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Abstract. We show that the families of robustly transitive dif-
feomorphisms of Mañé and Bonatti–Viana have unique equilibrium
states for natural classes of potentials. In particular, for any Hölder
continuous potential on the phase space of one of these families,
we construct a C1-open neighborhood of a diffeomorphism in that
family for which the potential has a unique equilibrium state. We
also characterize the SRB measures for these diffeomorphisms as
unique equilibrium states for a suitable geometric potential. These
results are an application of general machinery developed by the
first and last named authors, and are among the first results on
uniqueness of equilibrium states in the setting of diffeomorphisms
with partial hyperbolicity or dominated splittings.

1. Introduction

An equilibrium state for a diffeomorphism f : M →M and a poten-
tial ϕ : M → R is an invariant Borel probability measure that maxi-
mizes the quantity hµ(f)+

∫
ϕdµ. Results on existence and uniqueness

of equilibrium states have a long history [11, 31, 34, 14, 54, 23, 30, 40,
44, 45], and are one of the main goals in thermodynamic formalism. Re-
sults of this type are a powerful tool to understand the orbit structure
and global statistical properties of dynamical systems, and often lead
to further applications, including large deviations principles, central
limit theorems, and knowledge of dynamical zeta functions [43, 59].

The benchmark result of this type is that there is a unique equi-
librium state µ when (M, f) is uniformly hyperbolic, mixing, and ϕ
is Hölder continuous. Moreover, when ϕ is the geometric potential
ϕ(x) = − log | detDf |Eu(x)|, this unique equilibrium state is the SRB
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measure [11, 53]. Extending this type of result beyond uniform hy-
perbolicity is a major challenge in the field. The first and third au-
thors have developed techniques to establish existence and uniqueness
of equilibrium states in the presence of non-uniform versions of spec-
ification and expansivity [26], generalizing the classic work of Bowen
[10]. We apply these results to higher dimensional smooth systems
with weak forms of hyperbolicity, where alternative approaches based
on symbolic dynamics or transfer operators appear to meet with fun-
damental difficulties.

As test cases for our techniques, we focus on two classes of diffeo-
morphisms originally introduced by Mañé [39] and Bonatti–Viana [6].
These are well-studied classes of smooth systems which exhibit inter-
esting dynamical phenomena that do not arise in the Anosov setting.
Both families are C0 perturbations of hyperbolic toral automorphisms
with positive irrational simple eigenvalues; the Mañé family is con-
structed from a d-dimensional automorphism fA with a 1-dimensional
unstable bundle, while the Bonatti–Viana family is constructed from a
4-dimensional automorphism fB with a 2-dimensional unstable bundle.
The Mañé examples are partially hyperbolic, while the Bonatti–Viana
examples admit a dominated splitting, but are not partially hyperbolic.

Our main results are Theorem 4.1 for the Mañé family, and Theorem
6.1 for the Bonatti-Viana family. These results give a quantitative cri-
terion for existence and uniqueness of the equilibrium state involving
the topological pressure, the norm and variation of the potential, the
tail entropy of the system, and the C0 size of the perturbation from the
original Anosov map. All quantities under consideration vary continu-
ously under a C1 perturbation of the map. The following statements
follow from the more technical statements of Theorems 4.1 and 6.1.

Theorem A. Let fA be as above and let ϕ : Td → R be Hölder contin-
uous. Then in any C0-neighborhood of fA there exists a C1-open set
U ⊂ Diff(Td) which contains diffeomorphisms from the Mañé family of
examples, such that for every g ∈ U we have:

• g is partially hyperbolic and not Anosov;
• the system (Td, g, ϕ) has a unique equilibrium state.

Theorem B. Let fB be as above and let ϕ : T4 → R be Hölder con-
tinuous. Then in any C0 neighborhood of fB there is a C1-open set
V ⊂ Diff(T4) which contains diffeomorphisms from the Bonatti-Viana
family of examples, such that for every g ∈ V we have:

• g has a dominated splitting and is not partially hyperbolic;
• the system (T4, g, ϕ) has a unique equilibrium state.
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We can also fix a diffeomorphism g and obtain unique equilibrium
states for all Hölder continuous ϕ subject to a bounded range hypothe-
sis supϕ− inf ϕ < D for some D > 0. This result applies exactly when
our criterion guarantees the existence of a unique measure of maximal
entropy for g. Precise statements of this ‘bounded range’ theorem are
given as Theorem 4.2 and Theorem 6.2.

We can characterize the SRB measures for these families as equi-
librium states for a suitable geometric potential ϕgeo. For the Mañé
family, ϕgeo = − log Ju(x), and for the Bonatti–Viana family ϕgeo =
− log J cu(x), where Ju(x) and J cu(x) are the Jacobian determinants
in the unstable and center-unstable direction respectively, see §8 for
details. Our results on SRB meaures are given in Theorems 8.2 and
8.4, and follow from a quantitative criterion on the diffeomorphism and
the potential ϕgeo. An immediate consequence of these results is the
following statement.

Theorem C. In any C0-neighborhood of fA (resp. fB), there exists a
C1-open set U (resp. V) of C2 diffeomorphisms which is a neighborhood
of a Mañé (resp. Bonatti-Viana) example, such that for every g ∈ U∪V
the following are true.

• t = 1 is the unique root of the function t 7→ P (tϕgeo).
• There is an ε > 0 such that tϕgeo has a unique equilibrium state
µt for each t ∈ (−ε, 1 + ε).
• µ1 is the unique SRB measure for g.

In §9, we derive consequences of this result for the multifractal anal-
ysis of the largest Lyapunov exponent, and obtain a large deviations
result for many of the equilibrium states produced by our main theo-
rems. Our large deviations result is as follows.

Theorem D. Let µ be a unique equilibrium state provided by the con-
clusion of Theorem A, or by Theorem B with ϕ = 0, or by Theorem C
applied with g ∈ U . Then µ satisfies the upper inequality of the level-2
large deviations principle.

The upper level-2 large deviations principle includes the following
estimate on the rate of decay of the measure of points whose Cesàro
sums experience a ‘large deviation’ from the expected value:

(1.1) lim
n→∞

1

n
log µ

{
x :

∣∣∣∣ 1nSnϕ(x)−
∫
ϕdµ

∣∣∣∣ > ε

}
≤ −q(ε) < 0,

where ε > 0, ϕ is any potential, and q(ε) is a rate function, whose
precise value is given in (9.2). Our result is a consequence of a general
large deviations result of Pfister and Sullivan [48], and a weak upper



4 V. CLIMENHAGA, T. FISHER, AND D. J. THOMPSON

Gibbs property which is satisfied by our equilibrium states. See §9 for
more details. It is still an open question to establish this upper large
deviations bound for equilibrium states of the Bonatti–Viana examples
beyond the MME case, or to establish lower large deviations bounds
for either class of examples.

Techniques. Our results are proved constructively using general ma-
chinery developed by the first and last named authors [26]. The main
idea is to decompose the collection of orbit segments to obtain a ‘large’
collection of ‘good’ orbit segments on which the map has uniform ex-
pansion and contraction properties, leading to a non-uniform version
of the specification property and the Bowen property.

The diffeomorphisms we consider are not expansive. In particu-
lar, the Bonatti-Viana examples may not even be asymptotically h-
expansive, and thus may have positive tail entropy [17]. We handle
this by showing that any measure with large enough free energy is al-
most expansive (Definition 2.3), so the failure of expansivity does not
affect equilibrium states.

The analysis of the Bonatti-Viana family involves some serious diffi-
culties which are not present in the Mañé family. The key difference is
that the Mañé family, and its C1 perturbations, have uniform expansion
on the unstable distribution, and zero tail entropy; this considerably
simplifies our analysis in that setting. These fundamental differences
motivate why we choose these two families of examples to demonstrate
our techniques.

Future directions. The techniques introduced in this paper are ex-
pected to apply beyond the Mañé and Bonatti–Viana familes. For
instance, the Shub class of robustly transitive diffeomorphisms [33]
should follow from modifications of the arguments we present. Our
approach is based on exploiting the uniform expansion/contraction of
the system away from a finite collection of neighborhoods, and as such
is likely to be suitable in other settings beyond uniform hyperbolicity.

We anticipate that further results on statistical properties of the
equilibrium measures obtained here will be possible (see [27, 22] for
such results in the simpler symbolic setting). This is not pursued here
except for the upper large deviations statement of Theorem D.

Context of the results. In the partially hyperbolic setting, there
are some results on uniqueness of MME, i.e. equilibrium states for
ϕ ≡ 0. For ergodic toral automorphisms, the Haar measure was shown
to be the unique MME by Berg [4] using convolutions. Ures showed
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uniqueness of the MME for partially hyperbolic diffeomorphisms of the
3-torus homotopic to a hyperbolic automorphism [57].

For the Mañé and Bonatti-Viana examples, the existence of a unique
MME was obtained in [16, 17]. It was shown that a semi-conjugacy
π between these examples and the unperturbed toral automorphism
fL induces a measure theoretic isomorphism between ‘large entropy’
invariant measures for g and fL. The result then follows from the
uniqueness of the MME for the automorphism fL. For this approach to
generalize to equilibrium states, we would have to restrict to potentials
ϕ where ϕ◦π is a well-defined function with good regularity properties;
this would be a very strong assumption since we would need to know
that ϕ is constant on fibers of the semiconjugacy, and we do not expect
π to preserve Hölder continuity.

Equilibrium states for ϕ 6= 0 have been largely unexplored in the
partially hyperbolic setting. Existence of equilibrium states for par-
tially hyperbolic horseshoes was studied by Leplaideur, Oliveira, and
Rios [38], but they do not deal with uniqueness. Other recent refer-
ences which apply in higher dimensional settings include [18, 45, 19].
In particular, Pesin, Senti and Zhang [45] have used tower techniques
to develop thermodynamic formalism for the Katok map, which is a
non-uniformly hyperbolic DA map of the 2-torus.

The theory of SRB measures has received more attention. The fact
that there is a unique SRB measure for the examples we study follows
from [6, 1, 55], and the statistical properties of these measures is an
active area of research [2, 45]. The characterization of the SRB mea-
sure as a unique equilibrium state is completely novel in this setting;
immediate consequences include the upper large deviations principle of
Theorem D and the multifractal results of §9.2.

Structure of the paper. In §2, we give background material on ther-
modynamic formalism, specification and expansivity, and state the gen-
eral results from [26] which give the existence of a unique equilibrium
state (Theorems 2.8 and 2.9). In §3, we collect results on Anosov sys-
tems and their C0-perturbations, including a pressure estimate (Theo-
rem 3.3) that will allow us to verify the conditions of Theorems 2.8 and
2.9 in the settings of Theorems A–C. Details and results concerning
Mañé’s examples are given in §4, and proved in §5. Details and results
concerning the Bonatti–Viana examples are given in §6, and proved in
§7. Theorem C on SRB measures is proved in §8. The large deviations
and multifractal results are proved in §9. In §10, we prove the pressure
estimates from §3, and in §11 we prove various lemmas used earlier in
the paper.
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2. Background

In this section, we state definitions and results that we will need
throughout the paper. We begin with a review of facts from thermo-
dynamic formalism, and then state the general results we will use for
the existence and uniqueness of equilibrium states.

2.1. Pressure. Let X be a compact metric space and f : X → X be
a continuous map. Henceforth, we will identify X × N with the space
of finite orbit segments for a map f via the correspondence

(2.1) (x, n) ←→ (x, f(x), . . . , fn−1(x)).

Fix a continuous potential function ϕ : X → R. We write

Snϕ(x) = Sfnϕ(x) =
n−1∑
k=0

ϕ(fkx)

for the ergodic sum along an orbit segment, and given η > 0, we write

Var(ϕ, η) = sup{|ϕ(x)− ϕ(y)| : x, y ∈ X, d(x, y) < η}.
Given n ∈ N and x, y ∈ X, we write

dn(x, y) = max{d(fkx, fky) : 0 ≤ k < n}.
Given x ∈ X, ε > 0, and n ∈ N, the Bowen ball of order n with center
x and radius ε is

Bn(x, ε) = {y ∈ X : dn(x, y) < ε}.
We say that E ⊂ X is (n, ε)-separated if dn(x, y) ≥ ε for all x, y ∈ E.

We will need to consider the pressure of a collection of orbit segments.
More precisely, we interpret D ⊂ X × N as a collection of finite orbit
segments, and write Dn = {x ∈ X : (x, n) ∈ D} for the set of initial
points of orbits of length n in D. Then we consider the partition sum

Λsep
n (D, ϕ, ε; f) = sup

{∑
x∈E

eSnϕ(x) : E ⊂ Dn is (n, ε)-separated

}
.

When there is no confusion in the map we will sometimes omit the
dependence on f in the above notation and the notation below. We
will also sometimes require a partition sum Λspan

n defined with (n, ε)-
spanning sets. Given Y ⊂ X, n ∈ N, and δ > 0, we say that E ⊂ Y is
an (n, δ)-spanning set for Y if

⋃
x∈E Bn(x, δ) ⊃ Y . Write

Λspan
n (D, ϕ, δ; f) = inf

{∑
x∈E

eSnϕ(x) : E ⊂ Dn is (n, δ)-spanning

}
.
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We will use the following basic result relating Λsep
n and Λspan

n , which
is proved in §11.

Lemma 2.1. For any D ⊂ X × N, ϕ : X → R, and δ > 0, we have

Λspan
n (D, ϕ, δ) ≤ Λsep

n (D, ϕ, δ),
Λsep
n (D, ϕ, 2δ) ≤ enVar(ϕ,δ)Λspan

n (D, ϕ, δ).
The pressure of ϕ on D at scale ε is

P (D, ϕ, ε; f) = lim
n→∞

1

n
log Λsep

n (D, ϕ, ε),

and the pressure of ϕ on D is

P (D, ϕ; f) = lim
ε→0

P (D, ϕ, ε).

More precisely, this is the upper capacity topological pressure, and one
could also consider the lower capacity pressure, obtained by taking a
liminf. Then one would write P and P to distinguish the two. Since
lower pressure will play no role in this paper, we choose the more
streamlined notation and terminology. The above definition appears
in [20, §2.1] and is a non-stationary version of the usual notion of
upper capacity pressure [46]. For a set Z ⊂ X, we let P (Z, ϕ, ε; f) :=
P (Z×N, ϕ, ε; f), and thus P (Z, ϕ; f) denotes the usual upper capacity
pressure.

When ϕ = 0 the above definition gives the entropy of D:

(2.2) h(D, ε; f) = h(D, ε) := P (D, 0, ε) and h(D) = lim
ε→0

h(D, ε).

We sometimes write P (f, ϕ) for the topological pressure of the whole
space P (X,ϕ; f), particularly when we need to compare pressure for
two different maps f and g.

We letM(f) denote the set of f -invariant Borel probability measures
and Me(f) the set of ergodic f -invariant Borel probability measures.
The variational principal for pressure [58, Theorem 9.10] states that if
X is a compact metric space and f is continuous, then

P (f, ϕ) = sup
µ∈M(f)

{
hµ(f) +

∫
ϕdµ

}
= sup

µ∈Me(f)

{
hµ(f) +

∫
ϕdµ

}
.

A measure achieving the supremum is an equilibrium state, and these
are the objects whose existence and uniqueness we wish to study.

2.2. Expansivity and tail entropy. Given a homeomorphism f : X →
X and ε > 0, consider for each x ∈ X and ε > 0 the set

Γε(x) := {y ∈ X : d(fkx, fky) < ε for all n ∈ Z}
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is the (bi-infinite) Bowen ball of x of size ε. Note that f is expansive
if and only if there exists ε > 0 so that Γε(x) = {x} for all x ∈ X.

For systems that fail to be expansive, it is useful to consider the tail
entropy of f at scale ε > 0 is

(2.3) h∗f (ε) = sup
x∈X

lim
δ→0

lim sup
n→∞

Λspan
n (Γε(x)× N, 0, δ; f).

This quantity was introduced in [8]; equivalent definitions can also be
formulated using open covers [42].

The map f is entropy-expansive if h∗f (ε) = 0 for some ε > 0, and
is asymptotically h-expansive if h∗f (ε) → 0 as ε → 0. See [12, 15] for
connections between these notions and the theory of symbolic exten-
sions. An interesting result of [12] is that positive tail entropy rules
out the existence of a principal symbolic extension, and thus symbolic
dynamics fails in a strong way for such systems.

For our purposes, the key property of tail entropy is that given a
collection D ⊂ X×N, it allows us to control h(D, δ) in terms of h(D, ε)
for some 0 < δ < ε. The following is proved in §11.

Lemma 2.2. Given any D ⊂ X × N and 0 < δ < ε, we have

h(D, δ; f) ≤ h(D, ε; f) + h∗f (ε).

In particular, h(D; f) ≤ h(D, ε; f) + h∗f (ε).

2.3. Obstructions to expansivity, specification, and regularity.
It was shown by Bowen [10] that (X, f, ϕ) has a unique equilibrium
state whenever (X, f) has expansivity and specification, and ϕ has a
certain regularity property. We require the results from [26], which
give existence and uniqueness in the presence of ‘obstructions to spec-
ification and regularity’ and ‘obstructions to expansivity’. The idea is
that if these obstructions have smaller pressure than the whole system,
then existence and uniqueness holds.

2.3.1. Expansivity. In our examples, expansivity does not hold, so we
introduce a suitable measurement of the size of the non-expansive
points, introduced in [25, 26].

Definition 2.3. For f : X → X the set of non-expansive points at
scale ε is NE(ε) := {x ∈ X : Γε(x) 6= {x}}. An f -invariant measure
µ is almost expansive at scale ε if µ(NE(ε)) = 0. Given a potential ϕ,
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the pressure of obstructions to expansivity at scale ε is

P⊥exp(ϕ, ε) = sup
µ∈Me(f)

{
hµ(f) +

∫
ϕdµ : µ(NE(ε)) > 0

}
= sup

µ∈Me(f)

{
hµ(f) +

∫
ϕdµ : µ(NE(ε)) = 1

}
.

We define a scale-free quantity by

P⊥exp(ϕ) = lim
ε→0

P⊥exp(ϕ, ε).

2.3.2. Specification. The following specification property was introduced
in [25].

Definition 2.4. A collection of orbit segments G ⊂ X × N has speci-
fication at scale ε if there exists τ ∈ N such that for every {(xj, nj) :
0 ≤ j ≤ k} ⊂ G, there is a point x in

k⋂
j=0

f−(mj−1+τ)Bnj(xj, ε),

where m−1 = −τ and mj =
(∑j

i=0 ni

)
+ jτ for each j ≥ 0.

The above definition says that there is some point x whose trajectory
shadows each of the (xi, ni) in turn, taking a transition time of exactly
τ iterates between each one. The numbers mj for j ≥ 0 are the time
taken for x to shadow (x0, n0) up to (xj, nj).

It is sometimes convenient to consider collections G in which only
long orbit segments have specification, and this motivates the following
definition.

Definition 2.5. A collection of orbit segments G ⊂ X × N has tail
specification at scale ε if there exists N0 ∈ N so that the collection
G≥N0 := {(x, n) ∈ G | n ≥ N0} has specification at scale ε.

2.3.3. Regularity. We require a regularity condition for the potential ϕ
on the collection G, inspired by the Bowen condition [10], which was
introduced in [24, 26]

Definition 2.6. Given G ⊂ X×N, a potential ϕ has the Bowen prop-
erty on G at scale ε if

V (G, ϕ, ε) := sup{|Snϕ(x)− Snϕ(y)| : (x, n) ∈ G, y ∈ Bn(x, ε)} <∞.
We say ϕ has the Bowen property on G if there exists ε > 0 so that ϕ
has the Bowen property on G at scale ε.
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Note that if G has the Bowen property at scale ε, it has it for all
smaller scales. Thus, if ϕ has the Bowen property on G, it has it for
all sufficiently small scales.

2.4. General results on uniqueness of equilibrium states. The
tool we use to prove existence and uniqueness of equilibrium states and
are stated as Theorems B and D from [26], which generalizes results
from [24, 25].

We give two formulations of this abstract result. The first is a simpler
statement that is sufficient for the Mañé examples, and is a consequence
of the more complicated second statement. The more general formu-
lation is necessary for the application to the Bonatti-Viana examples.
The basic idea is to find a collection of orbit segments G ⊂ X ×N that
satisfies specification and the Bowen property, and that is sufficiently
large in an appropriate sense. To make this notion of largeness precise,
we need the following definition. We denote N0 = N ∪ {0}.
Definition 2.7. A decomposition for (X, f) consists of three collec-
tions P ,G,S ⊂ X × N0 and three functions p, g, s : X × N → N0 such
that for every (x, n) ∈ X × N, the values p = p(x, n), g = g(x, n), and
s = s(x, n) satisfy n = p+ g + s, and

(2.4) (x, p) ∈ P , (fp(x), g) ∈ G, (fp+g(x), s) ∈ S.
Given a decomposition (P ,G,S) and M ∈ N, we write GM for the set
of orbit segments (x, n) for which p ≤M and s ≤M .

Without loss of generality, we always assume X × {0} ⊂ P ∩ G ∩ S
to allow for ‘trivial’ decompositions. That is, an (x, n) which belongs
to one of the collections P ,G or S or transitions directly from P to
S can be assigned an obvious ‘trivial’ decomposition. We say that
S (respectively P) is trivial if we can take s(x, n) = 0 (respectively
p(x, n) = 0) for every (x, n) ∈ X × N.

The following version of our abstract result from [26] is suitable for
application to the Mañé examples.

Theorem 2.8. Let X be a compact metric space and f : X → X a
homeomorphism. Let ϕ : X → R be a continuous potential function.
Suppose that P⊥exp(ϕ) < P (ϕ), and that X ×N admits a decomposition
(P ,G,S) with the following properties:

(1) G has specification at any scale;
(2) ϕ has the Bowen property on G;
(3) P (P ∪ S, ϕ) < P (ϕ).

Then there is a unique equilibrium state for ϕ.
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For the Bonatti–Viana examples we need another version of our ab-
stract result from [26], where we work at a fixed scale instead of requir-
ing specification at all scales. The price we pay is that we must ask
for specification for each collection GM . Some extra complications as-
sociated with not being able to take a limit ε→ 0 enter the statement,
and we explain these after the result.

Theorem 2.9. Let X be a compact metric space and f : X → X a
homeomorphism. Let ϕ : X → R be a continuous potential function.
Suppose there exists ε > 0 such that P⊥exp(ϕ, 100ε) < P (ϕ) and X × N
admits a decomposition (P ,G,S) with the following properties:

(1) For each M ≥ 0, GM has tail specification at scale ε;
(2) ϕ has the Bowen property at scale 100ε on G;
(3) P (P ∪ S, ϕ, ε) + Var(ϕ, 100ε) < P (ϕ).

Then there is a unique equilibrium state for ϕ.

We make some comments on this formulation of the result:

(1) The transition time τ for specification for GM is allowed to
depend on M . Note that if G had specification at all scales,
then a simple argument based on modulus of continuity of f
shows that (1) is true for any ε. Thus, considering GM for all
M at a fixed scale in some sense stands in for controlling G at all
scales. The Bonatti-Viana example is a situation where we do
not expect to find G with specification at all scales, but where
specification for GM for all M at a fixed scale is verifiable.

(2) There are two scales present in the theorem: ε and 100ε. We
require specification at scale ε, while expansivity and the Bowen
property are controlled at the larger scale 100ε. There is noth-
ing fundamental about the constant 100, but it is essential that
expansivity and the Bowen property are controlled at a larger
scale than specification. This is because every time we use spec-
ification in our argument to estimate an orbit, we move distance
up to ε away from our original orbit, and we need to control
expansivity and regularity properties for orbits after multiple
applications of the specification property.

(3) The Var(ϕ, 100ε) term appears because we must control points
that are distance up to 100ε from a separated set for P ∪ S.
Clearly, this term vanishes if we are allowed to take ε arbitrarily
small, as in Theorem 2.8.
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3. Perturbations of Anosov Diffeomorphisms

In this section, we collect some more background material about
weak forms of hyperbolicity, and perturbations of Anosov diffeomor-
phisms. We also establish a pressure estimate for C0 perturbations of
Anosov diffeomorphisms that plays a key role in our results.

3.1. Weak forms of hyperbolicity. Let M be a compact manifold.
Recall that a diffeomorphism f : M → M is Anosov if there is a Df -
invariant splitting of the tangent bundle TM = Es⊕Eu such that Es is
uniformly contracting and Eu is uniformly expanding. (That is, there
exists ` ∈ N such that for all unit vectors v ∈ Es and w ∈ Eu, we have
‖Df `(v)‖ ≤ 1

2
and ‖Df `(w)‖ ≥ 2.)

We will study diffeomorphisms that are not Anosov but still possess
a weaker form of hyperbolicity called a dominated splitting.

A Df -invariant vector bundle E ⊆ TM has a dominated splitting if

E = E1 ⊕ · · · ⊕ Ek,
where each subbundle Ei is Df -invariant with constant dimension, and
there exists an integer ` ≥ 1 with the following property: for every
x ∈ M , all i = 1, . . . , (k − 1), and every pair of unit vectors u ∈
E1(x)⊕ · · · ⊕ Ei(x) and v ∈ Ei+1(x)⊕ · · · ⊕ Ek(x), it holds that

|Df `x(u)|
|Df `x(v)| ≤

1

2
.

(See for example [5, Appendix B, Section 1] for properties of systems
with a dominated splitting.)

A diffeomorphism f ∈ Diff1(M) is partially hyperbolic if there exists
a dominated splitting TM = Es ⊕ Ec ⊕ Eu where Es is uniformly
contracting, Eu is uniformly expanding, and at least one of Es and Eu

is non-trivial.
For f : M →M partially hyperbolic we know there exist f -invariant

foliations W s and W u tangent to Es and Eu respectively that we call
the stable and unstable foliations [47, Theorem 4.8]. There may or may
not be foliations tangent to either Ec, Es⊕Ec, or Ec⊕Eu. When such
exist we denote these by W c, W cs, and W cu and refer to these as the
center, center-stable, and center-unstable foliations respectively. For
x ∈ M we let W σ(x) be the leaf of the foliation σ ∈ {s, u, c, cs, cu}
containing x when this is defined. Given η > 0, we write W σ

η (x) for
the set of points in W σ(x) that can be connected to x via a path along
W σ(x) with length at most η.

Suppose W 1,W 2 are foliations of M with the property that TM =
TW 1 ⊕ TW 2. The standard notion of local product structure for
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W 1,W 2 says that for every x, y ∈ M that are close enough to each
other, the local leaves W u

loc(x) and W s
loc(y) intersect in exactly one

point. We give a slightly non-standard definition of local product struc-
ture which additionally keeps track of the scales involved. We say that
W 1,W 2 have a local product structure at scale η > 0 with constant
κ ≥ 1 if for every x, y ∈ M with ε := dW (x, y) < η, the leaves W 1

κε(x)
and W 2

κε(y) intersect in a single point.
We will consider splittings TM = Ecs ⊕ Ecu where Ecs and Ecu are

close to the stable and unstable distributions of an Anosov map f .
In §3.6, we give precise descriptions of the relevant constants for the
examples we study.

3.2. Constants associated to Anosov maps. In order to give a
precise description of the class of examples to which our methods ap-
ply, we need to recall some constants associated to an Anosov map f .
First, we will consider a constant C = C(f) arising from the Anosov
shadowing lemma [49, Theorem 1.2.3], [35].

Lemma 3.1 (Anosov Shadowing Lemma). Let f be an Anosov diffeo-
morphism. There exists C = C(f) so that if 2η > 0 is an expansivity
constant for f , then every η

C
-pseudo-orbit {xn} for f can be η-shadowed

by an orbit {yn} for f .

The other constant that will be important for us is a constant L =
L(f) associated with the Gibbs property for the measure of maximal
entropy for f . More precisely, let f : M →M be a topologically mixing
Anosov diffeomorphism, and let h = htop(f) be its topological entropy.
Recall that f is expansive and has the specification property [7]. For
any η > 0 that is smaller than the expansivity constant for f , Bowen
showed [10, Lemma 3] that there is a constant L = L(f, η) so that

(3.1) Λsep
n (X × N, 0, η; f) ≤ Lenh

for every n. The constant L can be determined explicitly in terms of
the transition time in the specification property.

3.3. Partition sums for C0 perturbations. Let f : M → M be
an Anosov diffeomorphism of a compact manifold. Using the Anosov
shadowing lemma, we show that there is a C0-neighborhood U of f
such that for every g ∈ U , there is a natural map from g to f given
by sending a point x to a point whose f -orbit shadows the g-orbit
of x. It is a folklore result that this map is a semi-conjugacy when
U is sufficiently small, and a version of this result is proved in [16,
Proposition 4.1]. This allows us to control the partition sums of g at
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large enough scales from above, and the pressure at all scales from
below.

Lemma 3.2. Let f be an Anosov diffeomorphism. Let C = C(f)
be the constant from the Anosov shadowing lemma, and 3η > 0 be an
expansivity constant for f . If g ∈ Diff(M) is such that dC0(f, g) < η/C,
then:

(i) P (g, ϕ) ≥ P (f, ϕ)− Var(ϕ, η);
(ii) Λsep

n (ϕ, 3η; g) ≤ Λsep
n (ϕ, η; f)enVar(ϕ,η).

It follows from (ii) that

(3.2) P (g, ϕ, 3η) ≤ P (f, ϕ) + Var(ϕ, η).

However, it may be that P (g, ϕ) is significantly greater than P (g, ϕ, 3η)
due to the appearance of entropy at smaller scales for g (note that g
need not be expansive, even though f is). Nonetheless, we can obtain
an upper bound on P (g, ϕ) which involves the tail entropy; Lemma
2.2 admits a simple generalization to pressure, yielding P (g, ϕ) ≤
P (g, ϕ, ε) +h∗g(ε) + Var(ϕ, ε). Together with (3.2) this gives the bound

(3.3) P (g, ϕ) ≤ P (f, ϕ) + h∗g(3η) + 2 Var(ϕ, 3η).

The pressure of g, and consequently the tail entropy term, can be
arbitrarily large for a C0 perturbation of f . For example, f can be
perturbed continuously in a neighborhood of a fixed point to create a
whole disc of fixed points, and then composed with a homeomorphism
of this disc that has arbitrarily large entropy.

3.4. Pressure estimates. The examples that we consider in §4-§6 are
obtained as C0-perturbations of Anosov maps, where the perturbation
is made inside a small neighborhood of a fixed point. Our strategy is
to apply the abstract uniqueness results of Theorems 2.8 and 2.9 by
taking G to be the set of orbit segments that consistently spend ‘enough’
time outside this neighborhood, while P ,S are orbit segments spending
nearly all their time near the fixed point (see §5 and §7 for details). In
this section we give an estimate on the pressure carried by such orbit
segments. First, we fix the following data.

• Let f : M → M be a transitive Anosov diffeomorphism of a
compact manifold, with topological entropy h = htop(f).
• Let q be a fixed point for f .
• Let 3η be an expansivity constant for f .
• Let C = C(f) be the constant from the shadowing lemma.
• Let L = L(f, η) be a constant so that (3.1) holds.

Now we choose g, C, and ϕ:
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• Let g : M →M be a diffeomorphism with dC0(f, g) < η/C.
• Let ρ < 3η.
• Let r > 0, and let C = C(q, r) = {(x, n) ∈ M × N : Sgnχ(x) <
nr}, where χq is the indicator function of M \B(q, ρ).
• Let ϕ be any continuous function.

The following pressure estimate on C is proved in §10.

Theorem 3.3. Under the assumptions above, we have

P (C, ϕ; g) ≤ h∗g(5η)+(1−r) sup
x∈B(q,ρ)

ϕ(x)+r(sup
x∈M

ϕ(x)+h+logL−log r).

In practice, we will take r small and consider maps g with h∗g(5η)
small, so that P (C, ϕ; g) is close to ϕ(q).

3.5. Obstructions to expansivity. In addition to the properties de-
scribed in the previous section, the examples we study in §4–§8 will
have the following expansivity property:

[E] there exist ε > 0, r > 0, and fixed points q, q′ such that for x ∈
X, if there exists a sequence nk →∞ with 1

nk
Sgnkχq(x) ≥ r, and

a sequence mk →∞ with 1
mk
Sg
−1

mk
χq′(x) ≥ r, then Γε(x) = {x}.

Let g be as in the previous section, and suppose ε > 0 and r > 0
are such that [E] holds. Then C = C(r) from above has the following
property, which is proved in §10.

Theorem 3.4. Under the above assumptions, we have the pressure
estimate P⊥exp(ϕ, ε) ≤ P (C(q, r) ∪ C(q′, r), ϕ).

For the classes of systems that we study, we will apply our gen-
eral uniqueness theorems by finding suitable decompositions (P ,G,S)
which satisfy P (P ∪S, ϕ) ≤ P (C, ϕ), in addition to the other hypothe-
ses of these theorems. Combined with Theorems 3.3 and 3.4, this will
allow us to get uniqueness under the condition that the quantity ap-
pearing in Theorem 3.3 is less than P (ϕ; g). This leads to the bounds
(4.4) and (6.8) in Theorems 4.1 and 6.1, respectively.

3.6. Cone estimates and local product structure. Let F 1, F 2 ⊂
Rd be subspaces such that F 1 ∩ F 2 = {0} (we do not assume that
F 1 + F 2 = Rd). Let ](F 1, F 2) := min{](v, w) : v ∈ F 1, w ∈ F 2},
and consider the quantity κ̄(F 1, F 2) := (sin](F 1, F 2))−1 ≥ 1. Some
elementary trigonometry shows that

(3.4) ‖v‖ ≤ κ̄(F 1, F 2) for every v ∈ F 1 with d(v, F 2) ≤ 1,

or equivalently,

(3.5) ‖v‖ ≤ κ̄(F 1, F 2)d(v, F 2) for every v ∈ F 1.
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The quantity κ̄ can also be characterized as the norm of the projection
from F 1 ⊕ F 2 onto F 1 along F 2, see Figure 1.

x

yz

F 1 + x
W 1(x)

F 2 + y

W 2(y)
d(x, y)

≤ κ̄d(x, y)

Figure 1. Local product structure estimates

Given β ∈ (0, 1) and F 1, F 2 ⊂ Rd, the β-cone of F 1 and F 2 is

Cβ(F 1, F 2) = {v + w : v ∈ F 1, w ∈ F 2, ‖w‖ < β‖v‖}.
Lemma 3.5. Let W 1,W 2 be any foliations of F 1 ⊕ F 2 with C1 leaves
such that TxW

1(x) ⊂ Cβ(F 1, F 2) and TxW
2(x) ⊂ Cβ(F 2, F 1), and

let κ̄ = κ̄(F 1, F 2). Then for every x, y ∈ F 1 ⊕ F 2 the intersection
W 1(x) ∩W 2(y) consists of a single point z. Moreover,

max{dW 1(x, z), dW 2(y, z)} ≤ 1 + β

1− β κ̄d(x, y).

We prove Lemma 3.5 in §11 following the standard proof of local
product structure. For the Mañé and Bonatti–Viana examples we will
consider foliations on Td whose lifts to Rd satisfy the hypotheses of
Lemma 3.5. Uniqueness of the intersection point on Td follows from
restricting to sufficiently small local leaves.

4. Results for Mañé’s examples

4.1. Mañé’s example. We now review the class of robustly transitive
diffeomorphisms originally considered by Mañé [39].

Fix d ≥ 3 and let A ∈ SL(d,Z) be a hyperbolic toral automorphism
with only one eigenvalue outside the unit circle and all eigenvalues real,
positive, simple, and irrational. Let λu be the unique eigenvalue greater
than 1 and λs be the largest of the other eigenvalues. Let fA be the
automorphism of Td determined by the matrix A, and let h = htop(fA)
be the topological entropy.



UNIQUE EQUILIBRIUM STATES 17

The Mañé class of examples are C0 perturbations of fA, and we de-
note them by f0. We describe how the perturbation is constructed,
taking care to control the size of the perturbation and to build in
necessary uniform control on how cone fields behave under this per-
turbation. Control on the cone fields is essential to ensure that local
product structure and tail entropy estimates apply at a scale which is
‘compatible’ with the C0 size of the perturbation in order to apply our
pressure estimates.

To this end, let F u, F c, F s ⊂ Rd be the eigenspaces corresponding
to (respectively) λu, λs, and all eigenvalues smaller than λs, and let
F cs = F c ⊕ F s.1 Let ωcs,u = ](F cs, F u) and ωc,s = ](F c, F s). Fix
η > 0 such that

5η is an expansivity constant for fA;(4.1)

η < 1
42

sin2 ωcs,u sinωc,s(max{‖A‖, ‖A−1‖})−1.(4.2)

Let q be a fixed point for fA, and fix 0 < ρ < 3η. We carry out a
perturbation in a ρ-neighbourhood of q. Let Fu,c,s be the foliations of
Td by leaves parallel to F u,c,s. The leaves of F s, F c, and Fu are dense
in Td since all eigenvalues are irrational. Let 0 < β < min(1

3
, sinωcs,u)

be such that (4.2) continues to hold when η is replaced by

η(1 + β)
(sinωcs,u) + β

(sinωcs,u)− β
,

and consider the cones

Cs
β = Cβ(F s, F cu), Cc

β = Cβ(F c, F s ⊕ F u),

Cu
β = Cβ(F u, F cs), Ccs

β = Cβ(F cs, F u).

Outside of B(q, ρ), we set f0 to be equal to fA. Inside B(q, ρ), the
fixed point q undergoes a pitchfork bifurcation in the direction of F c;
see [39] for details. The perturbation is carried out so that

• F c is still an invariant foliation for f0, and we write Ec = TF c;
• writing β′ = β sinωcs,u sinωc,s, the cones Cu

β and Cs
β′ are in-

variant and uniformly expanding under Df0 and Df−1
0 , respec-

tively; in particular, they contain Df0-invariant distributions
Es and Eu that integrate to f0-invariant foliations W s and W u.
• Ecs := Ec⊕Es integrates to a foliation W cs. This holds because
Es ⊂ Cs

β′ guarantees that Ecs ⊂ Ccs
β , see §5.1.

• dC0(fA, f0) < η.

1We use the notation F c for the eigenspace corresponding to λs because when
we perturb the map this will become a center direction that experiences both con-
traction and expansion.
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A B

q r s t

Figure 2. Mañé’s construction

Thus, f0 is partially hyperbolic with TTd = Es⊕Ec⊕Eu and both Es

and Ecu integrate to foliations. We will see in Lemma 5.3 that Td has
a local product structure at scale 5η for the foliations W u and W cs.

The index of q changes during the perturbation, and we may also
assume that for any point in Td \ B(q, ρ/2) the contraction in the
direction Ec is λs. Inside B(q, ρ/2), the perturbed map experiences
some weak expansion in the direction Ec, and two new fixed points are
created on W c(q), see Figure 2. Let λc = λc(f0) > 1 be the greatest
expansion which occurs in the center direction. We can carry out the
construction so that λc is arbitrarily close to 1.

The numbers ρ > 0 and λc > 1 are the two pieces of information
we require about the map f0. Outside B(q, ρ), the maps f0 and fA
are identical, and we can carry out the construction so there exists a
constant K so that both fA(B(q, ρ)) ⊂ B(q,Kρ) and f0(B(q, ρ)) ⊂
B(q,Kρ). Thus the C0 distance between f0 and fA is at most Kρ. In
particular, by choosing ρ small, we can ensure that dC0(f0, fA) < η/C
where C = C(fA) is the constant from the Shadowing Lemma. This
allows us to apply Lemma 3.2 to f0, or to a C1-perturbation of f0.

4.2. C1 perturbations of Mañé’s example. We now consider dif-
feomorphisms g in a C1 neighborhood of f0. Let U0 ⊂ Diff1(Td) be a
C1-neighborhood of f0 such that the following is true for every g ∈ U0.

• dC0(g, fA) < η/C, where C = C(fA) is the constant provided
by Lemma 3.1.
• g is partially hyperbolic with TTd = Es

g ⊕ Ec
g ⊕ Eu

g , where
Eσ
g ⊂ Cσ

β for each σ ∈ {s, c, u, cs}.
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• The distribution Ec
g integrates to a foliation W c

g .

• Each of the leaves W cs
g (x) and W u

g (x) is dense for every x ∈ Td.
• ‖Dg‖ ≤ 2‖A‖ and ‖Dg−1‖ ≤ 2‖A−1‖.

For the C1 perturbations, partial hyperbolicity (with Eσ
g ⊂ Cσ

β ) and
integrability are provided by [33, Theorem 6.1]; density of the leaves
was shown in [51]. In particular, the conditions above are satisfied on
a C1-neighborhood of f0, so U0 is non-empty.

Given g ∈ U0, consider the following two quantities:

λc(g) = sup{‖Dg|Ec(x)‖ : x ∈ B(q, ρ/2)},
λs(g) = sup{‖Dg|Ec(x)‖ : x ∈ X \B(q, ρ/2)}.

Note that λs(f0) < 1 < λc(f0), and these quantities vary continuously
as g varies via C1 perturbation. In particular, there is a C1-open
neighborhood of f0 on which λs(g) < 1 < λc(g). Consider the quantity

γ = γ(g) :=
lnλc(g)

lnλc(g)− lnλs(g)
> 0.

Note that γ(g)→ 0 as λc(g)→ 1 (as long as λs(g) 6→ 1), and a simple
calculation shows that for any r > γ,

(4.3) λc(g)1−rλs(g)r < 1.

Roughly, this implies uniform contraction in the center-stable direc-
tion along any orbit segment of length n that spends at least rn iter-
ates outside B(q, ρ/2) (see Lemma 5.5 for a precise formulation of this
statement).

Now we can state a precise condition on g and ϕ that guarantees
existence of a unique equilibrium state. As a reminder, the constant
L = L(fA, η) is the one given at (3.1).

Theorem 4.1. Given g ∈ U0 as above, let γ = γ(g), and let ϕ : Td → R
be Hölder continuous. If

(4.4) (1− γ) sup
x∈B(q,ρ)

ϕ(x) + γ(sup
x∈Td

ϕ(x) +h+ logL− log γ) < P (g, ϕ),

then ϕ has a unique equilibrium state with respect to g.

The ingredients required to prove Theorem 4.1 are established in the
next section, and the proof is completed in §5.5. First, we explain how
Theorem 4.1 implies Theorem A. Let U be the set of all diffeomor-
phisms g ∈ U0 such that (4.4) is satisfied. Note that all the quantities
in (4.4) vary continuously under C1 perturbations of g, so U is C1-open.
It only remains to show that U is non-empty, which we do by showing
that we can always find a Mañé example f0 ∈ U .
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Recall from Lemma 3.2(i) that P (g, ϕ) > P (fA, ϕ)−Var(ϕ, η). More-
over, we have

(1− γ) sup
x∈B(q,ρ)

ϕ(x) ≤ (1− γ)ϕ(q) + Var(ϕ, ρ).

Thus to prove (4.4) it suffices to verify that

(4.5) (1−γ)ϕ(q)+γ(sup
Td

ϕ+h+logL−log γ)+2 Var(ϕ, η) < P (fA, ϕ).

Thus, we show that f0 can be chosen so that (4.5) holds. Given a
hyperbolic toral automorphism fA and a Hölder potential ϕ : Td → R,
it follows from [10] that ϕ has a unique equilibrium state (with respect
to fA), which is positive on every open set. In particular, the Dirac
measure δq at the fixed point q is invariant but not an equilibrium state
for ϕ, so

ϕ(q) = hδq(fA) +

∫
ϕdδq < P (fA, ϕ).

We now choose η small enough so that

2 Var(ϕ, η) < P (ϕ, fA)− ϕ(q),

and γ̄ > 0 small enough so that

γ̄(sup
Td

ϕ− ϕ(q) + h+ logL− log γ̄) < P (ϕ, fA)− ϕ(q)− 2 Var(ϕ, η).

We now choose our Mañé example f0 with ρ small enough so that
d(f0, fA) < η/C, and λc close enough to 1 that γ(f0) < γ̄. Then (4.4)
holds for f0, and thus U is non-empty. This establishes Theorem A
from Theorem 4.1.

Another consequence of Theorem 4.1 is the following ‘bounded range’
theorem.

Theorem 4.2. Let U0 ⊂ Diff(Td) be as above, and suppose g ∈ U0 is
such that for L = L(fA, η), h = htop(fA), and γ = γ(g), we have

(4.6) γ(logL+ h− log γ) < h.

Then writing D = h−γ(logL+h− log γ) > 0, every Hölder continuous
potential ϕ with the bounded range hypothesis supϕ − inf ϕ < D has
a unique equilibrium state. In particular, (4.6) is a criterion for g to
have a unique measure of maximal entropy.
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Proof. If supϕ − inf ϕ < D := h − γ(logL + h − log γ), then we can
use (4.6) to verify (4.4), as follows:

(1− γ) sup
x∈B(q,ρ)

ϕ(x) + γ(sup
x∈Td

ϕ(x) + h+ logL− log γ)

= (1− γ) sup
B(q,ρ)

ϕ+ γ(sup
Td

ϕ) + htop(fA)−D

≤ sup
Td

ϕ+ htop(fA)−D

< inf ϕ+ htop(fA) ≤ P (fA, ϕ).

Thus Theorem 4.1 applies. �

5. Technique for Mañé’s examples

The strategy for proving Theorem 4.1 is as follows. We consider the
collection G of orbit segments (x, n) for which (x, i) spends at least γi
iterates outside of B(q, ρ) for all i ≤ n. These orbit segments experience
uniform contraction in the Ecs direction (this is made precise in Lemma
5.5). Using the local product structure (Lemma 5.3) this will allow us
to prove specification and the Bowen property for such orbit segments.
Then the estimate (4.4), together with Theorems 3.3 and 3.4, will let
us bound the pressure of obstructions to expansivity and specification
away from P (g, ϕ).

5.1. Local product structure. We require local product structure
for g at scale 5η repeatedly through this section. We establish this
here, beginning with some consequences of the bound (4.2). Let κ′ =
κ̄(F cs, F u) = (sinωcs,u)

−1 and κ′′ = κ̄(F c, F s) = (sinωc,s)
−1 (see (3.4))

and let κ = 2κ′. Let M = max{‖A‖, ‖A−1‖}, so (4.2) gives

(5.1) 21ηκκ′′κ′M < 1.

Note that M ≥ λu > 4 and so (5.1) implies

(5.2) 10ηκκ′′κ′ < 1
4
,

which we will use in the proof of Lemma 5.3. Moreover κ ≥ 2 and
κ′, κ′′ ≥ 1, so κκ′′κ′M ≥ 8, and (5.1) also gives the bound

20ηκκ′′κ′max(‖A‖, ‖A−1‖) + 5η ≤ 21ηκκ′′κ′M < 1,
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which we will use in the proof of Lemma 5.9. By the choice of β
following (4.2), we similarly have

10ηκ(1 + β)
1 + κ′β

1− κ′βκ
′′κ′ <

1

4
,(5.3)

20ηκ(1 + β)
1 + κ′β

1− κ′βκ
′′κ′max(‖A‖, ‖A−1‖) + 5η < 1,(5.4)

which will be used in the proofs of Lemmas 5.3 and 5.9. Since κ′′, κ′ ≥ 1
we have

(1 + β)
1 + κ′β

1− κ′βκ
′′κ′ ≥ 1.

In [39] it is shown that the leaves W cs exist for the maps we are con-
sidering. This will be used in the next lemma.

Lemma 5.1. With β′ = β sinωcs,u sinωc,s = β/(κ′′κ′) and Ec = F c,
Es ⊂ Cs

β′, we have Ecs ⊂ Ccs
β .

Proof. It suffices to show that v + w ∈ Ccs
β for every v ∈ Ec = F c and

w ∈ Cs
β′ . Let ws ∈ F s, wc ∈ F c, wu ∈ F u be such that w = ws+wc+wu,

then ‖wc + wu‖ < β′‖ws‖. From (3.5) we have

‖wu‖ ≤ κ̄(F cs, F u)d(wu, F
cs) ≤ κ′‖wu + wc‖,

‖ws‖ ≤ κ̄(F c, F s)d(ws, F
c) ≤ κ′′‖ws + wc + v‖,

and so

‖(v + w)u‖ = ‖wu‖ ≤ κ′‖wu + wc‖ ≤ κ′β′‖ws‖
≤ κ′β′κ′′‖ws + wc + v‖ = β‖(v + w)cs‖. �

For local product structure, we apply Lemma 3.5, together with the
following lemma, which is an elementary observation.

Lemma 5.2. Given ε > 0, let γ : [0, 1] → Td be a path such that
d(γ(0), γ(1)) < ε, and let γ̃ be a lifting of γ to Rd. If the length of γ is
less than 1− ε, then d(γ̃(0), γ̃(1)) < ε.

We now establish local product structure at scale 5η for maps g ∈ U0.
The key ingredients that allow us to do this are the assumptions that
Eσ
g ⊂ Cσ

β for each σ ∈ {s, c, u, cs} and the choice of β in §4.1.

Lemma 5.3. Every g ∈ U0 as in §4.2 has a local product structure for
W cs
g ,W

u
g at scale 5η with constant κ = 2κ′.

Proof. Let W̃ cs and W̃ u be the lifts of W cs
g ,W

u
g to Rd. Given x, y ∈ Td

with ε := d(x, y) < 5η, let x̃, ỹ ∈ Rd be lifts of x, y with ε = d(x̃, ỹ) <

5η. By Lemma 3.5 the intersection W̃ cs(x)∩ W̃ u(y) has a unique point
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z̃, which projects to z ∈ Td. Moreover, the leaf distances between x̃, z̃
and ỹ, z̃ are at most (1+β

1−β )κ′ε. Since β < 1
3

this is less than 2κ′d(x, y),

so z is in the intersection of the local leaves (W cs
g )κε(x) and (W u

g )κε(x).
It remains to show that z is the only point in this intersection. Sup-

pose z′ is any other point in (W cs
g )κε(x)∩(W u

g )κε(y), and let γ : [0, 1]→
Td be any path that goes from z to z′ inside W cs

g (x), and then returns

to z inside W u
g (y). Lifting γ to a path γ̃ in Rd we see that γ̃(0) 6= γ̃(1)

(otherwise W̃ cs(z̃) ∩ W̃ u(z̃) would have more than one point where z̃
is the lift of z), and so by Lemma 5.2, γ must have length at least 1.
Since this is true for any such γ, we have dW cs

g
(z, z′) + dWu

g
(z, z′) ≥ 1.

Thus one of the terms is at least 1
2
. If dW cs

g
(z, z′) ≥ 1

2
, then (5.2) gives

10ηκ ≤ 1
2
≤ dW cs

g
(z, z′) ≤ dW cs

g
(z′, x) + dW cs

g
(z, x) ≤ dW cs

g
(z′, x) + 5ηκ,

hence dW cs
g

(z′, x) ≥ 5ηκ. The case dWu
g

(z, z′) yields dWu
g

(z′, y) ≥ 5ηκ
by a similar argument. �

5.2. Specification. We produce a decomposition (P ,G,S) such that
G has specification. The main tool for establishing specification for
mixing locally maximal hyperbolic sets f : Λ → Λ is that given δ > 0
there is some N ∈ N such that for x, y ∈ Λ and n ≥ N we have
fn(W u

δ (x))∩W s
δ (y) 6= ∅. We want to mimic the idea replacing the stable

and unstable manifolds with centerstable and unstable manifolds.
From now on we fix g ∈ U0 and write W σ = W σ

g for σ = s, c, cs, u.

Recall that all leaves of W u are dense in Td by the definition of U0.
This can be made uniform by the following lemma, which is proved in
§11 and relies on the local product structure from Lemma 5.3.

Lemma 5.4. For every δ > 0 there is R > 0 such that for every
x, y ∈ Td, we have W u

R(x) ∩W cs
δ (y) 6= ∅.

Because g is uniformly expanding along W u, we see that for every
δ > 0 there is N ∈ N such that for every x ∈ Td and n ≥ N , we have
gn(W u

δ (x)) ⊃ W u
R(gnx). Thus by Lemma 5.4 we have

(5.5) gn(W u
δ (x)) ∩W cs

δ (y) 6= ∅ for every x, y ∈ Td.

We now prove a lemma about contraction along W cs for orbits which
spend a uniform proportion of time away from the fixed point q. Let
χ be the indicator function of Td \B(q, ρ), so

1

i
Siχ(x) =

1

i
Sgi χ(x) =

1

i

i−1∑
j=0

χ(gj(x))
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is the proportion of time that an orbit segment (x, i) spends outside
B(q, ρ). Recall that

γ = γ(g) =
lnλc(g)

lnλc(g)− lnλs(g)
.

Let r > γ and let θr = λc(g)1−rλs(g)r. By (4.3) we have θr < 1.

Lemma 5.5. Suppose (x, n) ∈ Td×N is such that 1
i
Sgi χ(x) ≥ r for all

0 ≤ i ≤ n, where r is as above.

(a) For any y ∈ Bn(x, ρ/2), we have ‖Dgi|Ecs(y)‖ < (θr)
i for all

0 ≤ i ≤ n.
(b) For any y, z ∈ W cs

ρ/2(x), we have d(f iy, f iz) ≤ θird(y, z) for all
0 ≤ i ≤ n.

(c) For 0 < δ < ρ/2, we have W cs
δ (x) ⊂ Bn(x, δ).

Proof. Given 0 ≤ i ≤ n, the inequality 1
i
Sgi χ(x) > r implies that the

orbit segment (x, i) spends at least ir iterates outside of B(q, ρ). It
follows that (y, i) spends at least ir iterates outside of B(q, ρ/2). By
the definition of λc(g) and λs(g), it follows that

‖Dgi|Ecs(y)‖ ≤ λi−irc λirs = (θr)
i.

This proves the first claim. It is an easy exercise to prove (b) using the
uniform contraction estimate provided by (a), and (c) follows immedi-
ately from (b). �

Now we define the decomposition. Given g ∈ U0, let γ = γ(g) as
above. Because the left-hand side of (4.4) varies continuously in γ, we
can choose r > γ such that (4.4) continues to hold with r in place of
γ. Fixing this value of r, we consider the following collections of orbit
segments:

(5.6)
G = {(x, n) ∈ Td × N : Sgi χ(x) ≥ ir ∀ 0 ≤ i ≤ n},
P = {(x, n) ∈ Td × N : Sgnχ(x) < nr}.

The collection G is chosen so that the centerstable manifolds are
uniformly contracted along orbit segments from G. These collections,
together with a trivial collection for S, define a decomposition of any
point (x, n) ∈ X×N as follows: let p be the largest integer in {0, ..., n}
such that 1

p
Spχ(x) < r; then (x, p) ∈ P and a short calculation shows

that (gp(x), n− p) ∈ G. This last statement follows from the fact that
if 1

k
Skχ(gpx) < r for some 0 ≤ k ≤ n− p, then

1

p+ k
Sp+kχ(x) =

1

p+ k
(Spχ(x) + Skχ(gp(x))) < r,

contradicting the maximality of p.
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The reason that we can take a trivial collection for S is that for the
Mañé examples, lack of uniform hyperbolicity is only manifested in the
stable direction, and this is handled by the collection P . In the Bonatti-
Viana examples, we will require non-trivial collections P to handle
non-uniform contraction, and S to handle non-uniform expansion.

x0 fn0x0
x1 fn1x1

x2 fn2x2
x3 fn3x3

y1

y2

y3

< δ

< 1
2
δ

< 1
4
δ

< δ

< δ

< 1
2
δ

< δ

< δ

< δ

Figure 3. Specification for G

Lemma 5.6. The collection G has specification at any scale δ > 0.

Proof. For an arbitrary fixed δ > 0, we prove specification at scale 3δ.
The key property that allows us to transition from one orbit to another
is (5.5). This property, together with uniform expansion on W u, allows
us to choose τ = τ(δ) ∈ N such that

(5.7)
gτ (W u

δ (x)) ∩W sc
δ (y) 6= ∅ for all x, y ∈ Td,

d(g−τy, g−τz) <
1

2
d(y, z) for all x ∈ Td and y, z ∈ W u

δ (x).

Now we show that G has specification with gluing time τ . Given any
(x0, n0), . . . , (xk, nk) ∈ G, we construct yj iteratively such that (yj,mj)
shadows (x0, n0), . . . , (xj, nj), where m0 = n0, m1 = n0 + τ + n1, . . . ,

mk = (
∑k

i=0 ni) + kτ . We also set m−1 = −τ , see Figure 3.
Start by letting y0 = x0, and we choose y1, . . . , yk iteratively so that

gm0y1 ∈ W u
δ (gm0y0) and gm0+τy1 ∈ W cs

δ (x1)
gm1y2 ∈ W u

δ (gm1y1) and gm1+τy2 ∈ W cs
δ (x2)

...
...

...
gmk−1yk ∈ W u

δ (gmk−1yk−1) and gmk−1+τyk ∈ W cs
δ (xk).

That is, for j ∈ {0, . . . , k − 1}, we let yj+1 be a point such that

yj+1 ∈ g−mj(W u
δ (gmjyj)) ∩ g−(mj+τ)(W cs

δ (xj+1)).
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Using the fact that gmjyj+1 is in the unstable manifold of gmjyj, and
the fact that the distance is contracted by 1

2
every time the orbit passes

backwards through a ‘transition’, we obtain that

dnj(g
mj−1+τyj, g

mj−1+τyj+1) < δ
dnj−1

(gmj−2+τyj, g
mj−2+τyj+1) < δ/2

...
...

dn0(yj, yj+1) < δ/2j.

That is, dnj−i(g
mj−i−1+τyj, g

mj−i−1+τyj+1) < δ/2i for each i ∈ {0, . . . , j}.
This estimate, together with the fact that gmj+τ (yj+1) ∈ Bnj+1

(xj+1, δ)
from Lemma 5.5 gives that dnj(g

mj−1+τyk, xj) < 2δ +
∑∞

j=1 2−jδ = 3δ.
It follows that

yk ∈
k⋂
j=0

g−(mj−1+τ)Bnj(xj, 3δ),

and thus G has specification at scale 3δ. �

5.3. Verifying the Bowen property. Let θu ∈ (0, 1) be such that
‖Dg|−1

Eu(x)‖ ≤ θu for all x ∈ Td. Let θr ∈ (0, 1) be the constant that

appears in the previous subsection, and let κ be the constant associated
with the local product structure of Ecs

g ⊕ Eu
g (see §3.1 and §5.1). Let

ε = ρ/(2κ).

Lemma 5.7. Given (x, n) ∈ G and y ∈ Bn(x, ε), we have

(5.8) d(gkx, gky) ≤ κε(θkr + θn−ku )

for every 0 ≤ k ≤ n.

Proof. Using the local product structure, there exists z ∈ W cs
κε(x) ∩

W u
κε(y). Since g−1 is uniformly contracting on W u, we get

d(gkz, gky) ≤ θn−ku d(gnz, gny) ≤ θn−ku κε,

and Lemma 5.5 gives

d(gkx, gkz) ≤ θkrd(x, z) ≤ θkrκε.

The triangle inequality gives (5.8). �

Lemma 5.8. Any Hölder continuous ϕ has the Bowen property on G
at scale ε.

Proof. By Hölder continuity there are constants K > 0 and α ∈ (0, 1)
such that |ϕ(x) − ϕ(y)| ≤ Kd(x, y)α for all x, y ∈ Td. Now given
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(x, n) ∈ G and y ∈ Bn(x, ε), Lemma 5.7 gives

|Snϕ(x)− Snϕ(y)| ≤ K
n−1∑
k=0

d(gkx, gky)α ≤ Kκε
n−1∑
k=0

(θn−ku + θkr )
α

≤ Kκε
∞∑
j=0

(θjαu + θjαr ) =: V <∞. �

5.4. Expansivity. We study the expansivity properties of g ∈ U0.
Every such g is partially hyperbolic with one-dimensional center bun-
dle, and thus [29, Proposition 6] tells us that g is entropy expansive;
that is, h∗g(α) = 0 for sufficiently small α > 0. We need to know that
h∗g(5η) = 0, where 5η is the scale of the local product structure for g.
It is not immediate from the statement of [29, Proposition 6] that we
can take α = 5η, so we use similar ideas to give a self-contained proof.
The main idea is to show that Γ5η(x) is contained in a single center
leaf for any x.

Lemma 5.9. For all x ∈ Td, Γ5η(x) is contained in a compact subset
of W c

g (x).

Proof. Given x ∈ Td, let y ∈ Γ5η(x), so that d(gny, gnx) < 5η for all
n ∈ Z. By Lemma 5.3, there is z ∈ W cs

5ηκ(x) ∩W u
5ηκ(y). Applying g we

see that

g(z) ∈ W cs
10ηκ‖A‖(gx) ∩W u

10ηκ‖A‖(gy).

Let γ be a path that follows W cs from gx to gz and then follows W u

from gz to gy, such that the length of γ is at most 20ηκ‖A‖. Then
d(γ(0), γ(1)) < 5η, and since

20ηκ‖A‖ < 1− 5η

by (5.4), Lemma 5.2 implies that the lift of γ to Rd also has d(γ̃(0), γ̃(1)) <
5η. By the uniqueness part of Lemma 3.5, we conclude that gz is in
fact the unique point in W cs

5ηκ(gx) ∩W u
5ηκ(gy).

Iterating the above argument gives

gnz ∈ W cs
5ηκ(g

nx) ∩W u
5ηκ(g

ny)

for all n ≥ 0. Because ‖Dg|−1
Eu‖ ≤ θu < 1, we see that for z ∈ W u

5ηκθnu
(y)

for all n ≥ 0, hence z = y.
Having shown that y ∈ W cs

ηκ(x), we now show that in fact y lies in

W c(x). To this end, let W̃ cs, W̃ c, W̃ s be the lifts of W cs,W c,W s to

Rd, and let x̃, ỹ ∈ Rd be lifts of x, y such that ỹ ∈ W̃ cs
5ηκ(x̃). Adopt

coordinates in which x̃ = 0, and let πcs : Rd → F cs be projection along
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F u. Let ŷ = πcsỹ and note that ỹ = ŷ + yu where yu ∈ F u, so by the
definition of κ′ = κ̄(F cs, F u) we have

(5.9) ‖ŷ‖ ≤ κ′‖ŷ + yu‖ = κ′d(x̃, ỹ) = κ′d(x, y).

Let Ŵ c = πcsW̃
c and Ŵ s = πcsW̃

s. Given vs + vc ∈ Ŵ s, there is
vu ∈ Eu such that vs + vc + vu ∈ Cs

β, and hence

‖vc‖ ≤ κ′‖vc + vu‖ < κ′β‖vs‖,
so we see that Ŵ s is contained in Cκ′β(Es, Ec). Similarly, Ŵ c is con-
tained in Cκ′β(Ec, Es). Thus by Lemma 3.5 there is a unique point ẑ in

Ŵ s(ŷ)∩Ŵ c(0). (Recall that 0 = x̃.) Moreover, dŴ s(ŷ, ẑ) and dŴ c(0, ẑ)
are both bounded above by(

1 + κ′β

1− κ′β

)
κ′′‖ŷ‖,

where we recall that κ′′ = κ̄(Es, Ec). Let z̃ be the unique point on
W cs(x̃) such that πz̃ = ẑ; we see that z̃ is the unique point of intersec-
tion of W̃ s(ỹ) and W̃ c(x̃), and that moreover

dW̃ s(ỹ, z̃), dW̃ c(x̃, z̃) ≤ (1 + β)

(
1 + κ′β

1− κ′β

)
κ′′κ′d(x, y),

where we use (5.9) to estimate ‖ŷ‖. We have proved the following:
given any x̃ ∈ Rd and ỹ ∈ W̃ cs(x), there is a unique point z̃ ∈ W̃ s(ỹ)∩
W̃ c(x̃), and moreover we have

(5.10) dW̃ s(ỹ, z̃), dW̃ c(x̃, z̃) ≤ κ̃d(x̃, ỹ),

where we put

κ̃ = (1 + β)

(
1 + κ′β

1− κ′β

)
κ′′κ′.

Projecting to Td, we see that given y ∈ W cs
5ηκ(x) there is a unique

z ∈ W c
5ηκκ̃(x)∩W s

5ηκκ̃(y), where uniqueness follows as in Lemma 5.3 by

using the inequality 5ηκκ̃ < 1
4

(from (5.3)) and Lemma 5.2.
Then we have

g−1(z) ∈ W c
10ηκκ̃‖A−1‖(g

−1x) ∩W s
10ηκκ̃‖A−1‖(g

−1y),

and if in addition y ∈ Γ5η(x), then arguing as in the first paragraph of
the proof we see that in fact

g−1(z) ∈ W c
5ηκκ̃(g

−1x) ∩W s
5ηκκ̃(g

−1y),

where this time we use the inequality 20ηκκ̃‖A−1‖+5η < 1 from (5.4).
Iterating gives a similar result for g−nz, and since W s is uniformly
expanded by g−1 the same argument as before shows that in fact we
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must have y = z, so y ∈ W c
10ηκκ̃(x), which completes the proof of

Lemma 5.9. �

We now show that there is no tail entropy at scale 5η.

Lemma 5.10. Every diffeomorphism g ∈ U0 has h∗g(5η) = 0.

Proof. To estimate Λsep
n (Γ5η(x)×N, 0, δ; g), let An ⊂ Γ5η(x) be a max-

imal (n, δ)-separated subset. Let k(n) = #An, and since by Lemma
5.9 we have Γ5η(x) is contained in a compact part of a one-dimensional
center leaf, we can order the elements of An as a1, a2, . . . , ak(n) so that
ai±1 are the two points nearest to ai for each i. For each 0 ≤ j < n
and 1 ≤ i < k(n), let bji be the distance from f j(ai) to f j(ai+1) along

the leaf W c
10ηκ(g

jx). Note that for each j we have
∑

i b
j
i ≤ 10ηκ.

On the other hand, the points ai are (n, δ)-separated, so for every
i there is some 0 ≤ j < n such that bji ≥ d(f jai, f

jai+1) ≥ δ. In

particular, for every i we have
∑n−1

j=0 b
j
i ≥ δ, and it follows that

(k(n)− 1)δ ≤
k(n)−1∑
i=1

n−1∑
j=0

bji =
n−1∑
j=0

k(n)−1∑
i=1

bji ≤ 10ηκn.

Thus k(n) grows at most linearly in n, which completes the proof of
Lemma 5.10. �

Lemma 5.11. For any r > γ and ε = ρ/2, the diffeomorphism g
satisfies Condition [E] from §3.5.

Proof. Given x ∈ Td, Lemma 5.9 shows that Γε(x) ⊂ W cs
εκ(x). It follows

from Pliss’ Lemma [50] that if mk → ∞ is such that 1
mk
Sg
−1

mk
χ(x) ≥ r

for every k, then for every r′ ∈ (γ, r) there exists m′k → ∞ such that

for every k and every 0 ≤ j ≤ m′k, we have 1
j
Sg
−1

j (g−m
′
k+jx) ≥ r′. Thus

g−m
′
kx has the property that

1
m
Sgm(g−m

′
kx) ≥ r′ for all 0 ≤ m ≤ m′k,

so we can apply Lemma 5.5 and conclude that

Γε(x) ⊂ gm
′
k(W cs

εκ(g−m
′
kx)) ⊂ B(x, εκθ

m′k
r′ )

Since m′k →∞ and θr′ < 1, this implies that Γε(x) = {x}. �

5.5. Proof of Theorem 4.1. We have now done all the work to show
that if g ∈ U0 and ϕ : Td → R satisfy the hypotheses of Theorem 4.1,
then the conditions of Theorem 2.8 are satisfied, and hence there is a
unique equilibrium state for (Td, g, ϕ). We recall how this is done; this
will complete the proof of Theorem 4.1.
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Since γ = γ(g) satisfies (4.4), we may choose r > γ such that (4.4)
still holds with γ replaced by r, and define the decomposition (P ,G,S)
as in (5.6). The following facts are shown in the previous sections.

• G has specification at all scales (Lemma 5.6).
• ϕ has the Bowen property on G at scale ε = ρ

2κ
(Lemma 5.8).

• P (P , ϕ; g) admits the following upper bound (Theorem 3.3):

h∗g(5η) + (1− r) sup
x∈B(q,ρ)

ϕ(x) + r(sup
x∈Td

ϕ(x) + h+ logL− log r).

• h∗g(5η) = 0 (Lemma 5.10), so (4.4) gives P (P , ϕ) < P (g, ϕ).

• By Theorem 3.4 and Lemma 5.11, P⊥exp(ρ/2) ≤ P (P , ϕ).

Putting these ingredients together, we see that under the conditions of
Theorem 4.1, all the hypotheses of Theorem 2.8 are satisfied for the
decomposition (P ,G,S). This completes the proof of Theorem 4.1. 2

6. Results for the Bonatti-Viana example

We now review the Bonatti-Viana construction in [6] as well as some
of the additional facts about invariant foliations in [17].

Let B ∈ SL(4,Z) induce a hyperbolic toral automorphism on the
4-torus and let B have four distinct real eigenvalues

0 < λ1 < λ2 < 1/3 < 3 < λ3 < λ4.

By possibly replacing B with a power of itself we may assume that
the induced hyperbolic toral automorphism fB has at least three fixed
points, say q, q′, q′′. A neighborhood of one of the fixed points, say q′′,
will be left unperturbed to ensure robust transitivity. A deformation
will be done around q and q′. Around q we will deform in the stable
direction and around q′ in the unstable direction. These deformations
will be C0 small, but C1 large.

A B

q r s t

C

u v t

Figure 4. Bonatti–Viana construction
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Let F s, F u be the two-dimensional subspaces of Rd corresponding
to contracting and expanding eigenvalues of B, respectively. Let κ =
2κ̄(F s, F u), where κ̄ is as in (3.4). Let η > 0 be sufficiently small that

(6.1) 5ηκ < 1
4
.

Fixing ρ > 0, we consider the scales ρ′ = 5ρ and ρ′′ = 300κρ′. We
assume that ρ is sufficiently small that ρ′′ < 5η. The role of these
scales is as follows:

(1) All perturbations take place in the balls B(q, ρ) and B(q′, ρ);
(2) The scale ρ′ is chosen to ensure that at this scale the center-

stable (resp. center-unstable) leaves are contracted by g (resp.
g−1);

(3) The scale ρ′′ is the distance that points need to be away from
q and q′ to guarantee uniform contraction/expansion estimates
at a large enough scale to verify the hypotheses of Theorem 2.9.

The deformation around the points q and q′ is done in two steps. We
first describe the deformation around q. In the first step, we perform a
DA-type deformation around q in the stable direction λ2 similar to the
one done for the Mañé examples. The stable index of q changes from 2
to 1 and two new fixed points q1 and q2 are created just as before. The
second step is done by deforming the diffeomorphism in a neighborhood
of q2 so that the contracting eigenvalues become complex; see Figure 4.
We use a deformation such that the Ecs is uniformly contracting outside
B(q, ρ).

Note the creation of fixed points with different indices prevents the
topologically transitive map from being Anosov. These non-real eigen-
values also forbid the existence of a one-dimensional invariant sub-
bundle inside Ecs. So the resulting map f̂ has a splitting Ecs ⊕ Eu.

To finish the construction take the deformation just made on fB
near q and repeat it on f̂−1 in the neighborhood of q′. We obtain a
map f1 that is robustly transitive, not partially hyperbolic, and has
a dominated splitting TT4 = Ecs ⊕ Ecu with dimEcs = dimEcu =
2 (see [6] for proofs of these facts). Put β ∈ (0, 1

3
) such that (6.1)

continues to hold with η replaced by

η(1 + β)
(sinωs,u) + β

(sinωs,u)− β
,

and assume the perturbation is such that Ecs ⊂ Cβ(F s, F u) and Ecu ⊂
Cβ(F u, F s). In particular, f1 has local product structure at scale 5η
with constant κ, exactly as in Lemma 5.3.

Let C = C(fB) be the constant provided by Lemma 3.1. Out-
side B(q, ρ) ∪ B(q′, ρ), the maps f0 and fB are identical, and we can
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carry out the construction so there exists a constant K so that both
fB(B(q, ρ)) ⊂ B(q,Kρ) and f1(B(q, ρ)) ⊂ B(q,Kρ) (and similarly for
q′). Thus the C0 distance between f1 and fB is at most Kρ. In partic-
ular, by choosing ρ small, we can ensure that dC0(f1, fB) < η/C. This
allows us to apply Lemma 3.2 to f1, or to a perturbation of f1.

As in the previous section, we now consider diffeomorphisms g in a
C1 neighborhood of f1. In [17], it is shown that for g ∈ Diff(T4) suffi-
ciently close to f1, there are invariant foliations tangent to Ecs

g and Ecu
g

respectively. Furthermore, the argument of Lemma 6.1 and 6.2 of [6]
shows that each leaf of each foliation is dense in the torus. The existence
of foliations was not known when [6] was written, but these arguments
apply with only minor modification now that the existence result has
been established by [17]. Thus we can consider a C1-neighborhood V0

of f1 such that the following is true for every g ∈ V0.

• dC0(g, fB) < η/C.
• g has a dominated splitting TT4 = Ecs

g ⊕ Ecu
g , with dimEcs

g =
dimEcu

g = 2 and Ecs
g , E

cu
g tangent to Cβ(F s, F u) and Cβ(F u, F s)

respectively.
• The distributions Ecs

g , Ecu
g integrate to foliations W cs

g , W cu
g .

• Each of the leaves W cs
g (x) and W cu

g (x) is dense for every x ∈ T4.

Given g ∈ V0, consider the quantities

(6.2)

λcs(g) = sup{‖Dg|Ecs(x)‖ : x ∈ T4},
λcu(g) = inf{‖Dg|−1

Ecs(x)‖−1 : x ∈ T4},
λs(g) = sup{‖Dg|Ecs(x)‖ : x ∈ T4 \B(q, ρ)},
λu(g) = inf{‖Dg|−1

Ecs(x)‖−1 : x ∈ T4 \B(q′, ρ)}.

We also need the quantity

λc(g) = max{λcs(g), λcu(g)−1}.

Note that by the construction of f1 we have

λs(f1) < 1 < λcs(f1),

λcu(f1) < 1 < λu(f1),

and by continuity these inequalities hold for C1-perturbations of f1.
We assume that V0 is chosen such that

(6.3) (1 + β)

(
λc(g)− λs(g)

1− λs(g)

)
< 2
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for every g ∈ V0. Similarly to before, let

γ(g) = max

{
lnλcs(g)

lnλcs(g)− lnλs(g)
,

lnλcu(g)

lnλcu(g)− lnλu(g)

}
A simple calculation as in (4.3) shows that for any r > γ, we have

λ1−r
cs λrs < 1,(6.4)

λ1−r
cu λru > 1,(6.5)

so that in particular, writing

(6.6) θr(g) = min(λ1−r
cs λrs, λ

−(1−r)
cu λ−ru ),

we have θr(g) < 1 for all r > γ(g). As in §4, Theorem B will follow
from the next result. For notational convenience, we write

(6.7) Q = B(q, ρ′′ + ρ) ∪B(q′, ρ′′ + ρ)

for a suitably large neighborhood of the region where the C0-perturbation
occurs.

Theorem 6.1. Given g ∈ V0 as above, let γ = γ(g), λc = λc(g),
V = Var(ϕ, 300ρ′), and let ϕ : T4 → R be Hölder continuous. If

(6.8) 6 log λc+(1−γ) sup
Q
ϕ+γ(sup

T4

ϕ+logL+h−log γ)+V < P (g, ϕ),

then ϕ has a unique equilibrium state with respect to g.

The main differences between (6.8) and the corresponding conditions
in Theorem 4.1 are the presence of the terms 6 log λc and V . The first
of these terms is due to the fact that the Bonatti-Viana example may
not be entropy expansive, and in particular we may have h∗g(5η) > 0;
we will see that this quantity is bounded by 6 log λc. The V term comes
from the finite scale version of our general theorem 2.9, and comes from
the fact that we establish specification for suitable orbit collections at
scale 3ρ′.

The argument for deriving Theorem B from Theorem 6.1 is essen-
tially identical to the argument after Theorem 4.1 deriving Theorem
A: first one observes that condition (6.8) is satisfied for a C1-open set
V ⊂ V0. Then one argues that this set is non-empty because (6.8) can
be verified with an analogue of (4.5), adding the term 6 log λc, which
can be made arbitrarily small.

We also have the following analogue of Theorem 4.2, which is proved
exactly as that result is.



34 V. CLIMENHAGA, T. FISHER, AND D. J. THOMPSON

Theorem 6.2. Let V0 ⊂ Diff(T4) be as above, and suppose g ∈ V0 is
such that for L = L(fB), h = htop(fB), γ = γ(g), and λc = λc(g) we
have

(6.9) 6 log λc + γ(logL+ h− log γ) < h.

Then writing

D = h− 6 log λc − γ(logL+ h− log γ) > 0,

every Hölder continuous potential ϕ with the bounded range hypothesis
supϕ − inf ϕ < D has a unique equilibrium state. In particular, (6.9)
is a sufficient criterion for g to have a unique measure of maximal
entropy.

7. Technique for Bonatti-Viana examples

The arguments in this section are similar to the proof of Theorem
4.1 in §5, although there are a number of complications. There are
three important differences:

• we need to control ϕ in neighborhoods around two fixed points;
• verifying specification is more subtle because of the lack of a

uniformly expanding direction;
• we must obtain an upper bound for the tail entropy, which may

be nonzero.

7.1. Specification. This time there are three issues that go into the
specification property: We must control the size of W cs

δ (x) under iter-
ation, the size of W cu

δ (x) under iteration, and to transition from one
orbit to the next we use the following fact, which has the same proof
as Lemma 5.4.

Lemma 7.1. For every δ > 0 there is R > 0 such that for all x, y ∈ T4,
we have W cu

R (x) ∩W cs
δ (y) 6= ∅.

Although the leaves W cu(x) are not expanding at every point, and
the leavesW cs(x) are not contracting at every point, we nevertheless see
expansion and contraction if we look at a scale suitably large relative
to ρ. More precisely, consider the quantities θcs = 4

5
+ 1

5
λs(g) < 1 and

θcu = 4
5

+ 1
5
λu(g)−1 < 1. Let dcs and dcu be the metrics induced on

leaves W cs and W cu. Then we have the following result.

Lemma 7.2. If x ∈ T4 and y ∈ W cs(x) are such that dcs(x, y) > ρ′,
then dcs(gx, gy) < θcsdcs(x, y). Similarly, if y ∈ W cu(x) and dcu(x, y) >
ρ′, then dcu(g

−1x, g−1y) < θcudcu(x, y).
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Proof. We give the proof for W cs; the proof for W cu is analogous. Given
a path σ on T4, write `(σ) for the length of σ. Let σ be a path from x
to y in W cs(x) such that `(σ) = dcs(x, y). Decompose σ as the disjoint
union of paths σi where `(σi) ∈ [ρ′, 2ρ′]. Clearly it suffices to show that
`(gσi) < θcs`(σi) for each i.

Because `(σi) ≤ 2ρ′ ≤ 1−2ρ, the curve σi has at most one connected
component that intersects B(q, ρ); this follows from Lemma 5.2. Let
`1 be the length of this component; because this component lies in
W cs(x), which is tangent to Cβ(F cs, F u), we have `1 ≤ 2ρ(1 + β). Let
`2 = `(σi) − `1. Let v be a tangent vector to the curve σ at the point
p ∈ T4. If p ∈ B(q, ρ) then we have ‖Dg(v)‖ ≤ λc(g)‖v‖, while if
p /∈ B(q, ρ) then ‖Dg(v)‖ ≤ λs(g)‖v‖. Thus we obtain

`(gσi) ≤ λc`1 + λs`2 = (λc − λs)`1 + λs`(σi)

≤ (λc − λs)2ρ(1 + β) + λs`(σi) < 4(1− λs)ρ+ λs`(σi),

where the last inequality uses (6.3). Since ρ = 1
5
ρ′ ≤ 1

5
`(σi), this gives

`(gσi) <
4
5
(1− λs)`(σi) + λs`(σi) = θcs`(σi).

Summing over i gives dcs(gx, gy) ≤ `(gσ) < θcs`(σ) = θcsdcs(x, y). The
proof for dcu is similar. �

The following is an immediate consequence of Lemmas 7.2 and 7.1.

Lemma 7.3. For every R > ρ′ and x ∈ T4, we have

g(W cs
R (x)) ⊂ W cs

θcsR(gx),

g−1(W cu
R (x)) ⊂ W cu

θ−1
cu R

(g−1x).

In particular, there is τ0 ∈ N such that for every x, y ∈ T4 we have

(7.1) gτ0(W cu
ρ′ (x)) ∩W cs

ρ′ (y) 6= ∅.
Remark 7.4. Lemma 7.3, and in particular (7.1), gives us the ability
to glue any two orbit segments together at scale ρ′. The ability to
specify two, rather than finitely many orbits together is a weak version
of the specification property that appears in the literature. However, our
results require the ability to glue finitely many orbit segments together,
and for this we have to find an appropriate decomposition (P ,G,S).

Now let ρ′′ := 300κρ′, where κ = 2κ̄(F cs, F u) is the constant arising
in the local product structure of W cs,W cu, as before. Let χ be the
indicator function of T4\B(q, ρ′′+ρ) and χ′ be the indicator function of
T4\B(q′, ρ′′+ρ). Thus the Birkhoff averages of χ, χ′ give the proportion
of time an orbit spends away from the fixed points q, q′. The choice of
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scale is to ensure uniform estimates on W cs
ρ′′ and W cu

ρ′′ for points x for
which χ(x) = 1 and χ′(x) = 1.

From now on we fix r > γ(g), in practice γ(g) will be very small and
r will be slightly larger than γ(g), and consider the following collection
of orbit segments:

G = {(x, n) : 1
i
Siχ(x) ≥ r and 1

i
Siχ

′(fn−ix) ≥ r for all 0 ≤ i ≤ n}.
We will show that GM has specification at scale 3ρ′. To get a decom-
position we consider G together with the collections

P = {(x, n) ∈ T4 × N : 1
n
Snχ(x) < r},

S = {(x, n) ∈ T4 × N : 1
n
Snχ

′(x) < r}.

x gn(x)

∈ P
∈ Sgi(x)

gn−k(x)

⇓
∈ G

Sg
ℓχ ≥ ℓr

Sg
ℓχ < ℓr

Sg
ℓχ

′ ≥ ℓr

Sg
ℓχ

′ < ℓr

Figure 5. Decomposition for Bonatti-Viana

Lemma 7.5. The collections P ,G,S form a decomposition for g.

Proof. Let (x, n) ∈ X × N. Let 0 ≤ i ≤ n be the largest integer so
1
i
Siχ(x) < r, and 0 ≤ k ≤ n be the largest integer so 1

k
Skχ

′(gn−kx) < r.

A short calculation shows that 1
`
S`χ(gix) ≥ r for 0 ≤ ` ≤ n − i, and

1
`
S`χ

′(gn−k−`x) ≥ r for 0 ≤ ` ≤ n−k, see Figure 5. Thus, if we assume
that i+ k < n, letting j = n− (i+ k), we have

(x, i) ∈ P , (gix, j) ∈ G, (gi+jx, k) ∈ S.
If i+ k ≥ n, we can choose a decomposition with j = 0. �

As a reminder GM is the set of orbit segments (x, n) for which p ≤M
and s ≤ M . Orbit segments in GM satisfy the following analogue of
Lemma 5.5.

Lemma 7.6. Let ν = λc/θr. For every M ∈ N0, (x, n) ∈ GM , and
0 ≤ i ≤ n, we have
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(a) ‖Dgi|Ecs(y)‖ ≤ ν2Mθir for y ∈ Bn(x, ρ′′);
(b) ‖Dg−i|Ecu(gny)‖ ≤ ν2Mθir for y ∈ Bn(x, ρ′′);
(c) dcs(g

iy, giz) ≤ ν2Mθirdcs(y, z) when y ∈ Bn(x, ρ′) and z ∈ W cs
2ρ′(y);

(d) dcu(g
n−iy, gn−iz) ≤ ν2Mθirdcu(y, z) when y ∈ Bn(g−nx, ρ′) and

z ∈ W cu
2ρ′(y).

Proof. We prove (a). Given (x, n) ∈ GM and 0 ≤ i ≤ n, we have
Siχ(x) > ir− 2M , and so the orbit segment (x, i) spends greater than
ir− 2M iterates outsides B(q, 4ρ′), and thus (y, i) spends greater than
ir − 2M iterates outsides B(q, ρ). It follows that

‖Dgi|Ecs(y)‖ ≤ λi−(ir−2M)
c λir−2M

s

= λi(1−r)c λirs λ
2M
c λ−2M

s = (θr)
iν2M .

For (c), note that if y ∈ Bn(x, ρ′) and z′ ∈ W cs
2ρ′(y), then z′ ∈ Bn(x, 3ρ′).

Thus, the uniform derivative estimate of (a) applies to all points in
W cs

2ρ′(y), and it is an easy exercise to use this to obtain the statement
of (c). The proof of (b) is similar to (a), and (d) follows. �

We are now in a position to give the main lemma of this subsection
regarding the specification property. The facts that drive our proof are:

• For any x ∈ Td and n ∈ N, from Lemma 7.3 we have W cs
ρ′ (x) ⊂

Bn(x, ρ′) and g−n(W cu
ρ′ (gnx)) ⊂ Bn(x, ρ′);

• If (x, n) ∈ GM and y, z ∈ Bn(x, 3ρ′) and gnz ∈ W cu(gny), then
Lemma 7.6 (c) gives dn(y, z) ≤ ν2Mdcu(g

ny, gnz) and dcu(y, z) ≤
ν2Mθnr dcu(g

ny, gnz).

A key part of the specification proof for the Mañé example is the fact
that we can obtain uniform backward contraction along each orbit seg-
ment by choosing τ large. In this setting we no longer have this option
because Ecu is not uniformly expanding. Thus we take another route;
we observe that we get uniform backwards contraction along W cu near
(x, n) ∈ GM as long as n is sufficiently large, so everything will work
provided all the orbit segments we glue together are sufficiently long.
This yields tail specification for GM , which is sufficient for Theorem 2.9
to apply.

More precisely, given M we take N = N(M) such that θrν
2Mλτ0c < 1

2
,

where τ0 is as in (7.1). Then we let GM≥N := {(x, n) ∈ GM | n ≥ N}.
Lemma 7.7. For every M , let N = N(M) be as above. Then GM≥N has
specification at scale 3ρ′.

Proof. We follow the proof of Lemma 5.6, making the necessary adjust-
ments as described above. Write τ = τ0, so that (7.1) gives gτ (W cu

ρ′ (x))∩
W cs
ρ′ (y) 6= ∅ for every x, y ∈ T4.
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For every (x, n) ∈ GM≥N and y, z ∈ g−(n+τ)(gτ (W cu
ρ′ (x))), our choice of

N gives

(7.2) d(y, z) < 1
2
d(gn+τy, gn+τz).

Now we show that GM≥N has specification with gluing time τ . Given any

(x0, n0), . . . , (xk, nk) ∈ GM with ni ≥ N , we construct yj iteratively
such that (yj,mj) shadows (x0, n0), . . . , (xj, nj), where m0 = n0, m1 =

n0 + τ + n1, . . . , mk = (
∑k

i=0 ni) + kτ . We also set m−1 = −τ .
Start by letting y0 = x0, and we choose y1, . . . , yk iteratively so that

gm0y1 ∈ W cu
ρ′ (gm0y0) and gm0+τy1 ∈ W cs

ρ′ (x1)
gm1y2 ∈ W cu

ρ′ (gm1y1) and gm1+τy2 ∈ W cs
ρ′ (x2)

...
...

...
gmk−1yk ∈ W cu

ρ′ (gmk−1yk−1) and gmk−1+τyk ∈ W cs
ρ′ (xk).

That is, for j ∈ {0, . . . , k − 1}, we let yj+1 be a point such that

yj+1 ∈ g−mj(W cu
ρ′ (gmjyj)) ∩ g−(mj+τ)(W cs

ρ′ (xj+1)).

Using the fact that gmjyj+1 is in the unstable manifold of gmjyj together
with the estimate (7.2), we obtain that

dnj(g
mj−1+τyj, g

mj−1+τyj+1) < ρ′

dnj−1
(gmj−2+τyj, g

mj−2+τyj+1) < ρ′/2
...

...
dn0(yj, yj+1) < ρ′/2j.

That is, dnj−i(g
mj−i−1+τyj, g

mj−i−1+τyj+1) < ρ′/2i for each i ∈ {0, . . . , j}.
This estimate, together with the fact that gmj+τ (yj+1) ∈ Bnj+1

(xj+1, ρ
′)

from Lemma 7.3 gives that dnj(g
mj−1+τyk, xj) < 2ρ′+

∑∞
j=1 2−jρ′ = 3ρ′.

It follows that

yk ∈
k⋂
j=0

g−(mj−1+τ)Bnj(xj, 3δ),

and thus GM≥N has specification at scale 3ρ′. �

We remark that the proof of Lemma 7.7 can be adapted to show that
the entire collection GM has specification, and not just its tail GM≥N . The
idea is to fix N = N(M) as before and then choose (x̄, n̄) ∈ G with
n̄ > N ; one can find an orbit that shadows (x1, n1), (x̄, n̄), (x2, n2),
(x̄, n̄), . . . , using the uniform contraction estimates along (x̄, n̄) to get
specification with τ = 2τ0 +N(M). The book-keeping in this argument
is messier than in the lemma above, but the essential ideas are the same.
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7.2. Bowen property. Let θr ∈ (0, 1) be the constant that appears
in the previous subsection, and let κ be the constant associated with
the local product structure of Ecs

g ⊕ Ecu
g (see §3.1).

Lemma 7.8. Given (x, n) ∈ G and y ∈ Bn(x, 300ρ′), we have

(7.3) d(gkx, gky) ≤ κ600ρ′(θn−kr + θkr )

for every 0 ≤ k ≤ n.

Proof. Using the local product structure at scale 300ρ′, there exists
z ∈ W cs

κ300ρ′(x)∩W cu
κ300ρ′(y) = W cs

ρ′′(x)∩W cu
ρ′′ (y). By Lemma 7.6, we get

d(gkz, gky) ≤ θn−kr d(gnz, gny) ≤ θn−kr κ300ρ′,

and
d(gkx, gkz) ≤ θkrd(x, z) ≤ θkrκ300ρ′.

The triangle inequality gives (7.3). �

Lemma 7.9. Any Hölder continuous ϕ has the Bowen property on G
at scale 300ρ′.

Proof. By Hölder continuity, there are constants K > 0 and α ∈ (0, 1)
such that |ϕ(x) − ϕ(y)| ≤ Kd(x, y)α for all x, y ∈ Td. Now given
(x, n) ∈ G and y ∈ Bn(x, 300ρ′), Lemma 7.8 gives

|Snϕ(x)− Snϕ(y)| ≤ K
n−1∑
k=0

d(gkx, gky)α ≤ Kκ600ρ′
n−1∑
k=0

(θn−kr + θkr )
α

≤ Kκ600ρ′
∞∑
j=0

(θjαr + θjαr ) =: V <∞. �

7.3. Expansivity. We want to obtain a bound on h∗g (the tail entropy
of g). We note that by the results of [32], the tail entropy may be
positive. We first need the following estimate on α-dense sets in local
leaves of W cu.

Lemma 7.10. Let ε > δ > 0 be such that 2ε‖Dg‖ < 1 − 2ε. Given
n ∈ N, and x, z ∈ T4 such that dn(x, z) < ε, we have

(7.4) Λspan
n (W cu

ε (z) ∩Bn(x, ε), 0, δ; g) ≤ 4ε2δ−2(1 + β)2λ2n
c .

Proof. First we claim that W cu
ε (z) ∩ Bk(x, ε) ⊂ g−k(W cu

2ε (gkz)). This
follows by induction; it is true for k = 0, and given the result for k,
we see that any z′ ∈ W cu

ε (z)∩Bk+1(x, ε) has gk(z′) ∈ W cu
2ε (gkz) by the

inductive hypothesis, and so

gk+1(z′) ∈ W cu
2ε‖Dg‖(g

k+1z) ∩B(gk+1x, ε) ⊂ W cu
2ε (gk+1z),
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where the last inclusion follows because gk+1z ∈ B(gk+1x, ε) and 2ε‖Dg‖
is not enough distance to wrap all the way around the torus and enter
B(gk+1x, ε) again.

Now fix α > 0 small (an exact estimate will come later). Recall that
W cu

2ε (gnz) is the graph of a function from F cu to F cs with norm less than
β. The projection of W cu

2ε (gnz) to F cu along F cs is contained in a ball
of radius 2ε, so B2ε(0) in F cu has an α-dense subset in the dn-metric
with cardinality less than or equal to 4ε2α−2. Projecting this set back
to W cu

2ε (gnz) along F cu gives E ⊂ W cu
2ε (gnz) that is (1 + β)α-dense.

Consider the set g−n(E) ⊂ W cu(z). Given any y ∈ W cu
ε (z) ∩

Bn(x, ε), we have gn(y) ∈ W cu
2ε (gnz) and so there is z′ ∈ E such that

dcu(g
ny, gnz′) < (1 + β)α. Since g−1 expands distances along W cu by

at most λc, we have dn(y, z′) < (1+β)αλnc . Putting α = δ(1+β)−1λ−nc
we see that g−n(E) is an (n, δ)-spanning set for W cu

ε (z)∩Bn(x, ε), and
moreover

#g−n(E) ≤ 4ε2α−2 ≤ 4ε2δ−2(1 + β)2λ2n
c ,

which gives (7.4) and completes the proof of Lemma 7.10. �

Our next lemma obtains an estimate on the tail entropy by apply-
ing Lemma 7.10 with ε = 5η; for this we need η small enough that
10η(‖Dg‖+ 1) < 1.

Lemma 7.11. For every g ∈ V0 we have h∗g(5η) ≤ 6 log λc.

Proof. Given x ∈ T4 and δ > 0, we estimate Λspan
n (Γ5η(x), 0, 2δ; g) for

n ∈ N. To do this, we start by fixing

(7.5) α = α(n) =
δ

κλnc

where κ is from the local product structure. Let E ⊂ Γ5η(x) be an
α-dense set with cardinality

#E ≤ (10η/α)4 = (10η)4κ4λ4n
c δ
−4;

note that such a set exists because Γ5η(x) is contained in x+[−5η, 5η]4.
Now we have W cu

κα(z) ⊂ W cu
5η (z) for each z ∈ E, so by Lemma 7.10,

there is an (n, δ)-spanning set Ez for W cu
κα(z) ∩Bn(x, 5η) with

#Ez ≤ (10η)2δ−2(1 + β)2λ2n
c .

Let E ′ =
⋃
z∈E Ez, then we have

#E ′ ≤ (10η)6δ−6(1 + β)2κ4λ6n
c .

We claim that E ′ is (n, 2δ)-spanning for Γ5η(x), which will complete
the proof of Lemma 7.11. To see this, take any y ∈ Γ5η(x), and observe
that because E is α-dense in B(x, 5η), there is z = z(y) ∈ E ∩B(y, α).
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By the local product structure there is z̄ = z̄(y) ∈ W cs
κα(y) ∩W cu

κα(z).
Notice that because distance expansion along W cu is bounded above
by λc for each iteration of g, we have

(7.6) dn(y, z̄) < καλnc = δ.

By our choice of Ez, there is z′ ∈ Ez such that dn(z′, z̄) < δ. Thus
dn(y, z′) < 2δ, as desired. It follows that

Λspan
n (Γ5η(x), 0, 2δ; g) ≤ (10η)6δ−6(1 + β)2κ4λ6n

c ,

hence h∗g(5η) ≤ 6 log λc, which proves Lemma 7.11. �

Lemma 7.12. For every r > γ(g) and ε = 300ρ′, the diffeomorphism
g satisfies Condition [E].

Proof. We follow the same ideas as in Lemmas 5.9 and 5.11. Suppose
x ∈ Td, r > 0, and nk,mk →∞ are such that

(7.7) 1
nk
Sgnkχ(x) ≥ r, 1

mk
Sg
−1

mk
χ′(x) ≥ r

for every k. Our goal is to show that Γε(x) = {x}.
First we fix r′ ∈ (γ, r) and observe that by Pliss’ lemma [50] there

are m′k, n
′
k →∞ such that

(7.8)
Sgmχ

′(g−m
′
kx) ≥ mr′ for every 0 ≤ m ≤ m′k,

Sg
−1

n χ(gn
′
kx) ≥ nr′ for every 0 ≤ n ≤ n′k.

As in the proof of Lemma 7.6, for every y ∈ Bm′k
(g−m

′
kx, ρ′′) and z ∈

gn
′
kBn′k

(x, ρ′′), we now have

(7.9)
‖Dgm(y)|Ecs‖ ≤ θmr′ for every 0 ≤ m ≤ m′k,

‖Dg−n(z)|Ecu‖ ≤ θmr′ for every 0 ≤ n ≤ n′k,

where θr′ < 1 is as in (6.6).
Now let x′ ∈ Γε(x). By the local product structure, there is a unique

point x′′ ∈ W cu
κε (x) ∩W cs

κε(x
′). The same argument as in the first para-

graph of the proof of Lemma 5.9 shows that for every n ∈ Z we have

(7.10) gn(x′′) ∈ W cu
κε (gnx) ∩W cs

κε(g
nx′).

In particular, for each k ∈ N we can apply (7.9) with z a point along
the W cu-geodesic from gn

′
kx to gn

′
kx′′, and deduce that

dcu(x, x
′′) ≤ θ

n′k
r′ dcu(g

n′kx, gn
′
kx′′) ≤ θ

n′k
r′ κε.

Sending k → ∞ gives dcu(x, x
′′) = 0 and hence x′′ = x since x′′ ∈

W cu
κε (x). Now by (7.10) we have gnx ∈ W cs

κε(g
nx′) for all n ∈ Z, and for



42 V. CLIMENHAGA, T. FISHER, AND D. J. THOMPSON

each k ∈ N we can apply (7.9) with y a point along the W cs-geodesic
from g−m

′
kx to g−m

′
kx′, obtaining

dcs(x, x
′) ≤ θ

m′k
r′ dcs(g

−m′kx, g−m
′
kx′) ≤ θ

m′k
r′ κε.

Again, as k increases we get dcs(x, x
′) = 0 hence x′ = x, which com-

pletes the proof of Lemma 7.12. �

7.4. Verification of Theorem 6.1. We have now done all the work
to show that if g ∈ V0 and ϕ : T4 → R satisfy the hypotheses of The-
orem 6.1, then the conditions of Theorem 2.9 are satisfied, and hence
there is a unique equilibrium state for (Td, g, ϕ). We recall how this is
done; this will complete the proof of Theorem 6.1. We define the de-
composition (P ,G,S) as in Lemma 6.6. The following facts are shown
in the previous sections.

• GM has tail specification at scale 3ρ′ (Lemma 7.7), so condition
(1) of Theorem 2.9 holds.
• ϕ has the Bowen property on G at scale 300ρ′ (Lemma 7.9), so

condition (2) of Theorem 2.9 holds.
• P (P ∪ S, ϕ, 5η) = max{P (P , ϕ, 5η), P (S, ϕ, 5η)} and both col-

lections satisfy the hypotheses of Theorems 3.3 and 10.1, and
thus we have the upper bound

(1− r) sup
x∈Q

ϕ(x) + r(sup
x∈X

ϕ(x) + logL+ h− log(r)),

and r can be chosen arbitrarily close to γ.
• h∗g(5η) < 6 log λc (Lemma 7.11), so by Theorem 3.3, P (P∪S, ϕ)

is bounded above by

6 log λc + (1− r) sup
x∈Q

ϕ(x) + r(sup
x∈X

ϕ(x) + logL+ h− log(r))

• Thus, the assumption (6.8) gives that

P (P ∪ S, ϕ) + Var(ϕ, 300ρ′) < P (g, ϕ),

which verified condition (3) of Theorem 2.9.
• Expansivity at scale 300ρ′: by Theorem 3.4 and Lemma 5.11,
P⊥exp(ϕ, 300ρ′) ≤ P (P ∪ S, ϕ) < P (g, ϕ).

Putting these ingredients together, we see that under the conditions
of Theorem 6.1, all the hypotheses of Theorem 2.9 are satisfied for the
decomposition (P ,G,S). This completes the proof of Theorem 6.1.
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8. SRB measures

Following the definition in [3, Chapter 13], an SRB measure for a
C2 diffeomorphism f is an ergodic invariant measure µ that is hy-
perbolic (non-zero Lyapunov exponents) and has absolutely continu-
ous conditional measures on unstable manifolds. For uniformly hy-
perbolic systems, an SRB measure can be obtained as the unique
equilibrium state for the geometric potential ϕ(x) = − log Juf (x) =
− log | detDf(x)|Eu(x)| (see [60] for a nice overview). In this section, we
prove similar results for the Mañé and Bonatti–Viana examples. The
existence of a unique SRB measure for the Mañé and Bonatti-Viana
examples follows from [6, 1]. However, Theorems 8.2 and 8.4 below are
the first results that characterize the SRB measure for these examples
as a unique equilibrium state. Note that this yields an independent
proof of the uniqueness of the SRB measure as a corollary.

8.1. Preliminaries. Given a C2 diffeomorphism g on a d-dimensional
manifold and µ ∈Me(g), let λ1 < · · · < λs be the Lyapunov exponents
of µ, and let di be the multiplicity of λi, so that di = dimEi, where for
a Lyapunov regular point x for µ we have

Ei(x) = {0} ∪ {v ∈ TxM : lim
n→±∞

1
n

log ‖Dgnx(v)‖ = λi} ⊂ TxM.

Let k = k(µ) = max{1 ≤ i ≤ s(µ) : λi ≤ 0}, and let λ+(µ) =∑
i>k di(µ)λi(µ) be the sum of the positive Lyapunov exponents, counted

with multiplicity.
The Margulis–Ruelle inequality [3, Theorem 10.2.1] gives hµ(g) ≤

λ+(µ), and it was shown by Ledrappier and Young [37] that equality
holds if and only if µ has absolutely continuous conditionals on unstable
manifolds. In particular, we see that for any ergodic invariant measure
µ, we have

(8.1) hµ(g)− λ+(µ) ≤ 0,

with equality if and only if µ is absolutely continuous on unstable
manifolds. Thus an ergodic measure µ is an SRB measure if and only
if it is hyperbolic and equality holds in (8.1).

First we prove a general result on non-negativity of pressure for the
geometric potential associated to a foliation. Let M be a compact
Riemannian manifold and let W be a C0 foliation of M with C1 leaves.
Suppose that there is δ > 0 such that

(8.2) sup
x∈M

mW (x)(Wδ(x)) <∞,

where mW (x) denotes volume on the leaf W (x) with the induced metric.
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Lemma 8.1. Let W be a foliation of M as above, with δ > 0 such
that (8.2) holds. Let f : M → M be a diffeomorphism and let ψ(x) =
− log | detDf(x)|TxW (x)|. Then P (f, ψ) ≥ 0.

Proof. Note that ψ is continuous because f is C1 and W is C0. Thus
for every ε > 0, there is δ > 0 such that d(x, y) < δ implies

(8.3) |ψ(x)− ψ(y)| < ε.

Decreasing δ if necessary, we can assume that (8.2) holds. Now for
every x ∈M and every y ∈ Bn(x, δ), we have

(8.4) | detDfn(y)|TyW (y)| ≥ e−εne−Snψ(x).

Writing BW
n (x, δ) for the connected component of W (x)∩Bn(x, δ) con-

taining x, we get

mW (fnx)(f
nBW

n (x, δ)) ≥ e−εne−Snψ(x)mW (x)B
W
n (x, δ).

Since fnBW
n (x, δ) ⊂ Wδ(f

nx), we write C for the quantity in (8.2) and
get

(8.5) mW (x)B
W
n (x, δ) ≤ CeεneSnψ(x)

for every x, n.
Now let V be a local leaf of W . Given n ∈ N, let Zn be a maximal

(n, δ)-separated subset of V . Then V ⊂ ⋃x∈Zn B
W
n (x, δ), and so (8.5)

gives

mV (V ) ≤
∑
x∈Zn

mVB
W
n (x, δ) ≤

∑
x∈Zn

CeεneSnψ(x) ≤ CeεnΛn(ψ, δ).

We conclude that P (f, ψ) ≥ P (f, ψ, δ) ≥ −ε, and since ε > 0 was
arbitrary this shows that P (f, ψ) ≥ 0. �

We note that (8.2) holds for the unstable foliation W u of the Mañé
family and the center-unstable foliation W cu of the Bonatti–Viana foli-
ation, because both lie within cones of width β around linear foliations,
and so 2ε(1 + β) and 2ε(1 + β)2 give the appropriate upper bounds.
Thus Lemma 8.1 applies to both families of examples.

8.2. SRB for Mañé. Given g ∈ U0 and q, ρ, γ, h, L as in §4.1, let

Jug (x) := | detDg(x)|Eu(x)|,
and ϕgeo = − log Jug . Note that ϕgeo is Hölder continuous because the

map g is C2 and the distribution Eu is Hölder. The Hölder continuity
of Eu follows from the argument of §6.1 of Brin and Stuck [13]. (The
result there is stated for uniformly hyperbolic diffeomorphisms, but
the argument extends unproblematically to the case of absolute partial
hyperbolicity, which covers our setting.)
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In this section, we build up a proof of the following theorem.

Theorem 8.2. Let g be a C2 diffeomorphism in U0 such that

(8.6) γ(h+ logL− log γ) <

(
supx∈Td ϕ

geo(x)

infx∈Td ϕgeo(x)

)
h.

Then the following are true for the geometric potential ϕgeo = − log Jug .

(1) t = 1 is the unique root of the function t 7→ P (tϕgeo).
(2) There is ξ > 0 such that tϕgeo has a unique equilibrium state µt

for each t ∈ (−ξ, 1 + ξ).
(3) µ1 is the unique SRB measure for g.

Note that since Eu is uniformly expanding, we have supϕgeo < 0,
hence the ratio in (8.6) is less than 1. We can carry out the Mañé
construction to make this ratio as close to 1 as we like, and then (8.6)
is satisfied as long as γ, λc are chosen sufficiently close to 0 and 1. In
particular, (8.6) is satisfied for a non-empty C1-open set of diffeomor-
phisms in U0.

8.2.1. Proof of uniqueness. Note that because supϕgeo < 0, the func-
tion t 7→ P (tϕgeo) is a convex strictly decreasing function from R→ R,
so it has a unique root. It remains to show that this root occurs at
t = 1, that we have uniqueness of the equilibrium state for all t in a
neighborhood of [0, 1], and that µ1 is the unique SRB measure.

We prove the uniqueness results first; in §8.2.2 we will prove that
P (ϕgeo) = 0 and that µ1 is the unique SRB measure.

To get a unique equilibrium state for tϕgeo, it suffices to show that
the quantity

(8.7) P ∗(g, t) = (1− γ) sup
B(q,ρ)

tϕgeo + γ(sup
Td

tϕgeo + h+ logL− log γ)

from (4.4) satisfies P ∗(g, t) < P (tϕgeo) for all t ∈ [0, 1] and then apply
Theorem 4.1. Note that since the equality is strict it will then continue
to hold for all t in a neighborhood of [0, 1].

Let λu = minx ‖Dg(x)|Eu‖ and νu = maxx ‖Dg(x)|Eu‖; then the
ratio in (8.6) is log λu

log νu
. Note that for all t ∈ [0, 1] we have

(8.8) P ∗(g, t) ≤ −t log λu + γ(h+ logL− γ),

as illustrated in Figure 6.
At t = 0 we have P (tϕgeo) = h, and since inf ϕgeo ≥ − log νu we have

P (tϕgeo) ≥ max(h− t log νu, 0),

where we use the fact that P (tϕgeo) is nonincreasing in t and that
P (ϕgeo) ≥ 0 by Lemma 8.1.
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P (tϕgeo)

h

tt = 1

h− t log νu

max(h− t log νu, 0)

t0

−t log λu + γ(h+ logL− log γ)

P ∗(g, t)

γ(h+ logL− log γ)

Figure 6. Estimating P ∗(g, t) and P (tϕgeo).

Let t0 = h/ log νu. It suffices to show that

(8.9) −t log λu + γ(h+ logL− log γ) < h− t log νu

for all t ∈ [0, t0], since the case t = t0 implies that P ∗(g, t) < 0 for all
t ∈ [t0, 1]. To see (8.9), we observe that (8.6) gives

− t log λu + γ(h+ logL− log γ) < −t log λu +
log λu
log νu

h

=
log λu
log νu

(h− t log νu) < P (tϕgeo).

By (8.8), we have P ∗(g, t) < P (tϕgeo), so Theorem 4.1 gives the unique-
ness part of Theorem 8.2.

8.2.2. Lyapunov exponents for the Mañé family. It remains to show
that P (g, ϕgeo) = 0 and that the unique equilibrium state is in fact
the unique SRB measure. We achieve this by studying the Lyapunov
exponents of g and using the characterization of the SRB measure
given at (8.1). Recall that P (ϕgeo) ≥ 0 by Lemma 8.1, so we focus our
attention on the upper bound.

Let µ be ergodic, and let {(λi(µ), di(µ)) : 1 ≤ i ≤ s} be the Lyapunov
spectrum of µ. Recall that Ecs ⊕ Eu is Dg-invariant, so for every µ-
regular x the Oseledecs decomposition is a sub-splitting of Ecs ⊕ Eu,
and thus ds(µ) = 1. Note that it immediately follows that∫

ϕgeo dµ = −λs(µ).
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Thus,

(8.10)

∫
ϕgeo dµ ≥ −λ+(µ)

and if λs−1(µ) < 0 it immediately follows that
∫
ϕgeo dµ = −λ+(µ).

LetM∗ ⊂Me(g) be the set of ergodic µ such that µ is hyperbolic and
λs−1(µ) < 0.

Lemma 8.3. If µ ∈Me(g) \M∗, then

hµ(g)− λ+(µ) ≤ P ∗(ϕ).

Proof. If µ ∈Me(g)\M∗, then either µ is not hyperbolic, or λs−1(µ) >
0. Then there exists a set Z ⊂M with µ(Z) = 1 so that for each z ∈ Z,
there exists v ∈ Ecs

z with

lim
n→∞

1
n

log ‖Dgnz (v)‖ ≥ 0.

Taking r > γ such that θr < 1, we see that each z ∈ Z is contained in
the set

A+ = {x : there exists K(x) so 1
n
Sgnχ(x) < r for all n > K(x)},

where we recall that χ is the characteristic function of the neighborhood
of the perturbation. To see this, suppose that z /∈ A+. Then there
exists nk →∞ with 1

nk
Sgnkχ(z) ≥ γ. By lemma 5.5, this gives

‖Dgnz (v)‖ ≤ ‖Dgnk |Ecs(z)‖ < (θr)
nk ,

and thus
lim
nk→∞

1
nk

log ‖Dgnkz (v)‖ ≤ log θr < 0,

which is a contradiction. Thus, µ(A+) = 1. It follows that

hµ(g)− λ+(µ) ≤ hµ(g) +

∫
ϕgeo dµ ≤ P (C, ϕgeo) ≤ P ∗(g, 1).

where the first inequality uses (8.10), the second uses Theorem 10.3,
and the third uses Theorem 3.3. �

It follows from Lemma 8.3 and Lemma 8.1 that

(8.11) P (g, ϕgeo) = sup

{
hµ(g) +

∫
ϕgeo dµ : µ ∈M∗

}
.

Now, for every µ ∈M∗, we have
∫
ϕgeo dµ = −λ+(µ), and thus

(8.12) hµ(g) +

∫
ϕgeo dµ = hµ(g)− λ+(µ) ≤ 0

by (8.1). Together with (8.11) this gives P (g, ϕgeo) ≤ 0, and we con-
clude that P (g, ϕgeo) = 0.
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To complete the proof of Theorem 8.2 it only remains to show that
the unique equilibrium state µ1 is in fact an SRB measure for g, and
that there are no other SRB measures. For the first claim, we observe
that µ1 ∈ M∗ implies that µ1 is hyperbolic, and since P (g, ϕgeo) = 0,
(8.12) gives hµ1(g)− λ+(µ1) = 0, so µ1 is an SRB measure.

To see that there is no other SRB measure, we observe that if ν 6= µ1

is any ergodic measure, then hν(g) − λ+(ν) ≤ hν(g) −
∫
ϕgeo dν <

P (g, ϕgeo) = 0 by (8.10) and the uniqueness of µ1 as an equilibrium
measure. This completes the proof of Theorem 8.2.

8.3. SRB measures for the Bonatti-Viana family. We follow the
same basic strategy that we followed for the Mañé family to show
that the SRB measure is the unique equilibrium measure for a suitable
geometric potential. It is a folklore result that a C2 diffeomorphism
with a dominated splitting has Hölder continuous distributions, but no
proof, or even statement, of this fact is available in the literature to
the best of our knowledge2. We sidestep the issue of Hölder continuity
of the distributions by presenting a direct proof that the geometric
potential ϕgeo := − log J cug has the Bowen property on G. An advantage
of this approach is that it is suitable for generalization to non-uniformly
hyperbolic settings. The main idea is Lemma 8.6 below, which gives
contraction estimates analogous to Lemma 7.8 for the action of Dg on
the Grassmannian.

8.3.1. Additional control on the construction of g. In order for our es-
timates on Dg to apply, we must specify the construction of g more
carefully than in previous sections to obtain more refined information
on how the unstable foliation for g sits in the cone around the linear
foliation for fB.

Let λ1 < λ2 < 1
3
< 3 < λ3 < λ4 be the eigenvalues of the toral

automorphism fB in the Bonatti–Viana construction, and let F u and
F s be the unstable and stable eigenspaces for fB.

Fixing F u and F s as above, we can represent a linear map A : R4 →
R4 in the form [

Ass Asu

Aus Auu

]

2For diffeomorphisms of surfaces, this result is given in [52]. The idea of proof for
the general folklore result is to modify the Cr section theorem from Hirsch, Pugh
and Shub [33].
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so that for σ1, σ2 ∈ {s, u}, Aσ1σ2 : F σ1 → F σ2 is such that A|Fσ1 =
Aσ1s + Aσ2u. Given λ, ξ,K > 0, let

LF s,Fu(λ, ξ,K) = {A : R4 → R4 linear | ‖(Auu)−1‖, ‖Ass‖ < λ,

‖Aus‖, ‖Asu‖ < ξ, ‖Auu‖ < K}.

Note that B ∈ LF s,Fu(max(λ2, λ
−1
3 ), 0, λ4), where B is the linear map

for the original toral automorphism. We return to the construction of
the Bonatti-Viana diffeomorphism f1. For a fixed λh and λp with λh <
1 < λp and β, ξ,K > 0, to be specified shortly, we can carry out the
construction so that in addition to the condition that Ecs ⊂ Cβ(F s, F u)
and Ecu ⊂ Cβ(F u, F s), we impose the additional constraints:

• Df1(x) ∈ LF s,Fu(λh, ξ,K) when x /∈ Q;
• Df1(x) ∈ LF s,Fu(λp, ξ,K) when x ∈ Q.

The interpretation of these constants is that λh gives uniform con-
traction/expansion estimates outside the perturbation where the map
is hyperbolic, while λp controls the dynamics inside the perturbation.
We now take a C1-neighborhood V1 of f1 such that the following is true
for every g ∈ V1:

• dC0(g, fB) < η/C.
• g has a dominated splitting TT4 = Ecs

g ⊕ Ecu
g , with Ecs

g , E
cu
g

tangent to Cβ(F s, F u) and Cβ(F u, F s) respectively.
• The distributions Ecs

g , Ecu
g integrate to foliations W cs

g , W cu
g .

• Each of the leaves W cs
g (x) and W cu

g (x) is dense for every x ∈ T4.
• Dg(x) ∈ LF s,Fu(λh, ξ,K) when x /∈ Q;
• Dg(x) ∈ LF s,Fu(λp, ξ,K) when x ∈ Q;
• Properties (6.3)–(6.5) hold with r as in (8.13) below.

The first four conditions are the same as those that determine V0 in §6;
the fifth and sixth conditions clearly persist under C1 perturbation of
f1, and the seventh condition is verified below, so V1 is non-empty.

We now discuss how the constants λh, λp, β, ξ,K should be chosen in
the construction. We choose λh, λp and r > 0 such that max(λ2, λ

−1
3 ) <

λh < 1 < λp and

(8.13) r(logL+ h− log r) + 6 log λp + h

(
log(λ3λ

2
p)− log λ4

log λ3 + log λ4

)
< 0,

and moreover λrhλ
1−r
p < 1. We let K = 2λ4. Writing

(8.14) ν(λ, ξ) = λ2

(
1

1− ξβλ +
ξ(ξ + 2βλ4)

(1− ξβλ)2

)
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and νσ = ν(λσ, ξ) for σ = h, p, we take ξ, β small enough such that

(8.15) νrhν
1−r
p < 1.

Note that (8.13) and (8.15) can be satisfied by taking λp close enough
to 1 and r, ξ, β sufficiently small, and the Bonatti–Viana construction
can be carried out for any choice of the parameters λp, ξ, β.

Note that the quantities λcs, λcu, λs, λu from (6.2) can be estimated
in terms of λh, λp, and as ξ, β → 0 we get λcs, λ

−1
cu → λp and λs, λ

−1
u →

λh. In particular, given r > 0 with λrhλ
1−r
p < 1, we can choose ξ, β

sufficiently small that every g ∈ V1 satisfies (6.3)–(6.5).
Finally, we observe that we can choose V1 such that supx∈T4 ϕgeo(x) ≈

log λc − log λ4 and infx∈T4 ϕgeo(x) ≈ −(log λ3 + λ4), so that

supϕgeo+Var(ϕgeo, 300ρ′) ≤ 2 supϕgeo−inf ϕgeo ≈ 2 log λc+log λ3−log λ4,

and from (8.13) we can assume that for every g ∈ V1 we have

(8.16) r(logL+ h− log r) + 6 log λc < h

(
2 supϕgeo − inf ϕgeo

inf ϕgeo

)
.

Note the similarity in form between (8.16) and (8.6).

Theorem 8.4. Given any C2 diffeomorphism g ∈ V1, the following are
true for the geometric potential ϕgeo = − log | detDg(x)|Ecu |:

(1) t = 1 is the unique root of the function t 7→ P (tϕgeo).
(2) There is ξ > 0 such that tϕgeo has a unique equilibrium state µt

for each t ∈ (−ξ, 1 + ξ).
(3) µ1 is the unique SRB measure for g.

The remainder of this section is devoted to the proof of Theorem 8.4.
The only difference between this setting and the setting of Theorem 6.1
is that here we do not know that tϕgeo is Hölder. Thus we must prove
directly that ϕgeo (and hence tϕgeo) has the Bowen property on G, where
G is as in §6. We do this in §8.3.2 below. Then in §7.4 we prove the
first and third claims in Theorem 8.4.

Here we show that the pressure bound (6.8) holds for tϕgeo for all
t ∈ [0, 1]. Indeed, using the fact that (8.6) and (8.16) have the same
structure, we see that the same argument as in the proof of Theorem
8.2 immediately gives

(8.17) P ∗(g, t) := (2 sup− inf)(tϕgeo) + 6 log λc + r(logL+ h− log r)

< max(h− t inf ϕgeo, 0) ≤ P (tϕgeo).

Moreover, the quantity in (6.8) is bounded above by P ∗(g, t), so we
have the necessary pressure gap.
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8.3.2. The Bowen property for the geometric potential. The usual ap-
proach to the geometric potential in the uniformly hyperbolic case is
to argue that the unstable distribution is Hölder continuous (i.e. the
section x 7→ Eu(x) is Hölder continuous), and thus the map from
ϕgeo(x) = − log Ju(x) is Hölder. This approach is captured on the
following commutative diagram:

G
ψ

��
M

Eu
>>

ϕgeo
// R

where G is the appropriate Grassmannian bundle over M , and ψ sends
W ∈ G to − log | det dg(x)|W |. Note that all we need for ψ to be Hölder
continuous is for the map g to be C1+α. Thus, the question of regularity
of ϕgeo reduces to the question of regularity for Eu : M → G.

In our setting, where ϕgeo(x) = − log J cu(x), we obtain refined es-
timates on Ecu : T4 → G for good orbit segments, which allow us to
establish the Bowen property on these segments.

More precisely, we let G2 denote the Grassmannian bundle of 2-
planes in R4 over the torus. Since the underlying manifold is the torus,
this is a product bundle, and we can identify G2 with T4 × Gr(2,R4),
where Gr(2,R4) is the space of planes through the origin in R4. The
map g induces dynamics on G2 by the formula

(x, V )→ (g(x), Dg(V )).

We consider the subset Gβ
2 of G2 which corresponds to the space of 2-

dimensional subspaces of R4 lying in Cβ. We introduce some convenient
formalism to make this notion precise. Let Uβ be the set of linear maps

L : F u → F s such that ‖L‖ < β. Now let Gβ
2 = T4 × Uβ, so that

(x, L) ∈ Gβ
2 can be identified with the 2-dimensional subspace of TxT4

given by the graph of L:

Γ(x, L) := (Id +L)F u = {v + Lv ∈ TxT4 | v ∈ F u}.

Note that for every x ∈ T4 we have Ecu(x) = Γ(x, L) for some L ∈ Uβ,

so we can view Ecu as a map from T4 to Gβ
2 . Equip Gβ

2 with the metric

d((x, L), (x′, L′)) = d(x, x′) + ‖L− L′‖.
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Now consider the map ψ : Gβ
2 → R given by ψ(x, L) = | det dg(x)|Γ(x,L)|.

Then ϕgeo = ψ ◦ Ecu; we have the following commutative diagram:

Gβ
2

ψ

��
T4

Ecu
>>

ϕgeo
// R

Our strategy is to carry out the argument of Lemma 7.9 with respect
to the induced dynamics on Gβ

2 . In light of the above discussion, we
need the following two results.

Lemma 8.5. The function ψ is Lipschitz.

Lemma 8.6. Given θ > max(νrhν
1−r
p , θr), there is C ∈ R such that for

every (x, n) ∈ G, y ∈ B300ρ′(x, n), and 0 ≤ k ≤ n, we have

d(Ecu(gkx), Ecu(gky)) ≤ C(θk + θn−k).

In Lemma 8.6 we identify a 2-dimensional subspace E ⊂ TxT4 with
the pair (x, L) ∈ Gβ

2 such that E = Γ(x, L).
We start by proving Lemma 8.5, which is elementary; then we prove

Lemma 8.6, which requires some linear algebra estimates that we state
as Lemma 8.7 below (a proof of these is given in §11).

Proof of Lemma 8.5. Given v, w ∈ R4, let A(v, w) denote the square of
the area of the parallelogram spanned by v, w. Note that A(v, w) is a
smooth function of v, w since one can show that A(v, w) =

∑
i<j(viwj−

wivj)
2.

Let v1, v2 ∈ R4 be a basis for Lu. Given (x, L) ∈ Gβ
2 , we have

ψ(x, L) =
1

2
log

∣∣∣∣A(Dg(x)(Id +L)v1, Dg(x)(Id +L)v2)

A((Id +L)v1, (Id +L)v2)

∣∣∣∣ .
Since the ratio is bounded away from 0 on Gβ

2 , we see that ψ is C1,
since each of A, Dg, and Id +L is C1. In particular, it is Lipschitz. �

Proof of Lemma 8.6. Given (x, n) ∈ G and y ∈ B300ρ′(x, n), we use the
local product structure to choose z ∈ W cs

300ρ′κ(x) ∩W cu
300ρ′κ(y). Then

d(Ecu(gkx), Ecu(gky)) ≤ d(Ecu(gkx), Ecu(gkz))+d(Ecu(gkz), Ecu(gky)).

Let λ̄j = λc when gjx ∈ Q (inside the perturbation) and λ̄j = max(λs, λ
−1
u )

when gjx /∈ Q. Following the computations in the proof of Lemma 7.6,
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we have

(8.18)

d(gkx, gkz) ≤ 300ρ′κ
k−1∏
j=0

λ̄j ≤ θk,

d(gkz, gky) ≤ 300ρ′κ
n∏

j=k+1

λ̄j ≤ θn−k.

Since unstable manifolds are C1, we get

d(Ecu(gkz), Ecu(gky) ≤ Cd(gkz, gky) ≤ C300ρ′κθn−k

for some uniform constant C, and so to prove Lemma 8.6 it suffices to
get a constant C ′ such that

(8.19) d(Ecu(gkx), Ecu(gkz)) ≤ C ′θk.

We rely on a linear algebra estimate, which is proved in §11.5. Given
a linear map A : R4 → R4 with A(Cβ) ⊂ Cβ, let Â denote the induced

map on Uβ; that is, the graph of Â(L) is the image under A of the

graph of L. A formula for Â is derived in §11.5.

Lemma 8.7. Given A ∈ LF s,Fu(λ, ξ, 2λ) and L,L′ ∈ Uβ, we have

‖ÂL− ÂL′‖ ≤ ν(λ, ξ)‖L− L′‖.

For 0 ≤ k ≤ n, let ν̄k = max(λc, νp) if gkx ∈ Q, and ν̄k = max(λs, νh)
if gkx /∈ Q.

Let Ak : Uβ → Uβ be the map induced by Dg(gkx), and Bk : Uβ →
Uβ the map induced by Dg(gkz). By Lemma 8.7, Ak, Bk are ν̄k-
contractions on Uβ (that is, they are Lipschitz with constant ν̄k). More-
over, since g is C2 there is a constant C ′ depending only on g such that

(8.20) dC0(Ak, Bk) ≤ C ′d(gkx, gkz) ≤ C ′300ρκ′
k−1∏
j=0

ν̄j,

where the second inequality uses (8.18). Thus we can apply the follow-
ing lemma, which is proved in §11.5.

Lemma 8.8. Let (D, d) be a metric space. For each j ≥ 0 let Fj, Gj : D →
D be Lipschitz maps. Suppose we have a constant C > 0 and a sequence
λ0, λ1, · · · ≥ λmin > 0 such that for each k ≥ 0

(1) dC0(Fk, Gk) ≤ C
∏k−1

j−0 λj;

(2) λk is a Lipschitz constant for Fk and Gk.
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Let ξ, η ∈ D and set ξk = Fk−1 ◦ · · · ◦F0(ξ) and ηk = Gk−1 ◦ · · · ◦G0(η).
Then we have

(8.21) d(ξk, ηk) ≤
(
d(ξ, η) +

Ck

λmin

) k−1∏
j=0

λj.

Applying Lemma 8.8 to the maps Ak, Bk : Uβ → Uβ, the sequence
ν̄k, and ξ = Ecu(x), η = Ecu(z), we obtain

d(Ecu(gkx), Ecu(gkz)) ≤
(
d(Ecu(x), Ecu(z)) +

Ck

λ̄h

) k−1∏
j=0

ν̄j,

and since
∏k−1

j=0 ν̄j ≤ (νrhν
1−r
p )k by the definition of G, the fact that

νrhν
1−r
p < θ proves (8.19), which completes the proof of Lemma 8.6. �

Combining Lemmas 8.5 and 8.6 gives the Bowen property for ϕgeo

on G, just as in Lemma 7.9.

8.3.3. Lyapunov exponents for Bonatti-Viana examples. It follows from
Lemma 8.1 that P (g, ϕ) ≥ 0, so to complete the proof of Theorem 8.4
we need to prove that P (g, ϕ) ≤ 0 and that the unique equilibrium
state µ obtained in the previous section has λ+(µ) =

∫
ϕgeo dµ, so that

we have equality in (8.1).
To this end, let µ be ergodic, and let {(λi(µ), di(µ)) : 1 ≤ i ≤ s}

be the Lyapunov spectrum of µ, where s ≤ 4 is the number of distinct
exponents. Recall that Ecs⊕Ecu is Dg-invariant, so for every µ-regular
x the Oseledets decomposition is a sub-splitting of Ecs⊕Ecu. We split
the possibilities into three cases:

(Case 1) If µ has exactly two positive Lyapunov exponents, or exactly
one positive Lyapunov exponent with multiplicity 2, in which
case ∫

ϕgeo dµ = −λ+(µ);

(Case 2) If the Lyapunov exponents associated to Ecu and at least one
of the Lyapunov exponents associated to Ecs are non-negative,
in which case

(8.22)

∫
ϕgeo dµ ≥ −λ+(µ);

(Case 3) There is at most one positive Lyapunov exponent associated to
Ecu. In this case, for µ-almost every x,

| detDg(x)|Ecu(x)| ≤ | detDg(x)|Eu(x)|,
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where Eu(x) is the subspace in the Oseledecs decomposition
which corresponds to the largest Lyapunov exponent, and a
short calculation yields (8.22).

Let M∗ ⊂ Me(g) be the set of ergodic µ such that µ is hyperbolic
and belongs to Case 1) above. Let P ∗(g, t) be as in (8.17).

Lemma 8.9. If µ ∈Me(g) \M∗, then

hµ(g)− λ+(µ) ≤ P ∗(g, 1).

Proof. Suppose that µ ∈ Me(g) \ M∗, and that either µ belongs to
Case 1) and is not hyperbolic, or belongs to Case 2) above. Then there
exists a set Z ⊂M with µ(Z) = 1 so that for each z ∈ Z, there exists
v ∈ Ecs

z with
lim
n→∞

1
n

log ‖Dgnz (v)‖ ≥ 0.

Thus with r > γ, we have z ∈ A+, where

A+ = {x : there exists K(x) so 1
n
Sgnχ(x) < r for all n > K(x)}.

To see this, suppose that z /∈ A+. Then there exists nk → ∞ with
1
nk
Sgnkχ(z) ≥ γ. By lemma 5.5, this gives

‖Dgnkz (v)‖ ≤ ‖Dgnk |Ecs(z)‖ ≤ (θr)
nk ,

and thus
lim
nk→∞

1
nk

log ‖Dgnkz (v)‖ ≤ log θr < 0,

which is a contradiction. Thus, µ(A+) = 1. It follows that

hµ(g)− λ+(µ) ≤ hµ(g) +

∫
ϕgeo dµ ≤ P (C, ϕgeo) ≤ P ∗(g, 1),

where the first inequality uses (8.10), the second uses Theorem 10.3,
and the third uses Theorem 3.3.

Now suppose µ belongs to case 3) above, and thus there is a non-
positive exponent associated to Ecu. We can run a very similar argu-
ment to show that µ(A−) > 0, where

A− = {x : there exists K(x) so 1
n
Sg
−1

n χ(x) < r for all n > K(x)}.
The key point is that there exists a set Z ⊂ M with µ(Z) = 1 so that
for each z ∈ Z, there exists v ∈ Ecu

z with

lim
n→−∞

1
n

log ‖Dg−nz (v)‖ ≥ 0.

It follows that z ∈ A−, because otherwise there exists nk → ∞ with
1
nk
Sg
−1

nk
χ(z) ≥ γ, and thus by lemma 5.5, we have

‖Dg−nkz (v)‖ ≤ ‖Dg−nk |Ecs(z)‖ ≤ (θr)
nk ,
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and thus

lim
nk→−∞

1
nk

log ‖Dg−nkz (v)‖ ≤ log θr < 0,

which is a contradiction. Thus, µ(A−) = 1. Again, it follows that

hµ(g)− λ+(µ) ≤ hµ(g) +

∫
ϕgeo dµ ≤ P (C, ϕgeo) ≤ P ∗(g, 1).

where the first inequality uses (8.22), the second uses Theorem 10.3,
and the third uses Theorem 3.3. �

It follows from Lemma 8.3 and Lemma 8.1 that

(8.23) P (g, ϕgeo) = sup

{
hµ(g) +

∫
ϕgeo dµ : µ ∈M∗

}
.

Now, for every µ ∈M∗, we have
∫
ϕgeo dµ = −λ+(µ), and thus

(8.24) hµ(g) +

∫
ϕgeo dµ = hµ(g)− λ+(µ) ≤ 0.

Together with (8.23) this gives P (g, ϕgeo) ≤ 0, hence P (g, ϕgeo) = 0.
The rest of the proof of Theorem 8.4 is identical to that of Theorem
8.2.

9. Large Deviations and Multifractal Analysis

9.1. Large deviations. We give a precise version of our large devia-
tions result Theorem D.

Definition 9.1. Let m be an equilibrium measure for a potential ϕ
(with respect to f). We say that m satisfies the upper level-2 large
deviations principle if for any weak∗-closed and convex subset A of
Mf (X), then

(9.1) lim
n→∞

1

n
logm(E−1

n (A)) ≤ sup
ν∈A∩Mf (X)

(
hν(f) +

∫
ϕdν − P (ϕ)

)
,

where En = 1
n

∑n−1
k=0 δfkx is the nth empirical measure associated to x.

By the contraction principle [28], this implies the upper inequality
of the level-1 large deviations principle for any continuous observable
ψ : X → R. That is, for any ε > 0, (9.1) implies

lim sup
n→∞

1

n
logm

{
x :

∣∣∣∣ 1nSnψ(x)−
∫
ψ dm

∣∣∣∣ ≥ ε

}
≤ −q(ε),
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where the rate function q is given by

(9.2) q(ε) := P (ϕ)− sup
ν∈Mf (X)

|∫ ψ dm−∫ ψ dν|≥ε

(
hν(f) +

∫
ϕdν

)
.

It is shown in [26, Proposition 6.18] that the equilibrium measures
provided by Theorem 2.8 satisfy the weak upper Gibbs property

(9.3) m(Bn(x, ε)) ≤ Ke−nP (ϕ)+Snϕ(x)+nVar(ϕ,ε)

for every ε > 0; this condition immediately yields the upper large
deviations bound (9.1) by applying general theory due to Pfister and
Sullivan [48]. The following is proved in [26, Theorem D].

Theorem 9.2. Suppose that the hypotheses of Theorem 2.8 are sat-
isfied, and let µ be the unique equilibrium measure provided. Then µ
satisfies the upper level-2 large deviations principle.

By the contraction principle, µ also satisfies the upper inequality of
the level-1 large deviations principle for any continuous observable ψ.
The unique equilibrium measures obtained in this paper (including the
SRB measures) for the Mañé family and their C1 perturbations are
obtained by verifying the hypotheses of Theorem 2.8, so Theorem 9.2
immediately applies.

For the Bonatti–Viana examples, we used Theorem 2.9, which does
not allow us to take ε→ 0 in (9.3), and so does not immediately imply
the upper large deviations principle. When ϕ = 0, (9.3) becomes the
usual upper Gibbs bound, so the results from [48] do yield the upper
level-2 large deviations principle for the measure of maximal entropy in
the Bonatti–Viana family. However, the same question for equilibrium
states for non-zero potentials remains open, as does the question of
lower large deviations bounds in both the Mañé and Bonatti–Viana
classes.

9.2. Multifractal analysis. Let g be a C2 diffeomorphism in U0 as in
§8.2, and for each t ∈ [0, 1], let µt be the unique equilibrium state for
tϕgeo as given by Theorem 8.2. In particular, µ0 is the unique MME
and µ1 is the unique SRB measure.

Let g be a C2 Mañé example as in §8.2, and for each t ∈ [0, 1] let µt
be the unique equilibrium state for tϕgeo as given by Theorem 8.2. In
particular, µ0 is the unique MME and µ1 is the unique SRB measure.
It follows from Lemma 5.10 that the entropy map µ 7→ hg(µ) is upper
semicontinuous, hence by Remark 4.3.4 of [36], uniqueness of the equi-
librium state implies that the function t 7→ P (tϕ) is differentiable on
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(−ε, 1 + ε), with derivative χ+(µt), where we write χ+(µ) =
∫
ϕdµ for

the largest Lyapunov exponent of µ.
It follows from Lemma 5.10 that the entropy map µ 7→ hg(µ) is upper

semicontinuous, hence uniqueness of the equilibrium state implies that
the function t 7→ P (tϕ) is differentiable on (−ε, 1 + ε), with derivative
χ+(µt), where we write χ+(µ) =

∫
ϕdµ for the largest Lyapunov expo-

nent of µ. This has immediate consequences for multifractal analysis.
Given χ ∈ R, let

Kχ = {x ∈ Td | lim
n→∞

1
n

log ‖Dgn|Eu(x)‖ = χ}

= {x ∈ Td | lim
n→∞

1
n
Snϕ(x) = −χ}

be the set of points whose largest Lyapunov exponent exists and is
equal to χ. The following is a direct consequence of Theorem 8.2 and
[21, Corollary 2.9].

Theorem 9.3. Let g and µt be as in Theorem 8.2. Let χ0 = χ+(µ0)
and χ1 = χ+(µ1). Then for every χ ∈ [χ1, χ0], we have

htop(Kχ, g) = inf{P (tϕ) + tχ | t ∈ R}
= sup{hµ(g) | µ ∈Mf (X), χ+(µ) = χ}
= sup{hµ(g) | µ ∈Me

f (Kχ)},
where htop(Kχ, g) is topological entropy defined as a dimension char-
acteristic in the sense of Bowen [9].Moreover, the infimum in the first
line is achieved for some t ∈ [0, 1], and for this t we have htop(Kχ, g) =
hµt(g).

The analogue of Theorem 9.3 for the Bonatti–Viana family follows
by the same argument for those g ∈ V1 with zero tail entropy (this can
be achieved if g is constructed to be C∞), but is left open for those
g ∈ V1 with positive tail entropy; in that case, the entropy map may
not be upper semicontinuous and [21] cannot be applied directly.

10. Pressure estimates

10.1. Proof of Theorem 3.3. Theorem 3.3 is a direct consequence
of the following result and Lemma 2.2.

Theorem 10.1. Under the assumptions of Theorem 3.3, we have

(10.1) h(C, 5η; g) ≤ r(htop(f) + logL− log r).

Moreover, at any scale δ > 0, we have

(10.2) P (C, ϕ, δ; g) ≤ (1− r) sup
x∈B(q,ρ)

ϕ(x) + r sup
x∈M

ϕ(x) + h(C, δ; g).
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Proof. The pressure estimate (10.2) follows from the observation that
for every (x, n) ∈ C we have fkx ∈ B(q, ρ) for at least (1− r)n values
of k ∈ {0, 1, . . . , n− 1}, and so

Sgnϕ(x) ≤ (1− r)n sup
x∈B(q,ρ)

ϕ(x) + rn sup
x∈M

ϕ(x);

this yields the partition sum estimate

Λn(C, ϕ, δ; g) ≤ Λn(C, 0, δ; g) exp(n{(1− r) sup
x∈B(q,ρ)

ϕ(x) + r sup
x∈M

ϕ(x)}),

which implies (10.2). Thus it only remains to obtain the entropy esti-
mate (10.1). For each (x, n) ∈ C, we partition its orbit into segments
entirely in B(q, ρ), and segments entirely outside B(q, ρ). More pre-
cisely, let

Q = {(x, n) : gk(x) ∈ B(q, ρ) for all 0 ≤ k < n}.
and note that (x, n) ∈ Q if and only if x ∈ Bn(q, ρ). Given (x, n) ∈
C, let {(xi, ni), (yi,mi) : i = 1, . . . , `} be the uniquely defined orbit
segments such that

• fni(xi) = yi and fmi(yi) = xi+1;
• (xi, ni) ∈ Q;
• (yi,mi) corresponds to an orbit segment in X \B(q, ρ).

Note that
∑`

i=1mi = Sgnχ(x) < nγ (this corresponds to the total time
the trajectory spends outside B(q, ρ)). Thus ` ≤ nγ (the worst possible
bound corresponds to all mi = 1). This defines a map

π : C → (Q× (M × N))∗ =
∞⋃
`=1

(Q× (M × N))∗

with the property that

(10.3) π(Cn) ⊂
⋃
`,m,n

∏̀
i=1

Qni × (M × {mi})

where the union is over all m = (m1, . . . ,m`) and n = (n1, . . . , n`) with∑
(mi + ni) = n and

∑
mi < γn.

Recall that L is the constant such that (3.1) holds. Since dC0(f, g) <
δ, using Lemma 3.2, we have

(10.4) Λn(M, 0, 3η; g) ≤ Λn(M, 0, η; f) ≤ Lenh

Since 3η > ρ, notice that Λn(Q, 0, 3η; g) = 1.
Let En ⊂ Cn be (n, 5η)-separated, then going to the nearest element

of η-separated sets of maximal cardinality in Qmi and M × {ni}, we
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get from (10.3) that

Λn(C, 0, 5η) ≤
∑
m,n

∏̀
i=1

Λni(Q, 0, 3η; g)Λmi(M, 0, 3η; g)

≤
∑
m,n

∏̀
i=1

Lemih = L`
∑
m,n

e(
∑
mi)h ≤ Lγn

∑
m,n

eγnh

where the second inequality uses (10.4).
Now we observe that each choice of m,n is uniquely determined by

choosing at most ` elements of {0, 1, . . . , n− 1}, which are the partial
sums of mi and ni (the times when the trajectory enters or leaves
B(q, ρ)). In particular since ` ≤ γn, it follows from Stirling’s formula
that the number of such m,n is at most

γn∑
k=1

(
n
k

)
≤ Ke(−γ log γ)n

for some constant K (independent of n), and so we have

Λn(C, 0, 5η) ≤ LγnKeγn(h−log(γ)).

This establishes (10.1) and completes the proof of Theorem 10.1. �

Remark 10.2. One could try to repeat the above argument directly to
obtain an estimate on h(C, δ; g) for arbitrary δ > 0 without invoking the
tail entropy h∗g(5η). However, the constant L depends on η, and when
δ < ρ there is also trouble with the term Λn(Q, 0, δ; g). Thus we make
the above estimate at exactly one scale, and deal with smaller scales via
tail entropy.

10.2. Proof of Theorem 3.4. Let g, r, q, q′ be as in §3.5, and write
χ = χq, χ

′ = χq′ , C = C(q, r), C ′ = C(q′, r). Consider the sets

A+ = {x : there exists K(x) so 1
n
Sgnχ(x) < r for all n > K(x)},

A− = {x : there exists K(x) so 1
n
Sg
−1

n χ′(x) < r for all n > K(x)}.
Theorem 3.4 is an application of the following theorem, whose proof is
based on the Katok pressure formula [41, 56].

Theorem 10.3. Let µ ∈ Me(g). If either µ(A+) > 0 or µ(A−) > 0,
then hµ(g) +

∫
ϕdµ ≤ P (C ∪ C ′, ϕ).

Proof. Start with the case where µ(A+) > 0; we show that hµ(g) +∫
ϕdµ ≤ P (C, ϕ). Given k ∈ N, let A+

k = {x ∈ A+ : K(x) ≤ k}, and
observe that µ(

⋃
k A

+
k ) > 0, so there is some k such that µ(A+

k ) > 0.
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Note that for every n > k and x ∈ A+
k , we have (x, n) ∈ C. It follows

that for every δ > 0 we have

(10.5) Λn(A+
k , ϕ, δ; g) ≤ Λn(C, ϕ, δ; g).

Fix α ∈ (0, µ(A+
k )) and consider the quantity

sn(ϕ, δ, µ; g) = min

{∑
x∈E

exp{Sgnϕ(x)} : µ

(⋃
x∈E

Bn(x, δ)

)
≥ α

}
.

By Katok’s pressure formula [56, Proposition 4], we have

hµ(g) +

∫
ϕdµ = lim

δ→0
lim sup
n→∞

1

n
log sn(ϕ, δ, µ; g).

Note that sn(ϕ, 2δ, µ; g) ≤ Λn(A+
k , ϕ, δ; g) ≤ Λn(C, ϕ, δ; g), where the

second inequality uses (10.5). It follows that

hµ(g) +

∫
ϕdµ ≤ P (C, ϕ) = lim

δ→0
P (C, ϕ, δ).

The case where µ(A−) > 0 is similar: obtain A−k ⊂ A− such that
K(x) ≤ k for all x ∈ A−k and µ(A−k ) > 0. Then observe that for x ∈ A−k ,
we have (g−nx, n) ∈ C ′ for any n ≥ k. Moreover, (n, ε) separated sets
for g are in one to one correspondence with (n, ε) separated sets for

g−1, and Sg
−1

n ϕ(x) = Sgnϕ(g−n+1x). Then a simple argument shows
that P (A−k , ϕ, ε; g

−1) ≤ P (C ′, ϕ, ε; g).
Finally, Katok’s pressure formula applied to g−1 tells us that

hµ(g) +

∫
ϕdµ = lim

δ→0
lim sup
n→∞

1

n
log sn(ϕ, δ, µ; g−1).

Thus hµ(g)+
∫
ϕdµ ≤ limδ→0 P (A−k , ϕ, ε; g

−1) ≤ limδ→0 P (C ′, ϕ, δ). �

Now, to prove Theorem 3.4, by the hypothesis [E], if Γε(x) 6= {x},
then either there are only finitely many n so that 1

n
Sgnχ(x) ≥ r, or there

are only finitely many n so that 1
n
Sg
−1

n χ′(x) ≥ r. Thus, if x ∈ NE(ε),
then either x ∈ A+ or x ∈ A−. Thus, if µ is an ergodic measure
satisfying µ(NE(ε)) > 0; then at least one of A+ or A− has positive
µ-measure. Thus, Theorem 10.3 applies, and we conclude that

hµ(g) +

∫
ϕdµ ≤ P (C ∪ C ′, ϕ) = max(P (C, ϕ), P (C ′, ϕ)).



62 V. CLIMENHAGA, T. FISHER, AND D. J. THOMPSON

11. Proofs of Lemmas

11.1. General estimates on partition sums.

Proof of Lemma 2.1. It suffices to consider (n, δ)-separated sets of max-
imum cardinality in the supremum for the partition sum. Otherwise,
we could increase the partition sum by adding in another point. An
(n, δ)-separated set of maximum cardinality must be (n, δ)-spanning,
or else we could add in another point and still be (n, δ)-separated. The
first inequality follows.

The second inequality holds by observing that if En is any (n, 2δ)-
separated set and Fn is any (n, δ)-spanning set, then the map π : En →
Fn taking x to the nearest point in Fn has the property that d(x, π(x)) ≤
δ and hence is injective. Thus, for any E which is (n, 2δ) separated,∑

y∈Fn
eSnϕ(y) ≥

∑
x∈En

eSnϕ(π(x)) ≥
∑
x∈En

eSnϕ(x)−nVar(ϕ,δ),

and thus
∑

y∈Fn e
Snϕ(y) ≥ e−nVar(ϕ,δ)Λn(D, ϕ, 2δ). �

Proof of Lemma 2.2. It is shown in [8, Proposition 2.2] that given any
δ > 0 and α > h∗f (ε), there is a constant K such that

Λspan(Bn(x, ε), 0, δ; f) ≤ Keαn

for every x ∈ X and n ∈ N; that is, every Bowen ball Bn(x, ε) has an
(n, δ)-spanning subset with cardinality at most Keαn. Let En ⊂ Dn be
a (n, ε) separated set of maximum cardinality. Then

Dn ⊂
⋃
x∈En

B(x, n, ε).

For each x ∈ En let Fx be an (n, δ)-spanning set for Bn(x, ε) with

#Fx ≤ Keαn

Then the set Gn =
⋃
x∈En Fx is (n, δ)-spanning for Dn and has

#Gn ≤ (#En)Keαn

We conclude that

Λspan
n (D, 0, δ) ≤ Λn(D, 0, ε)Keαn.

The result follows by using the second inequality in Lemma 2.1 and
sending δ → 0. �
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11.2. Pressure and partition sums of perturbations.

Proof of Lemma 3.2. With η and C as in the statement of the lemma,
put α = η/C. By the Anosov shadowing lemma if {xn} is an α-pseudo
orbit for f , then there exists an f -orbit that η-shadows {xn}.

Now fix g ∈ Diff(M) with dC0(f, g) < α. Then every g-orbit is an
α-pseudo orbit for f , and hence for every x ∈ M , we can find a point
π(x) ∈M such that

(11.1) d(fn(πx), gnx) < η for all n ∈ Z.

We prove (i). By expansivity of f , we have

(11.2) P (f, ϕ) = lim
n→∞

1

n
log Λspan

n (ϕ, 3η; f).

Let En be a (n, η)-spanning set for g. Then from (11.1) we see that
π(En) is (n, 3η)-spanning for f ; indeed, given x ∈ M we choose y ∈
π−1(x) and observe that there is z ∈ En such that d(gky, gkz) < η for
all 0 ≤ k < n. Then we have

d(fkx, fk(πz)) = d(fk(πy), fk(πz))

≤ d(fk(πy), gky) + d(gky, gkz) + d(gkz, fk(πz)) < 3η

for every 0 ≤ k < n, showing that π(En) is (n, 3η)-spanning for f . It
follows that

(11.3) Λspan
n (ϕ, 2η; f) ≤

∑
x∈π(En)

eS
f
nϕ(x) =

∑
x∈En

eS
f
nϕ(πx).

Note that

Sfnϕ(πx) =
n−1∑
k=0

ϕ(fk(πx)) ≤
n−1∑
k=0

(ϕ(gkx) + Var(ϕ, η))

and together with (11.2) and (11.3) this gives

P (f, ϕ) ≤ lim
n→∞

1

n
log

∑
x∈En

enVar(ϕ,η)+Sgnϕ(x).

Taking an infimum over all (n, η)-spanning sets for g gives

P (f, ϕ) ≤ Var(ϕ, η) + P (g, ϕ, η)

by the first inequality in Lemma 2.1. This completes the proof of (i)
since P (g, ϕ) ≥ P (g, ϕ, η).

Now we prove (ii). Let En be a maximal (n, 3η) separated set for g.
As in the previous argument, we see from (11.1) that π(En) is (n, η)-
separated for f : indeed, for every x, y ∈ En there is 0 ≤ k < n such
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that d(gkx, gky) ≥ 3η, and hence

d(fk(πx), fk(πy)) ≥ d(gkx, gky)− d(gkx, fkπx)− d(gky, fkπy) > η.

In particular, we have

(11.4)

Λn(ϕ, η; f) ≥
∑

x∈π(En)

eS
f
nϕ(x) =

∑
x∈En

eS
f
nϕ(πx)

≥
∑
x∈En

eS
g
nϕ(x)−nVar(φ,η) ≥ Λn(ϕ, 3η; g)e−nVar(ϕ,η),

as required. �

11.3. Local product structure. We prove Lemma 3.5 following the
usual proof of local product structure: obtain both leaves as graphs of
functions φ1, φ2 and observe that the intersection of the leaves is the
unique fixed point of φ1 ◦ φ2, which is a contraction.

Given x, y ∈ F 1 ⊕ F 2, let z′ be the unique point of intersection of
(x+F 1)∩(y+F 2). Translating the coordinate system so that z′ becomes
the origin, we assume without loss of generality that x ∈ F 1 and y ∈ F 2.
Then W 1(x) and W 2(y) are graphs of C1 functions φ1 : F 1 → F 2 and
φ2 : F 2 → F 1 with ‖Dφi‖ < β. That is, W1(x) = {a+ φ1(a) : a ∈ F 1}
and W2(y) = {φ2(b) + b : b ∈ F 2}. Thus z ∈ W1 ∩W2 if and only if
z = a + φ1(a) = φ2(b) + b for some a ∈ F 1 and b ∈ F 2. This occurs if
and only if b = φ1(a) and a = φ2(b); that is, if and only if a = φ2◦φ1(a)
and b = φ1(a). Because φ2 ◦φ1 is a contraction on the complete metric
space F1 it has a unique fixed point a.

For the estimate on the distances from z to x, y we observe that

‖a‖ = d(a, 0) = d(φ2b, φ2y) ≤ βd(b, y) ≤ β(‖b‖+ ‖y‖),
‖b‖ = d(b, 0) = d(φ1a, φ1x) ≤ βd(a, x) ≤ β(‖a‖+ ‖x‖).

Recall that by the definition of κ̄ we have ‖x‖, ‖y‖ ≤ κ̄‖x− y‖. Thus
we have

‖a‖ ≤ β(β(‖a‖+ ‖x‖) + ‖y‖) ≤ β2‖a‖+ β(1 + β)κ̄d(x, y),

which gives ‖a‖ ≤ β
1−β κ̄d(x, y), and similarly for ‖b‖. Thus

d(a, x) ≤ ‖a‖+ ‖x‖ ≤
(

β

1− β + 1

)
κ̄d(x, y) =

κ̄d(x, y)

1− β .

The bound on dW 1(z, x) follows since ‖Dφ1‖ < β. The other distance
bound is similar.
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11.4. Density of leaves. Before proving Lemma 5.4, we prove the
following general result.

Lemma 11.1. Let W be a foliation of a compact manifold M such that
W (x) is dense in M for every x ∈ M . Then for every α > 0 there is
R > 0 such that WR(x) is α-dense in M for every x ∈M .

Proof of Lemma 11.1. Given R > 0, define a function ψR : M ×M →
[0,∞) by ψR(x, y) = dist(y,WR(x)). Note that for each R, the map
x 7→ WR(x) is continuous (in the Hausdorff metric) and hence ψR
is continuous. Moreover, since W (x) =

⋃
R>0WR(x) is dense in M

for each x ∈ M , we have limR→∞ ψR(x, y) = 0 for each x, y ∈ M .
Finally, when R ≥ R′ we see that WR(x) ⊃ WR′(x) and so ψR(x, y) ≤
ψR′(x, y). Thus {ψR : R > 0} is a family of continuous functions that
converge monotonically to 0 pointwise. By compactness of M ×M ,
the convergence is uniform, hence for every α > 0 there is R such that
ψR(x, y) < α for all x, y ∈M . �

Proof of Lemma 5.4. Put δ = ρ′. By the local product structure for
W cs,W u we can put α = δ/κ and observe that if d(y, z) < α, then

(11.5) W u
δ (z) ∩W cs

δ (y) 6= ∅.
By Lemma 11.1 there is R > 0 such that W u

R(x) is α-dense in Td
for every x ∈ Td. Thus for every x ∈ Td there is z ∈ W u

R(x) such
that d(y, z) < α, and in particular (11.5) holds. The result follows by
observing that W u

R+δ(x) ⊃ W u
δ (z). �

11.5. Contraction in the Grassmannian.

11.5.1. Proof of Lemma 8.7. Given A : R4 → R4 such that ACβ ⊂ Cβ
we first find the map Â : Uβ → Uβ that it induces.

Given v ∈ F u we want to find (ÂL)(v) ∈ F s such that (ÂL)v + v ∈
AΓ(L); that is, such that there is w ∈ F s with

v + (ÂL)v = Aw + ALw = Auuw + Asuw + AusLw + AssLw,

from which we deduce that

v = Auuw + AusLw,

(ÂL)v = Asuw + AssLw = (Asu + AssL)(Auu + AusL)−1v.

We conclude that the map Â : Uβ → Uβ is given by

(11.6) Â(L) = (Asu + AssL)(Auu + AusL)−1.
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Fix L,L′ ∈ Uβ. For convenience we write

Au = Auu + AusL : F u → F u,

As = Asu + AssL : F u → F s,

A′u = Auu + AusL′ : F u → F u,

A′s = Asu + AssL′ : F u → F s.

Now we have

ÂL− ÂL′ = AsA
−1
u − A′s(A′u)−1

= (AsA
−1
u A′u − A′s)(A′u)−1

= AsA
−1
u (A′u − Au)(A′u)−1 + (As − A′s)(A′u)−1

= AsA
−1
u Aus(L′ − L)(A′u)

−1 + Ass(L− L′)(A′u)−1,

together with the following bounds:

‖As‖ ≤ ‖Asu‖+ ‖AssL‖ ≤ ξ +Kβ,

‖A−1
u ‖ ≤ ‖(Auu)−1‖‖(I + AusL(Auu)−1)−1‖ ≤ λ

∑
n≥0

(ξβλ)n =
λ

1− ξβλ,

‖(A′u)−1‖ ≤ λ

1− ξβλ.

Putting it all together we get

‖ÂL− ÂL′‖ ≤
(

(ξ +Kβ)
λ2

(1− ξβλ)2
ξ +

λ2

1− ξβλ

)
‖L− L′‖,

which proves the lemma.

11.5.2. Proof of Lemma 8.8. Let ηjk = Fk−1◦· · ·◦Fj ◦Gj−1◦· · ·◦G0(η).
Then ηkk = ηk and η0

k = Fk−1 ◦ · · · ◦ F0(η). Hence

d(ξk, ηk) = d(ξk, η
k
k) ≤ d(ξk, η

0
k) +

k−1∑
j=0

d(ηjk, η
j+1
k ).

Property (2) gives

d(ξk, η
0
k) = d(Fk−1 ◦ · · · ◦ F0(ξ), Fk−1 ◦ · · · ◦ F0(η)) ≤

k−1∏
j=0

λj · d(ξ, η).
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We also have

d(ηjk, η
j+1
k ) = d(Fk−1 ◦ · · · ◦ Fj+1 ◦ Fj ◦Gj−1 ◦ · · · ◦G0(η),

Fk−1 ◦ · · · ◦ Fj+1 ◦Gj ◦Gj−1 ◦ · · · ◦G0(η))

= d(Fk−1 ◦ · · · ◦ Fj+1 ◦ Fj(ηjj ), Fk−1 ◦ · · · ◦ Fj+1 ◦Gj(η
j
j ))

≤
k−1∏
i=j+1

λi · d(Fj(η
j
j ), Gj(η

j
j )) by (2)

≤
k−1∏
i=j+1

λi · C
j−1∏
i=0

λi = C
∏
i 6=j

λi by (1).

Thus

d(ξk, ηk) ≤
k−1∏
i=j

λi · d(ξ, η) +C
k−1∑
j=0

∏
i 6=j

λi =
k−1∏
j=0

λj ·
[
d(ξ, η) + C

k−1∑
j=0

1

λj

]
.

Acknowledgments. We would like to thank Keith Burns and Amie
Wilkinson for helpful conversations. We also acknowledge the hospital-
ity of the American Institute of Mathematics, where some of this work
was completed as part of a SQuaRE.

References
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