
ri−1z2) > 6η, and thus πi(z1) 6= πi(z2). Thus, the map π

is injective.
Recall that L is the constant such that (3.1) holds and that h =

htop(f). Since dC0(f, g) < η/C, using Lemma 3.2, we have

(3.6) Λsep
m (M, 0, 3η; g) ≤ Λsep

m (M, 0, η; f) ≤ Lemh.

Thus it follows from injectivity of the map π that

Λsep
n ((Cn)`,m,n, 0, 6η) ≤

∏̀
i=1

Λsep
mi

(M, 0, 3η; g) ≤ L`e(
∑
mi)h ≤ Lnr+1enrh,

and thus summing over all choices of `,m,n, we obtain

Λsep
n (Cn, 0, 6η) ≤

∑
(`,m,n)∈J rn

Λsep
n ((Cn)`,m,n, 0, 6η) ≤ Lnr+1(#J r

n )enrh.

Now we observe that given 1 ≤ ` ≤ nr+1, the choice of m,n is uniquely
determined by choosing 2`−1 elements of {0, 1, . . . , n−1}, which are the
partial sums ofmi and ni (the times when the trajectory enters or leaves
B(q, ρ), denoted by ri and si above). An elementary computation using
Stirling’s formula or following [16, Lemma 5.8] shows that the number
of such `,m,n is at most

2nr+1∑
k=1

(
n

k

)
≤ (2nr + 1)(n+ 1)enH((2nr+1)/n)+1,

and so we have

Λsep
n (C, 0, 6η) ≤ Lnr+1(2nr + 1)(n+ 1)enrhenH(2r+ 1

n
).
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This gives the bound h(C, 6η; g) ≤ r(htop(f) + logL) + H(2r), which
establishes (3.4). The pressure estimate (3.5) follows from (3.4) by
observing that for every (x, n) ∈ C we have gkx ∈ B(q, ρ) for at least
(1− r)n values of k ∈ {0, 1, . . . , n− 1}, and so

Sgnϕ(x) ≤ (1− r)n sup
x∈B(q,ρ)

ϕ(x) + rn sup
x∈M

ϕ(x);

this yields the partition sum estimate

Λsep
n (C, ϕ, δ; g) ≤ Λsep

n (C, 0, δ; g) exp(n{(1−r) sup
x∈B(q,ρ)

ϕ(x)+r sup
x∈M

ϕ(x)}),

which implies (3.5). The third displayed inequality of Theorem 3.3 is
immediate from the inequalities (3.4), (3.5) and Lemma 2.2. �

3.5. Obstructions to expansivity. Our examples will satisfy the fol-
lowing expansivity property:

[E] there exist ε > 0, r > 0, and fixed points q, q′ such that for x ∈
M , if there exists a sequence nk →∞ with 1

nk
Sgnkχq(x) ≥ r, and

a sequence mk →∞ with 1
mk
Sg
−1

mk
χq′(x) ≥ r, then Γε(x) = {x}.

Let g be as in the previous section, and suppose ε > 0 and r > 0 are
such that [E] holds. Then we have the following pressure estimate.

Theorem 3.4. Under the above assumptions, we have the pressure
estimate P⊥exp(ϕ, ε) ≤ P (C(q, r) ∪ C(q′, r), ϕ).

Proof. Write χ = χq, χ
′ = χq′ , C = C(q, r; g), C ′ = C(q′, r; g). Consider

the sets

A+ = {x : there exists K(x) so 1
n
Sgnχ(x) < r for all n > K(x)},

A− = {x : there exists K(x) so 1
n
Sg
−1

n χ′(x) < r for all n > K(x)}.
Theorem 3.4 is an application of the following theorem, whose proof is
based on the Katok pressure formula [28].

Lemma 3.5. Let µ ∈Me(g). If either µ(A+) > 0 or µ(A−) > 0, then
hµ(g) +

∫
ϕdµ ≤ P (C ∪ C ′, ϕ).

Proof. Start with the case where µ(A+) > 0; we show that hµ(g) +∫
ϕdµ ≤ P (C, ϕ). Given k ∈ N, let A+

k = {x ∈ A+ : K(x) ≤ k}, and
observe that µ(

⋃
k A

+
k ) > 0, so there is some k such that µ(A+

k ) > 0.
Note that for every n > k and x ∈ A+

k , we have (x, n) ∈ C. It follows
that for every δ > 0 we have

(3.7) Λsep
n (A+

k , ϕ, δ; g) ≤ Λsep
n (C, ϕ, δ; g).
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Fix α ∈ (0, µ(A+
k )) and consider the quantity

sn(ϕ, δ, µ, α; g) = inf

{∑
x∈E

exp{Sgnϕ(x)} : µ

(⋃
x∈E

Bn(x, δ)

)
≥ α

}
,

where the infimum is taken over finite subsets E ⊂ X. The pressure
version of the Katok entropy formula [28] states that

hµ(g) +

∫
ϕdµ = lim

δ→0
lim sup
n→∞

1

n
log sn(ϕ, δ, µ, α; g).

Note that sn(ϕ, δ, µ, α; g) ≤ Λspan
n (A+

k , ϕ, δ; g) ≤ Λsep
n (A+

k , ϕ, δ; g) ≤
Λsep
n (C, ϕ, δ; g). It follows that

hµ(g) +

∫
ϕdµ ≤ P (C, ϕ) = lim

δ→0
P (C, ϕ, δ).

The case where µ(A−) > 0 is similar: obtain A−k ⊂ A− such that
K(x) ≤ k for all x ∈ A−k and µ(A−k ) > 0. Then observe that for x ∈ A−k ,
we have (g−nx, n) ∈ C ′ for any n ≥ k. Moreover, (n, ε)-separated sets
for g are in one to one correspondence with (n, ε)-separated sets for

g−1, and Sg
−1

n ϕ(x) = Sgnϕ(g−n+1x). Then a simple argument shows
that P (A−k , ϕ, ε; g

−1) ≤ P (C ′, ϕ, ε; g).
Finally, Katok’s pressure formula applied to g−1 tells us that

hµ(g) +

∫
ϕdµ = lim

δ→0
lim sup
n→∞

1

n
log sn(ϕ, δ, µ, α; g−1).

Thus hµ(g)+
∫
ϕdµ ≤ limδ→0 P (A−k , ϕ, ε; g

−1) ≤ limδ→0 P (C ′, ϕ, δ). �
Now, to prove Theorem 3.4, by the hypothesis [E], if Γε(x) 6= {x},

then either there are only finitely many n so that 1
n
Sgnχ(x) ≥ r, or there

are only finitely many n so that 1
n
Sg
−1

n χ′(x) ≥ r. Thus, if x ∈ NE(ε),
then either x ∈ A+ or x ∈ A−. Thus, if µ is an ergodic measure
satisfying µ(NE(ε)) > 0; then at least one of A+ or A− has positive
µ-measure. Thus, Theorem 3.5 applies, and we conclude that

hµ(g) +

∫
ϕdµ ≤ P (C ∪ C ′, ϕ). �

3.6. Cone estimates and local product structure. Let F 1, F 2 ⊂
Rd be subspaces such that F 1 ∩ F 2 = {0} (we do not assume that
F 1 + F 2 = Rd). Let ](F 1, F 2) := min{](v, w) : v ∈ F 1, w ∈ F 2},
and consider the quantity κ̄(F 1, F 2) := (sin](F 1, F 2))−1 ≥ 1. Some
elementary trigonometry shows that

(3.8) ‖v‖ ≤ κ̄(F 1, F 2) for every v ∈ F 1 with d(v, F 2) ≤ 1,
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or equivalently,

(3.9) ‖v‖ ≤ κ̄(F 1, F 2)d(v, F 2) for every v ∈ F 1.

Given β ∈ (0, 1) and F 1, F 2 ⊂ Rd, the β-cone of F 1 and F 2 is

Cβ(F 1, F 2) = {v + w : v ∈ F 1, w ∈ F 2, ‖w‖ < β‖v‖}.
Lemma 3.6. Let W 1,W 2 be any foliations of F 1 ⊕ F 2 with C1 leaves
such that TxW

1(x) ⊂ Cβ(F 1, F 2) and TxW
2(x) ⊂ Cβ(F 2, F 1), and

let κ̄ = κ̄(F 1, F 2). Then for every x, y ∈ F 1 ⊕ F 2 the intersection
W 1(x) ∩W 2(y) consists of a single point z. Moreover,

max{dW 1(x, z), dW 2(y, z)} ≤ 1 + β

1− β κ̄d(x, y).

We will consider foliations on T4 whose lifts to R4 satisfy the hy-
potheses of Lemma 3.6. Uniqueness of the intersection point on T4

follows from restricting to sufficiently small local leaves. We also need
the following lemma, which compares the intrinsic distance along a leaf
with the distance induced from the metric on T4.

Lemma 3.7. Under the assumptions of Lemma 3.6, suppose that x, y
are points belonging to the same local leaf of W ∈ {W 1,W 2}. Then

d(x, y) ≤ dW (x, y) ≤ (1 + β)2d(x, y).

Lemmas 3.6 and 3.7 are proved in §8.

4. Bonatti-Viana construction and Main result

In [4], Bonatti and Viana defined a C1-open class of diffeomorphisms
by a list of 4 hypotheses, which ensure robust transitivity and the
existence of a dominated splitting into two bundles with no invariant
sub-bundles. They then gave an explicit construction of a family of
diffeomorphisms satisfying these 4 hypotheses, thus showing that the
Bonatti-Viana class is non-empty. We refer to this as the Bonatti-Viana
construction. The diffeomorphisms constucted this way, and their C1

perturbations are the object of our study. We recall the main points of
the construction, referring to [4] and [12] for full details. In [12], Buzzi
and Fisher added some refinements to the details of the construction,
allowing useful additional control which we shall assume in this paper.
Let A ∈ SL(4,Z) with four distinct real eigenvalues

0 < λ1 < λ2 < 1/3 < 3 < λ3 < λ4.

The Bonatti–Viana construction yields diffeomorphisms, which we de-
note by fBV , which are C0 small, but C1 large, deformations of fA.
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Recall that 3η is an expansivity constant for fA. At some points in
our analysis (see §6.1 and §6.4), we require that η is not too large so
that calculations at scales involving η are local. We fix 0 < ρ < 3η and
carry out a perturbation in ρ-neighbourhoods of q and q′. Around q
we will deform in the weak stable direction and around q′ in the weak
unstable direction. The third fixed point will be left unperturbed to
ensure robust transitivity.

Let F s, F u be the two-dimensional subspaces of Rd corresponding
to contracting and expanding eigenvalues of A, respectively. Let κ =
2κ̄(F s, F u), where κ̄ is as in (3.8).

Fixing ρ > 0, we consider the scales ρ′ = 5ρ and ρ′′ = 300κρ′. We
assume that ρ is sufficiently small that ρ′′ < 6η. The role of these scales
is as follows:

(1) The perturbation takes place in the balls B(q, ρ) and B(q′, ρ) –
outside of these balls the new map is identically equal to fA;

(2) The scale ρ′ is chosen so at this scale the center-stable (resp.
center-unstable) leaves are contracted by g (resp. g−1);

(3) The scale ρ′′ is the distance that points need to be away from
q and q′ to guarantee uniform contraction/expansion estimates
at a large enough scale to verify the hypotheses of Theorem 2.8.

A B

q r s t

C

u v t

Figure 1. Bonatti–Viana construction

The deformation around the points q and q′ is done in two steps,
illustrated in Figure 1. We describe the deformation around q. First,
we perform a deformation around q in the stable direction λ2 as follows.
Inside B(q, ρ), the fixed point q undergoes a pitchfork bifurcation in
the direction corresponding to λ2.

The stable index of q changes from 2 to 1 and two new fixed points q1

and q2 are created. The second step is to deform the diffeomorphism
in a neighborhood of q2 so that the contracting eigenvalues become
complex; see Figure 1.
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Note the creation of fixed points with different indices prevents the
topologically transitive map from being Anosov. These non-real eigen-
values also forbid the existence of a one-dimensional invariant sub-
bundle inside Ecs. So the resulting map f̂ has a splitting Ecs ⊕ Ecu.

To finish the construction take the deformation just made on fA
near q and repeat it so that the map is equal to f̂−1 in the neigh-
borhood of q′. We obtain a map fBV that is robustly transitive, not
partially hyperbolic, and has a dominated splitting TT4 = Ecs ⊕ Ecu

with dimEcs = dimEcu = 2 (see [4] for proofs of these facts).
We fix a small β and we can ensure in the construction that Ecs ⊂

Cβ/2(F s, F u) and Ecu ⊂ Cβ/2(F u, F s). To simplify computations, we
assume explicit upper bounds on β at a couple of points in the proof
(see e.g. proof of Lemma 6.3). We may assume that β < 1/3.

Let C = C(fA) be the constant provided by Lemma 3.1. Outside
B(q, ρ) ∪ B(q′, ρ), the maps fBV and fA are identical, and we can
carry out the construction so there exists a constant K so that both
fA(B(q, ρ)) ⊂ B(q,Kρ) and fBV (B(q, ρ)) ⊂ B(q,Kρ), and similarly
for q′. Thus the C0 distance between fBV and fA is at most Kρ. In
particular, by choosing ρ small, we can ensure that dC0(fBV , fA) < η/C.
This allows us to apply Lemma 3.2 to fBV , or to a perturbation of fBV .

We now consider diffeomorphisms g in a C1 neighborhood of fBV .
We recall results from [12] on integrability of foliations. We assume
that the construction of fBV is carried out so that the resulting defor-
mation respects the domination of fA. This property is defined in [12,
Definition 2.3], and verified for fBV in [12, §7]. This is a C1 robust
condition which, by Theorem 3.1 of [12], ensures integrability of the
dominated splitting. Thus, for g ∈ Diff(T4) sufficiently close to fBV ,
there are invariant foliations tangent to Ecs

g and Ecu
g respectively. Fur-

thermore, the argument of Lemma 6.1 and 6.2 of [4] shows that each
leaf of each foliation is dense in the torus. The existence of foliations
was not known when [4] was written, but these arguments apply with
only minor modification now that the existence result has been estab-
lished by [12]. Thus, we can consider a C1-neighborhood V of fBV such
that the following is true for every g ∈ V(fBV ):

• dC0(g, fA) < η/C;
• g has a dominated splitting TT4 = Ecs

g ⊕ Ecu
g , with dimEcs

g =
dimEcu

g = 2 and Ecs
g , E

cu
g contained in Cβ(F s, F u) and Cβ(F u, F s)

respectively;
• The distributions Ecs

g , Ecu
g integrate to foliations W cs

g , W cu
g .

• Each of the leaves W cs
g (x) and W cu

g (x) is dense for every x ∈ T4.
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Given g ∈ V , we define the quantities

λs(g) = sup{‖Dg|Ecs(x)‖ : x ∈ T4 \B(q, ρ)},
λu(g) = inf{‖Dg|−1

Ecu(x)‖−1 : x ∈ T4 \B(q′, ρ)},
λcs(g) = sup{‖Dg|Ecs(x)‖ : x ∈ T4},
λcu(g) = inf{‖Dg|−1

Ecu(x)‖−1 : x ∈ T4},
λ(g) = max{λcs(g), λcu(g)−1}.

Note that by the construction of fBV we have

λs(fBV ) < 1 < λcs(fBV ),

λcu(fBV ) < 1 < λu(fBV ),

and we can carry out the construction so that λ(fBV ) is arbitrarily close
to 1. By continuity, these inequalities hold for C1-perturbations of fBV .
We also have λs(g) and λu(g) arbitrarily close to the corresponding
values for fA. We let

(4.1) γ(g) = max

{
log λcs(g)

log λcs(g)− log λs(g)
,

log λcu(g)

log λcu(g)− log λu(g)
.

}
Note that γ(g) → 0 as λ(g) → 1 (as long as λs(g), λu(g) 6→ 1). A
simple calculation shows that for any r > γ, we have

λ1−r
cs λrs < 1,(4.2)

λ1−r
cu λru > 1,(4.3)

so that in particular, writing

(4.4) θr(g) = min(λ1−r
cs λrs, λ

−(1−r)
cu λ−ru ),

we have θr(g) < 1 for all r > γ(g). For notational convenience, we
write

(4.5) Q = B(q, ρ′′ + ρ) ∪B(q′, ρ′′ + ρ).

We now state the precise version of Theorem A.

Theorem 4.1. Given g ∈ V(fBV ) as above, let γ = γ(g), λ = λ(g).
Let ϕ : T4 → R be Hölder continuous, and set V = Var(ϕ, 300ρ′). Let

(4.6) Φ(ϕ; g) = 6 log λ+(1−γ) sup
Q
ϕ+γ(sup

T4

ϕ+logL+h)+H(2γ)+V.

If Φ(ϕ; g) < P (ϕ; g), then ϕ has a unique equilibrium state.

The C1-open set
⋃
fBV ∈Fλ,ρ V(fBV ) gives a large class of Bonatti-

Viana diffeomorphisms for which this theorem can be used to investi-
gate uniqueness of equilibrium states.
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5. Corollaries of Theorem 4.1

Before we prove Theorem 4.1, we show how to use it to obtain the
two corollaries mentioned in the introduction.

Corollary 5.1. Let V(fBV ) ⊂ Diff(T4) be as above, and suppose g ∈
V(fBV ) is such that for L = L(fA, η), h = htop(fA), γ = γ(g), and
λ = λ(g) we have

(5.1) 6 log λ+ γ(logL+ h) +H(2γ) < h.

Let V (ϕ) = Var(ϕ, 300ρ′) + Var(ϕ, η′), where η′ = C(fA)dC0(fA, g).
Then writing

D = h− 6 log λ− γ(logL+ h)−H(2γ) > 0,

every Hölder continuous potential ϕ with the bounded range hypothesis
supϕ− inf ϕ+V (ϕ) < D has a unique equilibrium state. In particular,
(5.1) is a sufficient criterion for g ∈ V(fBV ) to have a unique MME.

Proof. If supϕ− inf ϕ+ V (ϕ) < D , then

6 log λ+ (1− γ) sup
Q
ϕ+ γ(sup

T4

ϕ+ h+ logL) +H(2γ) + V

= (1− γ) sup
Q
ϕ+ γ(sup

T4

ϕ) + htop(fA) + V −D

≤ sup
T4

ϕ+ htop(fA) + V −D

< inf ϕ+ htop(fA)− Var(ϕ, η′)

≤ P (ϕ; fA)− Var(ϕ, η′) ≤ P (ϕ; g).

Thus Theorem 4.1 applies. �

Since V (ϕ) ≤ 2(supϕ − inf ϕ), we could remove the variance term
in our bounded range hypothesis by asking that 3(supϕ− inf ϕ) < D.

Corollary 5.2. Let ϕ : T4 → R be a Hölder continuous potential. In
any C0-neighborhood of fA, there exists a C1-open subset V0 ⊂ Diff(T4)
containing diffeomorphisms from the Bonatti–Viana family such that
for every g ∈ V0, g has a dominated splitting and is not partially hy-
perbolic and (T4, g, ϕ) has a unique equilibrium state.

Proof. A diffeomorphism fBV ∈ Fλ,ρ can be found in any C0 neigh-
bourhood of fA by taking ρ to be small. Let V = V(fBV ), and V0 be
the set of g ∈ V such that Φ(g;ϕ) < P (ϕ; g). Note that Φ(g;ϕ) is con-
tinuous under C1 perturbation of g, so V0 is C1-open. It only remains
to show that V0 is non-empty when ρ and log λ are sufficiently small.
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Let η′ = C(fA)dC0(g, fA). Recall from Lemma 3.2(i) that P (ϕ; g) ≥
P (ϕ; fA)− Var(ϕ, η′). Moreover, we have

(1− γ) sup
Q
ϕ ≤ max{ϕ(q), ϕ(q′)}+ Var(ϕ, 2ρ′′).

Thus to prove Φ(ϕ; g) < P (ϕ; g) it suffices to verify that

max{ϕ(q), ϕ(q′)}+6 log λ+γ(sup
T4

ϕ+h+logL)+H(γ)+V ′ < P (ϕ; fA),

where V ′ = V + Var(ϕ, 2ρ′′) + Var(ϕ, η′). The scales which appear in
the V ′ term all tend to 0 as ρ tends to 0. Given a hyperbolic toral
automorphism fA and a Hölder potential ϕ : T4 → R, it is well known
that ϕ has a unique equilibrium state with the Gibbs property. For
a fixed point p, the Dirac measure δp clearly does not have the Gibbs
property, so cannot be an equilibrium state for ϕ, and thus

ϕ(p) = hδp(fA) +

∫
ϕdδp < P (ϕ; fA).

Thus, max{ϕ(q), ϕ(q′)} < P (ϕ; fA). By choosing log λ and ρ small,
we can ensure that γ and V ′ are small enough so that the required
inequality holds. Thus, V0 is non-empty. �

6. Proof of the Main Result

We now build up a proof of our main result Theorem 4.1, which is
the more precise version of Theorem A.

6.1. Local product structure. We now establish local product struc-
ture at scale 6η for maps g ∈ V . The assumptions that allow us to do
this are that Eσ

g ⊂ Cσ
β for σ ∈ {cu, cs} and that β, η are not too large.

Lemma 6.1. Every g ∈ V has a local product structure for W cs
g ,W

cu
g

at scale 6η with constant κ = 2κ̄(F s, F u).

Proof. Let W̃ cs and W̃ cu be the lifts of W cs
g ,W

cu
g to R4. Given x, y ∈ T4

with ε := d(x, y) < 6η, let x̃, ỹ ∈ R4 be lifts of x, y with ε = d(x̃, ỹ) <

6η. By Lemma 3.6 the intersection W̃ cs(x)∩W̃ cu(y) has a unique point
z̃, which projects to z ∈ T4. Moreover, the leaf distances between x̃, z̃
and ỹ, z̃ are at most (1+β

1−β )κ̄(F s, F u)ε. Since β < 1
3

this is less than

2κ̄(F s, F u)ε, so z is in the intersection of the local leaves (W cs
g )κε(x)

and (W u
g )κε(x).

By choosing η not too large, we can ensure that 6ηκ is not too large

relative to the diameter of T4, so that the projection of W̃ cs
6ηκ(x) ∩

W̃ cu
6ηκ(y) coincides with W cs

6ηκ(x) ∩W cu
6ηκ(y). Thus, z is the only point

in this intersection. �
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6.2. Specification. We must control the size of local leaves ofW cs,W cu

under iteration, and the time to transition from one orbit to another.
We use the following fact, which we prove in §8.

Lemma 6.2. For every δ > 0 there is R > 0 such that for all x, y ∈ T4,
we have W cu

R (x) ∩W cs
δ (y) 6= ∅.

Although the leaves W cu(x) are not expanding at every point, and
the leavesW cs(x) are not contracting at every point, we nevertheless see
expansion and contraction if we look at a scale suitably large relative
to ρ. More precisely, consider the quantities θcs = 4

5
+ 1

5
λs(g) < 1 and

θcu = 4
5

+ 1
5
λu(g)−1 < 1. Let dcs and dcu be the metrics on the leaves

W cs and W cu. Then we have the following result.

Lemma 6.3. If x ∈ T4 and y ∈ W cs(x) are such that dcs(x, y) > ρ′,
then dcs(gx, gy) < θcsdcs(x, y). Similarly, if y ∈ W cu(x) and dcu(x, y) >
ρ′, then dcu(g

−1x, g−1y) < θcudcu(x, y).

Proof. We give the proof for W cs; the proof for W cu is analogous. Given
a path σ on T4, write `(σ) for the length of σ. Let σ be a path from x
to y in W cs(x) such that `(σ) = dcs(x, y). Decompose σ as the disjoint
union of paths σi where `(σi) ∈ [ρ′, 2ρ′]. Clearly it suffices to show that
`(gσi) < θcs`(σi) for each i. We may assume that β is chosen not too
large so that

(6.1) (1 + β)

(
λ(g)− λs(g)

1− λs(g)

)
< 2

We may assume that the path σi has at most one connected component
that intersects B(q, ρ), since ρ and `(σi) ≤ 2ρ′ are not large enough to
wrap around the torus. Let `1 be the length of this component; because
this component lies in W cs(x), which is contained in Cβ(F s, F u), we
have `1 ≤ 2ρ(1 + β). Let `2 = `(σi) − `1. Let v be a tangent vector
to the curve σ at the point p ∈ T4. If p ∈ B(q, ρ) then we have
‖Dg(v)‖ ≤ λ(g)‖v‖, while if p /∈ B(q, ρ) then ‖Dg(v)‖ ≤ λs(g)‖v‖.
Thus we obtain

`(gσi) ≤ λ`1 + λs`2 = (λ− λs)`1 + λs`(σi)

≤ (λ− λs)2ρ(1 + β) + λs`(σi) < 4(1− λs)ρ+ λs`(σi),

where the last inequality uses (6.1). Since ρ = 1
5
ρ′ ≤ 1

5
`(σi), this gives

`(gσi) <
4
5
(1− λs)`(σi) + λs`(σi) = θcs`(σi).

Summing over i gives dcs(gx, gy) ≤ `(gσ) < θcs`(σ) = θcsdcs(x, y). The
proof for dcu is similar. �

The following is an immediate consequence of Lemmas 6.3 and 6.2.
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Lemma 6.4. For every R > ρ′ and x ∈ T4, we have

g(W cs
R (x)) ⊂ W cs

θcsR(gx),

g−1(W cu
R (x)) ⊂ W cu

θ−1
cu R

(g−1x).

In particular, there is τ0 ∈ N such that for every x, y ∈ T4 we have

(6.2) gτ0(W cu
ρ′ (x)) ∩W cs

ρ′ (y) 6= ∅.
Let ρ′′ := 300κρ′, where κ = 2κ̄(F s, F u) is the constant arising in the

local product structure of W cs,W cu. Let χ be the indicator function of
T4 \B(q, ρ′′ + ρ) and χ′ be the indicator function of T4 \B(q′, ρ′′ + ρ).
The scale ρ′′+ρ is chosen to ensure uniform estimates on W cs

ρ′′ and W cu
ρ′′

for points with χ(x) = 1 and χ′(x) = 1.
From now on we fix r > γ(g), and consider the following collection

of orbit segments:

G = {(x, n) : 1
i
Siχ(x) ≥ r and 1

i
Siχ

′(fn−ix) ≥ r for all 0 ≤ i ≤ n}.
We will show that GM has specification at scale 3ρ′. To get a decom-
position we consider G together with the collections

P = {(x, n) ∈ T4 × N : 1
n
Snχ(x) < r},

S = {(x, n) ∈ T4 × N : 1
n
Snχ

′(x) < r}.

x gn(x)

∈ P
∈ Sgi(x)

gn−k(x)

⇓
∈ G

Sg
ℓχ ≥ ℓr

Sg
ℓχ < ℓr

Sg
ℓχ

′ ≥ ℓr

Sg
ℓχ

′ < ℓr

Figure 2. Decomposing an orbit segment

Lemma 6.5. The collections P ,G,S form a decomposition for g.

Proof. Let (x, n) ∈ X × N. Let 0 ≤ i ≤ n be the largest integer so
1
i
Siχ(x) < r, and 0 ≤ k ≤ n be the largest integer so 1

k
Skχ

′(gn−kx) < r.

A short calculation shows that 1
`
S`χ(gix) ≥ r for 0 ≤ ` ≤ n − i, and



24 V. CLIMENHAGA, T. FISHER, AND D. J. THOMPSON

1
`
S`χ

′(gn−k−`x) ≥ r for 0 ≤ ` ≤ n−k, see Figure 2. Thus, if we assume
that i+ k < n, letting j = n− (i+ k), we have

(x, i) ∈ P , (gix, j) ∈ G, (gi+jx, k) ∈ S.
If i+ k ≥ n, we can choose a decomposition with j = 0. �

Orbit segments in GM , which is the set of orbit segments (x, n) for
which p ≤M and s ≤M , satisfy the following.

Lemma 6.6. Let ν = λ/θr. For every M ∈ N0, (x, n) ∈ GM , and
0 ≤ i ≤ n, we have

(a) ‖Dgi|Ecs(y)‖ ≤ ν2Mθir for y ∈ Bn(x, ρ′′);
(b) ‖Dg−i|Ecu(gny)‖ ≤ ν2Mθir for y ∈ Bn(x, ρ′′);
(c) dcs(g

iy, giz) ≤ ν2Mθirdcs(y, z) when y ∈ Bn(x, ρ′) and z ∈ W cs
2ρ′(y);

(d) dcu(g
n−iy, gn−iz) ≤ ν2Mθirdcu(y, z) when y ∈ Bn(g−nx, ρ′) and

z ∈ W cu
2ρ′(y).

Proof. We prove (a). Given (x, n) ∈ GM and 0 ≤ i ≤ n, we have
Siχ(x) > ir− 2M , and so the orbit segment (x, i) spends greater than
ir− 2M iterates outsides B(q, 4ρ′), and thus (y, i) spends greater than
ir − 2M iterates outsides B(q, ρ). It follows that

‖Dgi|Ecs(y)‖ ≤ λi−(ir−2M)λir−2M
s

= λi(1−r)λirs λ
2Mλ−2M

s = (θr)
iν2M .

For (c), note that if y ∈ Bn(x, ρ′) and z′ ∈ W cs
2ρ′(y), then z′ ∈ Bn(x, 3ρ′).

Thus, the uniform derivative estimate of (a) applies to all points in
W cs

2ρ′(y), and it is an easy exercise to use this to obtain the statement
of (c). The proof of (b) is similar to (a), and (d) follows. �

We use the following facts for our result on the specification property:

• For any x ∈ T4 and n ∈ N, from Lemma 6.4 we have W cs
ρ′ (x) ⊂

Bn(x, ρ′) and g−n(W cu
ρ′ (gnx)) ⊂ Bn(x, ρ′);

• If (x, n) ∈ GM and y, z ∈ Bn(x, 3ρ′) and gnz ∈ W cu(gny), then
Lemma 6.6 (c) gives dn(y, z) ≤ ν2Mdcu(g

ny, gnz) and dcu(y, z) ≤
ν2Mθnr dcu(g

ny, gnz).

Given M , we take N = N(M) such that θNr ν
2Mλτ0 < 1

2
, where τ0 is

as in (6.2). Then we let GM≥N := {(x, n) ∈ GM | n ≥ N}.
Lemma 6.7. For every M , let N = N(M) be as above. Then GM≥N has
specification at scale 3ρ′.

Proof. Write τ = τ0, so that (6.2) gives gτ (W cu
ρ′ (x)) ∩W cs

ρ′ (y) 6= ∅ for

every x, y ∈ T4.
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For every (x, n) ∈ GM≥N and y, z ∈ g−(n+τ)(gτ (W cu
ρ′ (x))), our choice of

N gives

(6.3) d(y, z) < 1
2
d(gn+τy, gn+τz).

Now we show that GM≥N has specification with transition time τ . Given

any (x1, n1), . . . , (xk, nk) ∈ GM with ni ≥ N , we construct yj iteratively
such that (yj,mj) shadows (x1, n1), . . . , (xj, nj), where m1 = n1, m2 =

n1 + τ + n2, . . . , mk = (
∑k

i=1 ni) + (k − 1)τ . We also set m0 = −τ .
Start by letting y1 = x1, and we choose y2, . . . , yk iteratively so that

gm1y2 ∈ W cu
ρ′ (gm1y1) and gm1+τy2 ∈ W cs

ρ′ (x2)
gm2y3 ∈ W cu

ρ′ (gm2y2) and gm2+τy3 ∈ W cs
ρ′ (x3)

...
...

...
gmk−1yk ∈ W cu

ρ′ (gmk−1yk−1) and gmk−1+τyk ∈ W cs
ρ′ (xk).

That is, for j ∈ {1, . . . , k − 1}, we let yj+1 be a point such that

yj+1 ∈ g−mj(W cu
ρ′ (gmjyj)) ∩ g−(mj+τ)(W cs

ρ′ (xj+1)).

Using the fact that gmjyj+1 is in the centre-unstable manifold of gmjyj
together with the estimate (6.3), we obtain that

dnj(g
mj−1+τyj, g

mj−1+τyj+1) < ρ′

dnj−1
(gmj−2+τyj, g

mj−2+τyj+1) < ρ′/2
...

...
dn1(yj, yj+1) < ρ′/2j−1.

That is, dnj−i(g
mj−i−1+τyj, g

mj−i−1+τyj+1) < ρ′/2i for i ∈ {0, . . . , j− 1}.
This estimate, together with the fact that gmj+τ (yj+1) ∈ Bnj+1

(xj+1, ρ
′)

from Lemma 6.4 gives that dnj(g
mj−1+τyk, xj) < 2ρ′+

∑∞
j=1 2−jρ′ = 3ρ′.

It follows that

yk ∈
k⋂
j=1

g−(mj−1+τ)Bnj(xj, 3ρ
′),

and thus GM≥N has specification at scale 3ρ′. �

6.3. Bowen property. Let θr ∈ (0, 1) be the constant that was de-
fined at (4.4), and let κ be the constant associated with the local prod-
uct structure of Ecs

g ⊕ Ecu
g .

Lemma 6.8. Given (x, n) ∈ G and y ∈ Bn(x, 300ρ′), we have

(6.4) d(gkx, gky) ≤ κ600ρ′(θn−kr + θkr )

for every 0 ≤ k ≤ n.
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Proof. Using the local product structure at scale 300ρ′, there exists
z ∈ W cs

κ300ρ′(x)∩W cu
κ300ρ′(y) = W cs

ρ′′(x)∩W cu
ρ′′ (y). By Lemma 6.6, we get

d(gkz, gky) ≤ θn−kr d(gnz, gny) ≤ θn−kr κ300ρ′,

and d(gkx, gkz) ≤ θkrd(x, z) ≤ θkrκ300ρ′. The result follows. �

Lemma 6.9. Any Hölder continuous ϕ has the Bowen property on G
at scale 300ρ′.

Proof. By Hölder continuity, there are constants K > 0 and α ∈ (0, 1)
such that |ϕ(x) − ϕ(y)| ≤ Kd(x, y)α for all x, y ∈ Td. Now given
(x, n) ∈ G and y ∈ Bn(x, 300ρ′), Lemma 6.8 gives

|Snϕ(x)− Snϕ(y)| ≤ K

n−1∑
k=0

d(gkx, gky)α ≤ Kκ600ρ′
n−1∑
k=0

(θn−kr + θkr )
α

≤ 2αKκ600ρ′
∞∑
j=0

(θjαr + θjαr ) =: V <∞. �

6.4. Expansivity. We want to obtain a bound on h∗g, the tail entropy
of g. By results of [21], the tail entropy may be positive. We assume
that β is chosen not too large so that (1 + β)2 < 2.

Lemma 6.10. Let δ ∈ (0, 6η). Given n ∈ N, and x, z ∈ T4 such that
dn(x, z) < 6η, we have

(6.5) Λspan
n (W cu

6η (z) ∩Bn(x, 6η), 0, δ; g) ≤ 32(6η)2δ−2λ2n.

Proof. Write ε = 6η. First we prove that

W cu
ε (z) ∩Bk(x, ε) ⊂ g−(k−1)(W cu

4ε (gk−1z))

for k ∈ {1, . . . , n}. This follows by induction; it is true for k = 1, and
given the result for k ∈ {1, . . . , n− 1}, we see that any z′ ∈ W cu

ε (z) ∩
Bk+1(x, ε) has gk−1(z′) ∈ W cu

4ε (gk−1z) by the inductive hypothesis, and
so

gk(z′) ∈ W cu
4ε‖Dg‖(g

kz).

Also gk(z′) ∈ B(gkx, ε) ⊂ B(gkz, 2ε), where the last inclusion follows
because 4ε‖Dg‖ is not enough distance to wrap all the way around
the torus and enter B(gkx, ε) again. This is true because ε is assumed
to be not too large. This is the only requirement on ε in this proof.
Thus, by Lemma 3.7. gk(z′) ∈ W cu

2ε(1+β)2(g
kz) ⊂ W cu

4ε (gkz). Now fix

α = δ(1 + β)−1λ−n. Recall that W cu
4ε (gnz) is the graph of a function

from F cu to F cs with norm less than β. The projection of W cu
4ε (gnz)

to F cu along F cs is contained in a ball of radius 4ε, so B4ε(0) in F cu

has an α-dense subset in the dn-metric with cardinality less than or
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equal to 16ε2α−2. Projecting this set back to W cu
4ε (gnz) along F cu gives

E ⊂ W cu
4ε (gnz) that is (1 + β)α-dense.

Consider the set g−n(E) ⊂ W cu(z). Given any y ∈ W cu
ε (z) ∩

Bn(x, ε), we have gn(y) ∈ W cu
4ε (gnz) and so there is z′ ∈ E such that

dcu(g
ny, gnz′) < (1 + β)α. Since g−1 expands distances along W cu by

at most λ, we have dn(y, z′) < (1 + β)αλn. We see that g−n(E) is an
(n, δ)-spanning set for W cu

ε (z) ∩Bn(x, ε), and moreover

#g−n(E) ≤ 16ε2α−2 ≤ 16ε2δ−2(1 + β)2λ2n,

which gives (6.5) and completes the proof of Lemma 6.10. �

Lemma 6.11. For every g ∈ V we have h∗g(6η) ≤ 6 log λ.

Proof. Given x ∈ T4 and δ > 0, we estimate Λspan
n (Γ6η(x), 0, 2δ; g) for

n ∈ N. To do this, we start by fixing

(6.6) α = α(n) =
δ

κλn

where κ is from the local product structure. Let E ⊂ Γ6η(x) be an
α-dense set with cardinality

#E ≤ (12η/α)4 = (12η)4κ4λ4nδ−4;

note that such a set exists because Γ6η(x) is contained in x+[−6η, 6η]4.
Now we have W cu

κα(z) ⊂ W cu
6η (z) for each z ∈ E, so by Lemma 6.10,

there is an (n, δ)-spanning set Ez for W cu
κα(z) ∩Bn(x, 6η) with

#Ez ≤ 32(6η)2δ−2λ2n.

Let E ′ =
⋃
z∈E Ez, then we have

#E ′ ≤ 32(12η)6δ−6κ4λ6n.

We claim that E ′ is (n, 2δ)-spanning for Γ6η(x), which will complete
the proof of Lemma 6.11. To see this, take any y ∈ Γ6η(x), and observe
that because E is α-dense in B(x, 6η), there is z = z(y) ∈ E ∩B(y, α).
By the local product structure there is z̄ = z̄(y) ∈ W cs

κα(y) ∩W cu
κα(z).

Notice that because distance expansion along W cu is bounded above
by λ for each iteration of g, we have

(6.7) dn(y, z̄) < καλn = δ.

By our choice of Ez, there is z′ ∈ Ez such that dn(z′, z̄) < δ. Thus
dn(y, z′) < 2δ, as required. It follows that

Λspan
n (Γ6η(x), 0, 2δ; g) ≤ 32(12η)6δ−6κ4λ6n,

hence h∗g(6η) ≤ 6 log λ, which proves Lemma 6.11. �
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Lemma 6.12. For every r > γ(g) and ε = 300ρ′, the diffeomorphism
g satisfies Condition [E].

Proof. Suppose x ∈ T4, r > 0, and nk,mk →∞ are such that

(6.8) 1
nk
Sgnkχ(x) ≥ r, 1

mk
Sg
−1

mk
χ′(x) ≥ r

for every k. Our goal is to show that Γε(x) = {x}.
First we fix r′ ∈ (γ, r) and observe that by Pliss’ lemma [34] there

are m′k, n
′
k →∞ such that

(6.9)
Sgmχ

′(g−m
′
kx) ≥ mr′ for every 0 ≤ m ≤ m′k,

Sg
−1

n χ(gn
′
kx) ≥ nr′ for every 0 ≤ n ≤ n′k.

As in the proof of Lemma 6.6, for every y ∈ Bm′k
(g−m

′
kx, ρ′′) and z ∈

gn
′
kBn′k

(x, ρ′′), we now have

(6.10)
‖Dgm(y)|Ecs‖ ≤ θmr′ for every 0 ≤ m ≤ m′k,

‖Dg−n(z)|Ecu‖ ≤ θmr′ for every 0 ≤ n ≤ n′k,

where θr′ < 1 is as in (4.4).
Now let x′ ∈ Γε(x). By the local product structure, and ε being not

too large, there is a unique point x′′ ∈ W cu
κε (x) ∩W cs

κε(x
′). Applying g

we see that
g(x′′) ∈ W cs

κε‖Dg‖(gx) ∩W cu
κε‖Dg−1‖(gx

′).

But by the local product structure, W cs
κε‖Dg‖(gx) and W cu

κε‖Dg−1‖(gx
′)

have a unique intersection point if max{κε‖Dg‖, κε‖Dg−1‖} < 6η.
Thus g(x′′) is the unique intersection point, and since d(gx, gx′) ≤ ε, it
follows that g(x′′) ∈ W cs

κε(gx)∩W cu
κε (gx′). Iterating the above argument

gives for every n ∈ Z,

(6.11) gn(x′′) ∈ W cu
κε (gnx) ∩W cs

κε(g
nx′).

In particular, for each k ∈ N we can apply (6.10) with z a point along
the W cu-geodesic from gn

′
kx to gn

′
kx′′, and deduce that

dcu(x, x
′′) ≤ θ

n′k
r′ dcu(g

n′kx, gn
′
kx′′) ≤ θ

n′k
r′ κε.

Sending k → ∞ gives dcu(x, x
′′) = 0 and hence x′′ = x since x′′ ∈

W cu
κε (x). Now by (6.11) we have gnx ∈ W cs

κε(g
nx′) for all n ∈ Z, and for

each k ∈ N we can apply (6.10) with y a point along the W cs-geodesic
from g−m

′
kx to g−m

′
kx′, obtaining

dcs(x, x
′) ≤ θ

m′k
r′ dcs(g

−m′kx, g−m
′
kx′) ≤ θ

m′k
r′ κε.

Again, as k increases we get dcs(x, x
′) = 0 hence x′ = x, which com-

pletes the proof of Lemma 6.12. �
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6.5. Verification of Theorem 4.1. We now have all the ingredients
to show that if g ∈ V(fBV ) and ϕ : T4 → R satisfy the hypotheses
of Theorem 4.1, then the conditions of Theorem 2.8 are satisfied, and
hence there is a unique equilibrium state for (T4, g, ϕ).

We define the decomposition (P ,G,S) as in Lemma 4.4. In Lemma
6.7, we showed that GM has tail specification at scale 3ρ′, so condition
(1) of Theorem 2.8 holds. In Lemma 6.9, we showed that ϕ has the
Bowen property on G at scale 300ρ′, so condition (2) of Theorem 2.8
holds. We have P (P ∪ S, ϕ, 6η) = max{P (P , ϕ, 6η), P (S, ϕ, 6η)} and
both collections satisfy the hypotheses of Theorem 3.3, and thus we
have the upper bound

(1− r) sup
x∈Q

ϕ(x) + r(sup
x∈T4

ϕ(x) + h+ logL) +H(2r),

and r can be chosen arbitrarily close to γ. By Lemma 6.11, h∗g(6η) <
6 log λ, so by Theorem 3.3, P (P ∪ S, ϕ) is bounded above by

6 log λ+ (1− r) sup
x∈Q

ϕ(x) + r(sup
x∈T4

ϕ(x) + h+ logL) +H(2r).

Thus, the hypothesis of Theorem 4.1 gives that

P (P ∪ S, ϕ) + Var(ϕ, 300ρ′) < P (ϕ; g),

which verifies condition (3) of Theorem 2.8. Finally, by Theorem 3.4
and Lemma 6.12, we have P⊥exp(ϕ, 300ρ′) ≤ P (P ∪ S, ϕ) < P (ϕ; g).

Combining these ingredients, we see that under the conditions of
Theorem 4.1, all the hypotheses of Theorem 2.8 are satisfied for the
decomposition (P ,G,S). This completes the proof of Theorem 4.1.

7. SRB measures and proof of theorem B

An SRB measure for a C2 diffeomorphism f is an ergodic invariant
measure µ that is hyperbolic (non-zero Lyapunov exponents) and has
absolutely continuous conditional measures on unstable manifolds [1,
Chapter 13]. We assume that g is a C2 diffeomorphism in a C1 neigh-
borhood of a Bonatti–Viana diffeomorphism fBV ∈ Fλ,ρ with log λ and
ρ not too large. Explicit bounds required on the parameters for fBV
are given at (7.4).

7.1. Geometric potential. We call ϕgeo(x) := − log det(Dg|cu(x))
the geometric potential because we will see that it is the potential
function for which the SRB measure is a unique equilibrium state. It
is a folklore result that a C2 diffeomorphism with a dominated split-
ting has Hölder continuous distributions. However, to the best of our
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knowledge a proof has never appeared in the literature. For diffeomor-
phisms of surfaces, this result is given in [35]. The idea of proof for
the general result is to modify the Cr section theorem from Hirsch,
Pugh and Shub [22]. Before we were informed of the folklore result, we
worked out a direct proof that ϕgeo has the Bowen property on G, with-
out showing it is Hölder. That argument was included in a preprint
version of this paper1 but is now omitted since the folklore result makes
it unnecessary.

7.2. Non-negativity of pressure. We prove a general result on non-
negativity of pressure for the geometric potential associated to an in-
variant foliation. Let M be a compact Riemannian manifold and W be
a C0 foliation of M with C1 leaves. Suppose there is δ > 0 such that

(7.1) sup
x∈M

mW (x)(Wδ(x)) <∞,

where mW (x) denotes volume on the leaf W (x) with the induced metric.

Lemma 7.1. Let W be a foliation of M as above, with δ > 0 such
that (7.1) holds. Let f : M → M be a diffeomorphism and let ψ(x) =
− log | detDf(x)|TxW (x)|. Then P (ψ; f) ≥ 0.

Proof. Note that ψ is continuous because f is C1 and W is C0. Thus
for every ε > 0, there is δ > 0 such that d(x, y) < δ implies

(7.2) |ψ(x)− ψ(y)| < ε.

Decreasing δ if necessary, we can assume that (7.1) holds. Now for
every x ∈M and every y ∈ Bn(x, δ), we have

(7.3) | detDfn(y)|TyW (y)| ≥ e−εne−Snψ(x).

Writing BW
n (x, δ) for the connected component of W (x)∩Bn(x, δ) con-

taining x, we get

mW (fnx)(f
nBW

n (x, δ)) ≥ e−εne−Snψ(x)mW (x)B
W
n (x, δ).

Since fnBW
n (x, δ) ⊂ Wδ(f

nx), we write C for the quantity in (7.1) and
get mW (x)B

W
n (x, δ) ≤ CeεneSnψ(x) for every x, n.

Now let V be a local leaf of W . Given n ∈ N, let Zn be a maximal
(n, δ)-separated subset of V . Then V ⊂ ⋃x∈Zn B

W
n (x, δ), and so

mV (V ) ≤
∑
x∈Zn

mVB
W
n (x, δ) ≤

∑
x∈Zn

CeεneSnψ(x) ≤ CeεnΛsep
n (ψ, δ).

We conclude that P (ψ; f) ≥ P (ψ, δ; f) ≥ −ε, and since ε > 0 was
arbitrary this shows that P (ψ; f) ≥ 0. �

1Version 2 of arXiv:1505.06371
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We claim that Property (7.1) holds for the center-unstable foliation
W cu of g. Indeed, each local leaf Wδ(x) is the graph of a function
ψ : F u → F s with ‖Dψ‖ ≤ β, and writing W ′

δ(x) ⊂ F u for the projec-
tion of Wδ(x) to F u along F s, we see that

(1) Wδ(x) = (Id +ψ)(W ′
δ(x)),

(2) W ′
δ(x) is contained inside a ball of radius δ(1 + β) in F u, and

(3) mW (x)Wδ(x) ≤ (1 + ‖Dψ‖)mFuW
′
δ(x) ≤ (1 + β)π(δ(1 + β))2.

Thus, we conclude that P (ϕgeo; g) ≥ 0.

7.3. Negativity of Φ(ϕgeo; g). We show that Φ(ϕgeo; g) < 0 as long
as the parameters in the Bonatti–Viana construction are chosen small.

Observe that supx∈T4 ϕgeo(x) ≈ log λ − log λ4 and infx∈T4 ϕgeo(x) ≈
−(log λ3 + log λ4). More precisely, given ε > 0, we can choose g in a
sufficiently small C1 neighbourhood of fBV so that supx∈T4 ϕgeo(x) ≤
log λ− log λ4 + ε, and infx∈T4 ϕgeo(x) ≥ −(log λ3 + log λ4)− ε. Thus,

supϕgeo + Var(ϕgeo, 300ρ′) ≤ 2 supϕgeo − inf ϕgeo

≤ 2 log λ+ log λ3 − log λ4 + 2ε.

Thus, we have

Φ(ϕgeo; g) ≤ 6 log λ+ supϕgeo + γ(logL+ h) +H(γ) + V

≤ (log λ3 − log λ4) + 8 log λ+ γ(logL+ h) +H(γ) + 2ε,

where, since λ4 > λ3 > 1, the first term is a negative number, and
the other terms can be made small. Thus, Φ(ϕgeo; g) < 0. To be more
precise, if λ(fBV ) is chosen small enough so that

(7.4) 8 log λ+ γ(logL+ h) +H(γ) < log λ4 − log λ3,

then a sufficiently small C1 perturbation of fBV satisfies Φ(ϕgeo
g ; g) < 0.

Since Φ(ϕgeo; g) < 0 ≤ P (ϕgeo; g), we can apply Theorem A, and we
obtain that ϕgeo has a unique equilibrium state.

7.4. Proof that Φ(tϕgeo; g) < P (tϕgeo; g) for t ∈ [0, 1]. We show that
the pressure bound Φ(tϕgeo; g) < P (tϕgeo; g) for all t ∈ [0, 1] as long
as (7.4) holds. Since the equality is strict, it will persist for all t in
a neighborhood of [0, 1]. We give linear bounds for P (tϕgeo; g) and
Φ(tϕgeo; g). First observe that, by the variational principle,

P (tϕgeo; g) ≥ htop(g) + t inf ϕgeo

≥ htop(g)− t(log λ3 + log λ4 + ε)

Since there is a semi-conjugacy between g and fA, htop(g) ≥ htop(fA) =
log λ3 + log λ4. Thus, letting a1 = log λ3 + log λ4, and

l1(t) = a1 − t(a1 + ε),
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we have P (tϕgeo; g) ≥ l1(t) and l1(t) ≥ 0 whenever t ≤ a1
a1+ε

.

Now, for Φ(tϕgeo; g), the argument of §7.3 shows that

Φ(tϕgeo; g) ≤ t(log λ3 − log λ4 + 2ε) + 8 log λ+ γ(logL+ h) +H(γ).

Thus, letting a2 = log λ4− log λ3 and r = 8 log λ+γ(logL+h)+H(γ),
and

l2(t) = r − t(a2 − 2ε),

we have Φ(tϕgeo; g) ≤ l2(t), and the root of l2(t) is t∗ = r
a2−2ε

. Now
suppose that

(7.5)
r

a2 − 2ε
<

a1

a1 + ε
,

and that r < a1. This is clearly possible since r can be chosen small.
These criteria hold for ε small if (7.4) holds for λ = λ(fBV ). Since
l2(0) < l1(0) and l2(t∗) = 0 < l1(t∗), then for t ∈ [0, t∗],

Φ(tϕgeo; g) ≤ l2(t) < l1(t) ≤ P (tϕgeo).

For t ∈ (t∗, 1], we have Φ(tϕgeo; g) ≤ l2(t) < 0 ≤ P (ϕgeo) ≤ P (tϕgeo).
The last inequality holds because since supϕgeo < 0, the function t 7→
P (tϕgeo) is decreasing.

We conclude that Φ(tϕgeo; g) < P (tϕgeo; g) for all t ∈ [0, 1], and thus
there exists ε > 0 so Φ(tϕgeo; g) < P (tϕgeo; g) for all t ∈ [−ε, 1 + ε].
We apply Theorem A to these potentials, and we obtain uniqueness of
these equilibrium states, which proves (2) of Theorem B.

7.5. The formula P (ϕgeo; g) = 0 and µ1 as SRB measure. Given
a C2 diffeomorphism f on a d-dimensional manifold and µ ∈ Me(f),
let λ1 < · · · < λs be the Lyapunov exponents of µ, and let di be the
multiplicity of λi, so that di = dimEi, where for a Lyapunov regular
point x for µ we have

Ei(x) = {0} ∪ {v ∈ TxM : lim
n→±∞

1
n

log ‖Dfnx (v)‖ = λi} ⊂ TxM.

Let k = k(µ) = max{1 ≤ i ≤ s(µ) : λi ≤ 0}, and let λ+(µ) =∑
i>k di(µ)λi(µ) be the sum of the positive Lyapunov exponents, counted

with multiplicity.
The Margulis–Ruelle inequality [1, Theorem 10.2.1] gives hµ(f) ≤

λ+(µ), and it was shown by Ledrappier and Young [25] that equality
holds if and only if µ has absolutely continuous conditionals on unstable
manifolds. Thus, for any ergodic invariant measure µ, we have

(7.6) hµ(f)− λ+(µ) ≤ 0,
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with equality if and only if µ is absolutely continuous on unstable
manifolds. In conclusion, an ergodic measure µ is an SRB measure if
and only if it is hyperbolic and equality holds in (7.6).

In this section, we prove that P (ϕgeo; g) ≤ 0. Combining this with
Lemma 7.1 gives that P (ϕgeo; g) = 0. To show that the unique equi-
librium state µ for ϕgeo is SRB, we need to show that µ is hyperbolic
and λ+(µ) =

∫
ϕgeo dµ.

Lyapunov exponents for the diffeormorphism g. Let µ be ergodic, and
let λ1(µ) ≤ λ2(µ) ≤ λ3(µ) ≤ λ4(µ) be the Lyapunov exponents for
µ. Recall that Ecs ⊕ Ecu is Dg-invariant, so for every µ-regular x the
Oseledets decomposition is a sub-splitting of Ecs ⊕ Ecu.

Lemma 7.2. For an ergodic measure µ, then

(7.7)

∫
ϕgeo dµ ≥ −λ+(µ).

Proof. Because Ecs⊕Ecu is dominated, standard arguments show that∫
ϕgeo dµ = −λ3(µ)− λ4(µ). There are three cases.

(1) If µ has exactly two positive Lyapunov exponents (counted with
multiplicity), then

∫
ϕgeo dµ = −λ+(µ).

(2) If λ2(µ) ≥ 0, then
∫
ϕgeo dµ ≥ −λ2(µ) − λ3(µ) − λ4(µ) ≥

−λ+(µ).
(3) There is at most one positive Lyapunov exponent. In this case,
−λ3 ≥ 0, so

∫
ϕgeo dµ ≥ −λ4(µ) ≥ −λ+(µ). �

Let M∗ ⊂ Me(g) be the set of ergodic µ such that µ is hyperbolic
and has exactly two positive exponents, so λ2(µ) < 0 < λ3(µ).

Lemma 7.3. If µ ∈Me(g) \M∗, then

hµ(g)− λ+(µ) ≤ hµ(g) +

∫
ϕgeodµ ≤ Φ(ϕgeo; g)

Proof. The first inequality follows from Lemma 7.2, so our work is to
prove the second. Suppose that µ ∈ Me(g) \ M∗, and that either µ
belongs to Case (1) and is not hyperbolic, or belongs to Case (2) above.
Then there exists a set Z ⊂ M with µ(Z) = 1 so that for each z ∈ Z,
there exists v ∈ Ecs

z with limn→∞
1
n

log ‖Dgnz (v)‖ ≥ 0. Thus with r > γ,
we have z ∈ A+, where

A+ = {x : there exists K(x) so 1
n
Sgnχ(x) < r for all n > K(x)}.

To see this, suppose that z /∈ A+. Then there exists nk → ∞ with
1
nk
Sgnkχ(z) ≥ γ. By Lemma 6.6, this gives

‖Dgnkz (v)‖ ≤ ‖Dgnk |Ecs(z)‖ ≤ (θr)
nk ,
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and thus limnk→∞
1
nk

log ‖Dgnkz (v)‖ ≤ log θr < 0, which is a contradic-

tion. Thus, µ(A+) = 1. It follows that

hµ(g)− λ+(µ) ≤ hµ(g) +

∫
ϕgeo dµ ≤ P (C, ϕgeo) ≤ Φ(ϕgeo; g),

where the first inequality uses (7.7), the second uses Theorem 3.5, and
the third uses Theorem 3.3.

Now suppose µ belongs to case (3) above, and thus there is a non-
positive exponent associated to Ecu. An analogous argument shows
that µ(A−) > 0, where

A− = {x : there exists K(x) so 1
n
Sg
−1

n χ(x) < r for all n > K(x)}.
The key point is that there exists a set Z ⊂ M with µ(Z) = 1 so that
for each z ∈ Z, there exists v ∈ Ecu

z with

lim
n→−∞

1
n

log ‖Dg−nz (v)‖ ≥ 0.

It follows that z ∈ A−, because otherwise there exists nk → ∞ with
1
nk
Sg
−1

nk
χ(z) ≥ γ, and thus by lemma 6.6, we have

‖Dg−nkz (v)‖ ≤ ‖Dg−nk |Ecs(z)‖ ≤ (θr)
nk ,

and thus limnk→−∞
1
nk

log ‖Dg−nkz (v)‖ ≤ log θr < 0, which is a contra-

diction. Thus, µ(A−) = 1. Again, it follows that

hµ(g)− λ+(µ) ≤ hµ(g) +

∫
ϕgeo dµ ≤ P (C, ϕgeo) ≤ Φ(ϕgeo; g).

where the first inequality uses (7.7), the second uses Theorem 3.5, and
the third uses Theorem 3.3. �

Completing the proof. It follows from §7.3, Lemma 7.3 and Lemma 7.1
that any ergodic µ not in M∗ satisfies

hµ(g) +

∫
ϕgeo dµ ≤ Φ(ϕgeo) < 0 ≤ P (ϕgeo).

Thus, it follows from the variational principle that

(7.8) P (ϕgeo) = sup

{
hµ(g) +

∫
ϕgeo dµ : µ ∈M∗

}
.

Now, for every µ ∈M∗, we have
∫
ϕgeo dµ = −λ+(µ), and thus

(7.9) hµ(g) +

∫
ϕgeo dµ = hµ(g)− λ+(µ) ≤ 0.

It follows that P (ϕgeo) = sup
{
hµ(g) +

∫
ϕgeo dµ : µ ∈M∗

}
≤ 0. Hence,

P (ϕgeo) = 0. Since supϕgeo < 0, the function t 7→ P (tϕgeo) is a convex
strictly decreasing function from R→ R, and thus 0 is the unique root.
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To show that the unique equilibrium state µ is an SRB measure for
g, we observe that µ ∈ M∗ implies that µ is hyperbolic, and since
P (ϕgeo) = 0, (7.9) gives hµ(g)− λ+(µ) = 0, so µ is an SRB measure.

To see that there is no other SRB measure, we observe that if ν 6= µ
is any ergodic measure, then hν(g) − λ+(ν) ≤ hν(g) −

∫
ϕgeo dν <

P (ϕgeo) = 0 by (7.7) and the uniqueness of µ as an equilibrium measure.
This completes the proof of Theorem B.

8. Proofs of Lemmas

Proof of Lemma 2.1. It suffices to consider (n, δ)-separated sets of max-
imum cardinality in the supremum for the partition sum. Otherwise,
we could increase the partition sum by adding in another point. An
(n, δ)-separated set of maximum cardinality must be (n, δ)-spanning,
or else we could add in another point and still be (n, δ)-separated. The
first inequality follows.

For the second inequality, let En be any (n, 2δ)-separated set and Fn
any (n, δ)-spanning set. Define the map π : En → Fn by choosing for
each x ∈ En a point π(x) with the property that d(x, π(x)) ≤ δ. The
map π is injective. Thus, for any E which is (n, 2δ) separated,∑

y∈Fn
eSnϕ(y) ≥

∑
x∈En

eSnϕ(π(x)) ≥
∑
x∈En

eSnϕ(x)−nVar(ϕ,δ),

and thus
∑

y∈Fn e
Snϕ(y) ≥ e−nVar(ϕ,δ)Λsep

n (D, ϕ, 2δ). �

Proof of Lemma 2.2. It is shown in [6, Proposition 2.2] that given any
δ > 0 and α > h∗f (ε), there is a constant K such that

Λspan(Bn(x, ε), 0, δ; f) ≤ Keαn

for every x ∈ X and n ∈ N; that is, every Bowen ball Bn(x, ε) has
an (n, δ)-spanning subset Fx,n with cardinality at most Keαn. Let
En ⊂ Dn be a maximal (n, ε)-separated set. Then Gn =

⋃
x∈En Fx,n is

(n, δ)-spanning for Dn, and has∑
y∈Gn

eSnϕ(y) ≤
∑
x∈En

eSnϕ(x)enVar(ϕ,ε)Keαn.

We conclude that Λspan
n (D, ϕ, δ) ≤ Λsep

n (D, ϕ, ε)Ken(Var(ϕ,ε)+α). Then
the second inequality in Lemma 2.1 gives

Λsep
n (D, ϕ, 2δ) ≤ enVar(ϕ,δ)Λsep

n (D, ϕ, ε)Ken(Var(ϕ,ε)+α);

sending n → ∞ gives the first half of Lemma 2.2, and sending δ → 0
gives the second half. �
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Proof of Lemma 3.2. With η and C as in the statement of the lemma,
put α = η/C. By the Anosov shadowing lemma if {xn} is an α-pseudo
orbit for f , then there exists an f -orbit that η-shadows {xn}.

Now fix g ∈ Diff(M) with dC0(f, g) < α. Then every g-orbit is an
α-pseudo orbit for f , and hence for every x ∈M , we can find a unique
point π(x) ∈M such that

(8.1) d(fn(πx), gnx) < η for all n ∈ Z.
We prove (i). By expansivity of f , we have

(8.2) P (ϕ; f) = lim
n→∞

1

n
log Λspan

n (ϕ, 3η; f).

Let En be a (n, η)-spanning set for g. Then from (8.1) we see that
π(En) is (n, 3η)-spanning for f . It follows that

(8.3) Λspan
n (ϕ, 2η; f) ≤

∑
x∈π(En)

eS
f
nϕ(x) =

∑
x∈En

eS
f
nϕ(πx).

Note that Sfnϕ(πx) =
∑n−1

k=0 ϕ(fk(πx)) ≤ ∑n−1
k=0(ϕ(gkx) + Var(ϕ, η)),

and together with (8.2) and (8.3) this gives

P (ϕ; f) ≤ lim
n→∞

1

n
log

∑
x∈En

enVar(ϕ,η)+Sgnϕ(x).

Taking an infimum over all (n, η)-spanning sets for g gives

P (ϕ; f) ≤ Var(ϕ, η) + P (ϕ, η; g)

by the first inequality in Lemma 2.1. This completes the proof of (i)
since P (ϕ; g) ≥ P (ϕ, η; g).

Now we prove (ii). Let En be a maximal (n, 3η) separated set for g.
As in the previous argument, we see from (8.1) that π(En) is (n, η)-
separated for f : indeed, for every x, y ∈ En there is 0 ≤ k < n such
that d(gkx, gky) ≥ 3η, and hence

d(fk(πx), fk(πy)) ≥ d(gkx, gky)− d(gkx, fkπx)− d(gky, fkπy) > η.

In particular, we have

Λsep
n (ϕ, η; f) ≥

∑
x∈π(En)

eS
f
nϕ(x) =

∑
x∈En

eS
f
nϕ(πx)

≥
∑
x∈En

eS
g
nϕ(x)−nVar(φ,η) ≥ Λsep

n (ϕ, 3η; g)e−nVar(ϕ,η). �

Proof of Lemma 3.6. Given x, y ∈ F 1⊕F 2, let z′ be the unique point of
intersection of (x+F 1)∩(y+F 2). Translating the coordinate system so
that z′ becomes the origin, we assume w.l.o.g. that x ∈ F 1 and y ∈ F 2.
Then W 1(x) and W 2(y) are graphs of C1 functions φ1 : F 1 → F 2 and
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φ2 : F 2 → F 1 with ‖Dφi‖ < β. That is, W 1(x) = {a+φ1(a) : a ∈ F 1}
and W 2(y) = {φ2(b) + b : b ∈ F 2}. Thus z ∈ W 1 ∩W 2 if and only if
z = a + φ1(a) = φ2(b) + b for some a ∈ F 1 and b ∈ F 2. This occurs if
and only if b = φ1(a) and a = φ2(b); that is, if and only if a = φ2◦φ1(a)
and b = φ1(a). Because φ2 ◦φ1 is a contraction on the complete metric
space F 1 it has a unique fixed point a.

For the estimate on the distances from z to x, y we observe that

‖a‖ = d(a, 0) = d(φ2b, φ2y) ≤ βd(b, y) ≤ β(‖b‖+ ‖y‖),
‖b‖ = d(b, 0) = d(φ1a, φ1x) ≤ βd(a, x) ≤ β(‖a‖+ ‖x‖).

Recall that by the definition of κ̄ we have ‖x‖, ‖y‖ ≤ κ̄‖x− y‖. Thus
we have

‖a‖ ≤ β(β(‖a‖+ ‖x‖) + ‖y‖) ≤ β2‖a‖+ β(1 + β)κ̄d(x, y),

which gives ‖a‖ ≤ β
1−β κ̄d(x, y), and similarly for ‖b‖. Thus

d(a, x) ≤ ‖a‖+ ‖x‖ ≤
(

β

1− β + 1

)
κ̄d(x, y) =

κ̄d(x, y)

1− β .

To obtain the bound on dW 1(z, x), observe that there is a path γ from
a to x with length ≤ κ̄

1−βd(x, y); the image of γ under the map Id +φ1

connects z to x and has length ≤ 1+β
1−β κ̄d(x, y) since ‖ Id +φ1‖ ≤ 1 + β.

The other distance bound is similar. �

Proof of Lemma 3.7. That is, whenever x, y are on the same local leaf,
we have d(x, y) ≤ dW (x, y) ≤ (1 + β)2d(x, y) for W = W 1,W 2. In the
case W = W 1, the factor of (1 + β)2 comes from projecting y along F 2

to x + F 1, to get y′ which is at most (1 + β)d(x, y) from x. Let γ be
the geodesic along x + F 1 connecting x and y′. Take the image of γ
under the map x+ F 1 → W 1(x), whose norm is at most 1 + β. �

Proof of Lemma 6.2. We use the following general lemma.

Lemma 8.1. Let W be a foliation of a compact manifold M such that
W (x) is dense in M for every x ∈ M . Then for every α > 0 there is
R > 0 such that WR(x) is α-dense in M for every x ∈M .

Proof. Given R > 0, define a function ψR : M × M → [0,∞) by
ψR(x, y) = dist(y,WR(x)). Note that for each R, the map x 7→ WR(x)
is continuous (in the Hausdorff metric) and hence ψR is continuous.
Moreover, since W (x) =

⋃
R>0WR(x) is dense in M for each x ∈ M ,

we have limR→∞ ψR(x, y) = 0 for each x, y ∈M . Finally, when R ≥ R′

we see that WR(x) ⊃ WR′(x) and so ψR(x, y) ≤ ψR′(x, y). Thus
{ψR : R > 0} is a family of continuous functions that converge mono-
tonically to 0 pointwise. By compactness of M ×M , the convergence
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is uniform, hence for every α > 0 there is R such that ψR(x, y) < α for
all x, y ∈M . �

Now put δ = ρ′. By the local product structure for W cs,W u we can
put α = δ/κ and observe that if d(y, z) < α, then W u

δ (z)∩W cs
δ (y) 6= ∅.

By Lemma 8.1, there is R > 0 such that W u
R(x) is α-dense in Td for

every x ∈ Td. Thus for every x ∈ Td there is z ∈ W u
R(x) such that

d(y, z) < α, and thus W u
δ (z) ∩ W cs

δ (y) 6= ∅. The result follows by
observing that W u

R+δ(x) ⊃ W u
δ (z). �
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