
INTRINSIC ERGODICITY BEYOND SPECIFICATION:

β-SHIFTS, S-GAP SHIFTS, AND THEIR FACTORS

VAUGHN CLIMENHAGA AND DANIEL J. THOMPSON

Abstract. We give sufficient conditions for a shift space (Σ, σ) to be
intrinsically ergodic, along with sufficient conditions for every subshift
factor of Σ to be intrinsically ergodic. As an application, we show that
every subshift factor of a β-shift is intrinsically ergodic, which answers
an open question included in Mike Boyle’s article “Open problems in
symbolic dynamics”. We obtain the same result for S-gap shifts, and
describe an application of our conditions to more general coded systems.
One novelty of our approach is the introduction of a new version of the
specification property that is well adapted to the study of symbolic
spaces with a non-uniform structure.

1. Introduction

We study uniqueness of a measure of maximal entropy (or mme for short)
in the context of symbolic dynamics. Dynamical systems with a unique mme
are called intrinsically ergodic. Determining which dynamical systems are
intrinsically ergodic is a central problem at the interface of ergodic theory
and topological dynamics [Hof79, Hof81, Gur72, Wei70, Buz97, BG07, BF09,
Bow74], and is a prototypical result for the thermodynamic formalism, a
powerful tool for studying the statistical properties of a system.

Parry [Par64] and Weiss [Wei70, Wei73] established intrinsic ergodicity
for topologically transitive shifts of finite type (SFTs), and all their subshift
factors (sofic shifts). Given a property defining a class of shifts, it is natural
to ask whether this property implies intrinsic ergodicity, and whether it
is preserved by passing to factors. This is known to be the case for the
specification property [Bow74], but beyond specification, less is known.

Our motivating examples are the family of β-shifts and the family of S-
gap shifts, which do not have specification (see §3). In particular, we answer
the following open problem posed by Klaus Thomsen, which is Problem 28.2
of Mike Boyle’s article “Open problems in symbolic dynamics” [Boy08]:

Problem. Must a subshift factor of a β-shift be intrinsically ergodic?

Theorem A. Every subshift factor of a β-shift or S-gap shift is intrinsically
ergodic. Moreover, the unique measure of maximal entropy can be charac-
terised as the (well defined) weak* limit as n → ∞ of δ-measures evenly
distributed across periodic points of period at most n.
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Theorem A is proved via our more general main result (Theorem C),
which provides natural sufficient conditions for an abstract shift space to be
intrinsically ergodic. These conditions may be viewed as a weakening of the
specification property, and are well behaved under the operation of taking
factors.

Our conditions take a particularly simple form for the class of coded
systems, which includes β-shifts and S-gap shifts. A shift space X ⊂ Σp =
{1, . . . , p}Z is coded if there exists a countable collection of finite words,
called generators, such that X is the closure of the set of sequences obtained
by freely concatenating the generators. Given a set of generators for a coded
system, let cn be the number of words of length n that appear either at the
beginning or the end of some generator.

Theorem B. Let (X, σ) be a coded shift and let cn be as above.

(1) If limn→∞
1
n

log cn < htop(X, σ), then (X, σ) is intrinsically ergodic.

(2) If limn→∞
1
n

log cn = 0, then every subshift factor of (X, σ) is intrin-
sically ergodic.

Moreover, under these conditions, the unique measure of maximal entropy is
the weak* limit of δ-measures evenly distributed on periodic points of period
at most n.

A crucial ingredient in our approach, and a result of interest in its own
right, is that under our conditions, the unique measure of maximal entropy
satisfies a certain Gibbs property. We also give a sufficient condition for
the unique measure of maximal entropy to be obtained as the weak limit of
periodic orbit measures.

We note that by expansivity, a subshift over a finite alphabet always has at
least one measure of maximal entropy, so the main content of the theorem is
uniqueness. There are many examples of non-intrinsically ergodic subshifts
in the literature [DGS76, Pet86]. One can even construct minimal subshifts
with arbitrarily many measures of maximal entropy [DGS76, Example 27.2].

Beyond the shifts with specification, various classes of shift spaces have
been shown to be intrinsically ergodic, but none of these classes are closed
under passing to factors. For example, a class of shifts called almost sofic
was introduced by Petersen in [Pet86]. Many of these shifts are intrinsically
ergodic, but not all, and Petersen gives an explicit example of an almost
sofic shift that is intrinsically ergodic but which nevertheless has a subshift
factor with more than one measure of maximal entropy.

Thus the class of shifts that are both almost sofic and intrinsically ergodic
is not closed under factors, and Petersen observed that “a useful class of
almost sofic, intrinsically ergodic systems which contains the sofic systems
and is closed under the usual dynamical operations such as passing to factors
has not yet been identified.” One merit of our approach is that we are able
to describe a class of intrinsically ergodic systems which meets Petersen’s
criterion of being closed under passing to factors.
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We compare our approach with existing techniques for proving intrinsic
ergodicity beyond specification, focusing on the β-shifts, although we em-
phasise that our techniques and results work in a more general setting. Each
value of β > 1 determines a subshift Σβ . The β-shifts are a very natural
and explicit family of shift spaces which, for generic values of β, are not
contained in the usual classes of shift spaces where standard techniques ap-
ply (eg. SFTs, sofic shifts, shifts with specification). Interest in the β-shift
arises from its role as the coding space for the β-transformation, which has
a deep connection with number theory (see §3).

Intrinsic ergodicity for arbitrary β-shifts was established independently
by Hofbauer [Hof79] and by Walters [Wal78]. Hofbauer’s approach relies
on modeling the β-shift by a countable state topological Markov chain with
strong recurrence properties, and using a version of the Perron–Frobenius
theorem to establish intrinsic ergodicity. The approach taken by Walters, on
the other hand, applies transfer operator methods (related to the Perron–
Frobenius approach above) directly to the β-shift.

Both of these approaches have been extensively generalised, and have
proved very successful in a multitude of situations. However, it seems prob-
lematic to adapt these methods to the operation of taking factors. We de-
velop another approach, which does not use Perron–Frobenius theory, and
which has more in common with Bowen’s elegant proof that expansive maps
with specification are intrinsically ergodic [Bow74].

Given a shift space X, we write L for the language of X—that is, the
collection of all finite words that appear in sequences x ∈ X. In this context,
specification is the ability to use a connecting word of a fixed length to glue
together any two words v, w from the language of the shift space—that is,
the existence of t ∈ N such that given any v, w ∈ L, there is a word x ∈ L
with length |x| = t for which the concatenation vxw is once again in L.
For shifts with specification, Bowen’s proof proceeds by using combinatorial
arguments to establish a Gibbs property for a certain measure of maximal
entropy, and then using this Gibbs property to prove uniqueness.

For more general shifts, topological transitivity guarantees the existence
of some x ∈ L so that vxw ∈ L, but x may be arbitrarily long; this is the
case for generic β-shifts. This necessitates a new approach to the estimates
in Bowen’s proof, which no longer hold in their original form. We overcome
this difficulty by considering a collection of “good” words G ⊂ L on which
specification holds. We use the structure of Σβ to characterise the obstruc-
tions that prevent a word from being good: the words that do not belong to
G are precisely those that end in a word taken from a certain smaller collec-
tion of words Cs. We are able to describe the collection Cs very explicitly,
and the growth rate of the number of words of length n in Cs is subexpo-
nential. This allows us to prove that a uniformly positive proportion of all
the words of length n in the language are ‘good’, which in turn allows us to
establish a weakened Gibbs property and prove uniqueness.
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For our more general results, including S-gap shifts and general coded
shifts, we pursue a similar strategy. Given a collection of words G that
satisfies the specification property, we characterise the words that do not
belong to G explicitly by a collection of their possible endings Cs (suffixes)
and a collection of their possible beginnings Cp (prefixes). We require that
every word can be extended to a word in G in a suitably uniform manner.
If the number of words of length n arising from the collections Cs and Cp

grows more slowly than the topological entropy, then the shift is intrinsically
ergodic.

We mention that our work is in a similar spirit to Buzzi’s work on shifts
of quasi-finite type [Buz05], of which the β-shifts are a prime example. The
key property he assumes is that the number of words that are “constraints”
grows slower than the entropy. This property is philosopically similar to our
requirement that a certain collection of words grows slower than the entropy.
Nevertheless, our conditions do not seem to imply the quasi-finite type prop-
erty, and definitely do not follow from it. Buzzi was able to show (among
many other things) that q.f.t. shifts have finitely many ergodic measures of
maximal entropy, and gave counter-examples to uniqueness.

Asking for the specification property to hold only for words taken from a
suitable proper subset of L is a key innovation in our approach, and provides
the necessary flexibility to deal with shift spaces whose behaviour is a long
way from being Markov. There has been a resurgence in interest in spec-
ification properties recently, due to important contributions by Pfister and
Sullivan (almost specification [PS07, Yam09, Tho10]), and Varandas (non-
uniform specification [Var10]). Our work is very much in the spirit of these
developments, giving another direction in which to weaken the specification
property in order to apply to a wider range of examples.

In §2, we collect our definitions and state our main result, a condition
for intrinsic ergodicity, together with results on how this condition behaves
under factors. In §3, we discuss in detail the application to β-shifts, S-gap
shifts, and their factors, showing that Theorem A follows from our main
results. In §4, we discuss coded systems and derive Theorem B. In §§5-6,
we prove our main results on intrinsic ergodicity, and their behaviour under
factors.

2. Definitions and statement of result

A topological dynamical system is a compact metric space X together
with a continuous map f : X → X. Let Mf (X) denote the space of f -
invariant probability measures on X. We write htop(X, f) for the topolog-
ical entropy of the dynamical system, and hµ(f) for the measure-theoretic
entropy of µ ∈ Mf (X). The variational principle [Wal82, Theorem 8.6]
states that

htop(X, f) = sup{hµ(f) | µ ∈ Mf (X)}.
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An invariant probability measure that attains this supremum is called a
measure of maximal entropy (or mme for short). If such a measure exists
and is unique, the system is called intrinsically ergodic.

2.1. Languages for shifts. We begin by recalling the relationship between
shift spaces and languages. We refer the reader to [BH86, LM95] for further
background and proofs.

Fix an integer p ≥ 2 and let {1, . . . , p}<N be the collection of all fi-
nite words in the symbols 1, . . . , p. Juxtaposition denotes concatenation—
that is, given two words v = v1 · · · vm and w = w1 · · ·wn, we write vw =
v1 · · · vmw1 · · ·wn.

A one-sided language L ⊂ {1, . . . , p}<N is a collection of words such that

(1) if w ∈ L and v is a subword of w, then v ∈ L;
(2) if w ∈ L, then there exists a ∈ {1, . . . , p} such that wa ∈ L.

Given a one-sided language L, let X = XL ⊂ Σ+
p be the collection of all

sequences x1x2 . . . such that

(2.1) xixi+1 . . . xj−1xj ∈ L

for every 1 ≤ i ≤ j < ∞. Then X is a closed σ-invariant set, where σ is
the usual shift operator defined on {1, . . . , p}N; this is the one-sided shift
associated with the language L.

The construction also runs in the converse direction: given a one-sided
shift X ⊂ Σ+

p , the set of all words that appear in sequences x ∈ X is a one-
sided language. This gives a one-to-one correspondence between one-sided
shift spaces and one-sided languages.

If L is a one-sided language that satisfies the additional condition

(3) if w ∈ L, then there exists a ∈ {1, . . . , p} such that aw ∈ L,

then we say that L is a two-sided language. Let X̂ = X̂L ⊂ Σp be the
collection of all doubly infinite sequences . . . x−1x0x1 . . . such that (2.1) holds

for every −∞ < i ≤ j < ∞. Then X̂L is a closed σ-invariant set, where
σ is the usual shift operator defined on {1, . . . , p}Z; this is the two-sided
shift associated with the language L, and is the natural extension of XL.
As with one-sided shifts, the correspondence runs both ways. The following
well known proposition (whose proof we give in Section 6.1 for completeness)
shows that intrinsic ergodicity for XL is equivalent to intrinsic ergodicity for
X̂L.

Proposition 2.1. The invariant measures of XL and X̂L can be identified
by a natural entropy preserving bijection.

Given a one-sided language L, let L̂ be the union of all subsets of L that
satisfy (3). Then XL̂ =

⋂

n≥0 σn(XL), and so XL̂ and XL have the same
space of invariant measures. Thus it suffices to consider two-sided languages.

Let |w| denote the length of a word w, and denote by Ln the collection
of all words of length n in L. For one-sided shifts, there is a one-to-one
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correspondence between words w ∈ L and central cylinders

[w] := {x ∈ XL | xi = wi for all 1 ≤ i ≤ |w|}.

We have a similar correspondence between words and cylinders for two-sided
shifts, with the caveat that we must keep track of where the cylinder begins:
given w ∈ L and k ∈ Z, we define the cylinder

k[w] := {x ∈ X̂L | xk+i−1 = wi for all 1 ≤ i ≤ |w|}.

We define the central cylinder for w ∈ Ln to be k[w] where k = −⌊n/2⌋.
Given a collection of words D ⊂ L and n ≥ 1, let Dn = D ∩ Ln be the

set of words of length n in D. We denote the growth rate of the number of
words of length n in D by

(2.2) h(D) = lim
n→∞

1

n
log #Dn.

The correspondence between words and cylinders implies that

h(L) = htop(XL, σ).

Given collections of words A,B ⊂ L, we will write

AB = {vw ∈ L | v ∈ A, w ∈ B}.

Note that only words in L are included in the concatenation AB. It may be
the case that A and B are both non-empty, but a word in B cannot follow
a word in A, and so AB = ∅.

We will occasionally write 0n to denote the word that contains the symbol
0 repeated n times. Usually, however, superscripts will denote indices—that
is, we write w1, w2, . . . for a collection of words, so as to reserve the notation
wi for the ith entry of the word w.

2.2. Specification properties. There are a variety of properties in the
literature that go by the name “specification”. They all have to do with
the ability to approximate arbitrary orbit segments by a single trajectory.
In the standard definition of specification due to Bowen, the time spent
transitioning between orbit segments has a fixed length, independent of the
length of the orbit segments. For symbolic spaces, this corresponds to being
able to freely concatenate words using connecting words of fixed length.
There are a number of variations on this definition, both in the classical and
recent literature [Bow74, DGS76, PS07, Var10].

We formulate specification properties that apply only to a subset of the
space. Our definition applies to naturally defined subsets of many examples,
such as β-shifts, that do not have specification.

Definition 2.1. Let L be a language (one- or two-sided) and consider a
subset G ⊂ L. Fix t ∈ N; either of the following conditions defines a speci-
fication property on G with gap size t.

(S): For all m ∈ N and w1, . . . , wm ∈ G, there exist v1, . . . , vm−1 ∈ L
such that x := w1v1w2v2 · · · vm−1wm ∈ L and |vi| = t for all i.
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(Per): Condition (S) holds, and in addition, the cylinder [x] contains
a periodic point of period exactly |x| + t.

When G = L, we recover the usual specification property of Bowen.

Remark. We stress that, in our definition, we only ask that x ∈ L. We do
not require that x ∈ G.

Remark. A natural variant on this definition is to allow the connecting words
vi in (S) to satisfy |vi| ≤ t for all i, rather than requiring the equality |vi| = t.
We refer to this as (W)-specification. Theorem C and Proposition 2.2 be-
low still hold if (S)-specification is replaced with (W)-specification (one only
needs to be a little more careful in the proof of Lemma 5.10), while Proposi-
tion 2.4 and Theorem D require the stronger condition (S). In general, (Per)
is stronger than (S), which is in turn stronger than (W); however, all three
are equivalent in the case t = 0.

2.3. Statement of Results. We consider languages L admitting a decom-
position L = CpGCs—that is, there are collections of words Cp,G, Cs ⊂ L
such that every word in L can be written as a concatenation of a word from
Cp (a prefix), a word from G (a “good” core), and a word from Cs (a suffix),
in that order (there may be more than one way to do this).

Given such a decomposition, we define collections of words G(M) for each
M ∈ N by

G(M) = {uvw | u ∈ Cp, v ∈ G, w ∈ Cs, |u| ≤ M, |w| ≤ M}.

Observe that
⋃

M≥1 G(M) = L.

Let Per(n) = {x ∈ X | σk(x) = x for some 1 ≤ k ≤ n} be the collection
of periodic points of period at most n, and write

(2.3) µn =
1

# Per(n)

∑

x∈Per(n)

δx

for the probability measures evenly distributed across the points in Per(n).
The following results apply equally to one-sided and two-sided shift spaces.

Theorem C. Let (X, σ) be a shift space whose language L admits a decom-
position L = CpGCs, and suppose that the following conditions are satisfied:

(I) G has (S)-specification.
(II) h(Cp ∪ Cs) < h(L) = htop(X, σ).

(III) For every M ∈ N, there exists τ such that given v ∈ G(M), there exist
words u, w with |u| ≤ τ, |w| ≤ τ for which uvw ∈ G.

Then (X, σ) is intrinsically ergodic. If G has (Per)-specification, then the
sequence of probability measures (2.3) converges to the unique measure of
maximal entropy.

Remark. Condition (III) says that every word can be extended to a word in
G, and that the length required to do so is controlled by the prefix length
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and suffix length. Our proof will show that conditions (I) and (II) imply
h(G) = h(L).

Remark. The assumption that G has (Per)-specification guarantees that the
periodic orbit measures (2.3) are well defined. It is possible for a collection of
words to satisfy (S)-specification without X containing any periodic orbits,
in which case the measures in (2.3) are not well defined.

The following proposition tells us how the decomposition L = CpGCs and
its properties behave under factors.

Proposition 2.2. Let (X̃, σ̃) be a shift factor of (X, σ), and denote the

corresponding languages by L̃ and L. If L admits a decomposition L =
CpGCs, then L̃ admits a decomposition L̃ = C̃pG̃C̃s such that

(1) If G has (S)-specification, then G̃ has (S)-specification;

(2) If G has (Per)-specification, then G̃ has (Per)-specification;

(3) h(C̃p ∪ C̃s) ≤ h(Cp ∪ Cs).

(4) If L satisfies (III), then so does L̃.

Combining Theorem C with Proposition 2.2 gives the following result.

Corollary 2.3. Let (X, σ) be a shift space whose language admits a de-

composition CpGCs satisfying (I), (II) and (III), and let (X̃, σ) be a subshift

factor of (X, σ) such that htop(X̃, σ) > h(Cp ∪ Cs). Then X̃ is intrinsically
ergodic. If G has (Per)-specification, then the sequence of probability mea-

sures (2.3) converges to the unique measure of maximal entropy for (X̃, σ).

There are a number of important examples for which the collection of
prefixes and suffixes grows subexponentially. Furthermore, we have the fol-
lowing dichotomy for systems satisfying Conditions (I) and (III).

Proposition 2.4. Let (X, σ) be a shift space whose language has a decom-
position L = CpGCs satisfying (I) and (III). Then either X has positive
entropy or X comprises a single periodic orbit.

Since Conditions (I) and (III) are preserved by factors (Proposition 2.2),
we obtain the following result, which gives a broad class of intrinsically
ergodic systems that is closed under taking factors.

Theorem D. Let (X, σ) be a shift space whose language admits a decom-
position CpGCs satisfying conditions (I), (III) and

(II′) h(Cp ∪ Cs) = 0.

Then every subshift factor of (X, σ) is intrinsically ergodic. If G has (Per)-
specification, then the sequence of probability measures (2.3) converges to

the unique measure of maximal entropy for (X̃, σ).

In Section 3, we will show that every β-shift and S-gap shift has a language
with a decomposition satisfying the conditions of Theorem D, which proves
Theorem A.
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3. Application to β-shifts, S-gap shifts, and their factors

3.1. β-shifts. We recall some facts about β-shifts; further information can
be found in [Par60, Joh99, PS07, Mai07, Tho05, Tho10], among others. For
any β-shift, we describe a decomposition of the language which satisfies the
hypotheses of Theorem D, whence the first part of Theorem A follows.

Fix a real number β > 1, and let b = ⌈β⌉ be the smallest integer greater
than or equal to β. The β-shift Σβ ⊂ {0, . . . , b}N is the natural symbolic
space associated to the β-transformation fβ : [0, 1) 7→ [0, 1) given by

fβ(x) = βx (mod 1).

There is a uniquely determined sequence w(β) = (wj(β))∞j=1 that is the
lexicographic supremum over all solutions to the equation

∞
∑

j=1

wj(β)β−j = 1.

The β-shift can be characterised by

x ∈ Σβ ⇐⇒ σk(x) � w(β) for all k ≥ 1,

where � denotes the lexicographic ordering on {0, . . . , b}N. In particular,
for every k, σk(w(β)) � w(β).

A β-shift is sofic if and only if β is eventually periodic, and has specifica-
tion if and only if w(β) does not contain arbitrarily long strings of zeroes;
the set of β with this property has Lebesgue measure zero. Generically,
then, a β-shift is not sofic and does not possess the specification property
[BM86, Sch97].

v1 v2 v3 v4 v5 v6 v7
2 0 1 0 0 1

0

0

1

0

Figure 1. A graph presentation of a β-shift.

Every β-shift can be presented by a countable state directed labeled graph
Γβ, which is shown in Figure 1 (see also [BH86, PS07, Tho10]). We describe
the construction of this graph, assuming that w(β) is not eventually periodic.
Let v1, v2, . . . be a countable set of vertices. We use the following two rules
to add edges to this graph. Firstly, for every i ≥ 1, we draw a directed edge
from vi to vi+1 and label it with the value wi(β). Secondly, if wi(β) ≥ 1,
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then for every j ∈ {0, 1, . . . , wi(β) − 1}, we draw a directed edge from vi to
v1 labeled with the value j.

Note that if wi(β) = 0, then the only edge which starts at vi is the edge
from vi to vi+1 labeled by 0, and if wi(β) > 0 then there is at least one
edge from vi to v1. The graph Γβ characterises Σβ as follows: a sequence x
belongs to Σβ if and only if x labels an infinite path of directed edges in Γβ

that starts at the vertex v1.
It follows that words in the language L correspond to finite paths in the

graph Γβ starting at v1. Let G be the collection of words for which the
corresponding path also ends at v1, and let Cs be the collection of words for
which the corresponding path never returns to v1. Let Cp = ∅. We can see
from the graph that

Cs = {w1(β) · · ·wn(β) | n ≥ 1}.

This is because the only finite paths that never return to v1 are those which
visit the vertices v1, v2, v3, . . . in that order.

Every path can be decomposed into a part that ends at v1 followed by a
part that does not return, and so this gives us a decomposition L = CpGCs.

Loops based at v1 can be freely concatenated and each such loop cor-
responds to a periodic orbit, hence G has (Per)-specification with t = 0.
Furthermore, we have

G(M) = {vw | v ∈ G, w ∈ Cs, |w| ≤ M},

and by taking τ to be such that every path of length ≤ M that begins at v1

can return to v1 within τ steps, we see that Condition (III) is satisfied.
Furthermore, #Cs

n = 1 for all n ≥ 1, and so Condition (II′) holds. Thus
every β-shift satisfies the conditions of Theorem D, and this proves the part
of Theorem A concerning β-shifts.

3.2. S-gap shifts. An S-gap shift ΣS is a subshift of {0, 1}Z defined by the
rule that for a fixed S ⊂ {0, 1, 2, . . .}, the number of 0’s between consecutive
1’s is an integer in S. More precisely, the language of ΣS is

{0n10n110n21 · · · 10nk10m | ni ∈ S for all 1 ≤ i ≤ k and n, m ∈ N},

together with {0n | n ∈ N}, where we assume that S is infinite. (If S is
finite, then ΣS is sofic.) The entropy of the S-gap shift is log λ, where λ is
the unique solution to 1 =

∑

n∈S x−n−1. (See [Wei70] or [LM95, Exercise
4.3.7].)

The language for ΣS admits the following decomposition:

G = {0n110n21 · · · 10nk1 | ni ∈ S for all 1 ≤ i ≤ k},

Cp = {0n1 | n /∈ S},

Cs = {0n | n ∈ N}.

It follows immediately that G has (Per)-specification with t = 0. Condition
(II′) follows from the observation that #Cp

n ≤ 1 and #Cs
n = 1 for every n.
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It is not hard to see that Condition (III) holds. (See also the discussion
in Section 4.) Applying Theorem D proves the remainder of Theorem A.

Remark. If every element of S is odd, then every periodic orbit in the cor-
responding S-gap shift has even period. This demonstrates that in the defi-
nition of the periodic orbit measures (2.3), it is crucial that Per(n) denotes
the periodic orbit measures of period at most n, rather than those of period
exactly n.

3.3. Specification properties for S-gap shifts. Specification and almost
specification properties can be seen to fail for a generic S-gap shift. For
example, let S = {2n | n ∈ N}. Consider the words u = 10i and w = 0j1.
Suppose i + j = 2n − k > 2n−1. The shortest word v such that uvw is
admissible is v = 0k. Choosing n and k large enough clearly shows that
specification fails. Similarly, specification fails for any S-gap shift for which
S has unbounded gaps (i.e. {ni+1 − ni | ni ∈ S} is unbounded).

We give the definition of almost specification and give a similar example
which shows that almost specification fails.

We say a non-decreasing function g : N 7→ N is a mistake function if g(n) ≤
n for all n and g(n)/n → 0. We say a symbolic space has almost specification
if there exists a mistake function g such that for every w1, . . . , wn ∈ L, there
exist words v1, . . . , vn ∈ L with |vi| = |wi| such that v1v2 · · · vn ∈ L and each
vi differs from wi in at most g(|vi|) places. This is a special case, adapted
to symbolic dynamics, of the definition that appears in [PS07, Tho10].

The space of shifts with almost specification is closed under factors, and
every β-shift has almost specification with the mistake function g(n) = 1
(see [Tho10] for details). It is an open question whether every shift with
almost specification is intrinsically ergodic. We demonstrate that Theorem
C applies to examples without the almost specification property by giving
an example of an S-gap shift where almost specification fails.

Consider the S-gap shift where S = {(2n)! | n ∈ N}. Let g(n) be any
mistake function. Let n be sufficiently large so that 2(g(2n)+1)) ≤ 2n. Let

k = (2n)! and let u = 1g(k)+10k−g(k)−1, and v = 0k−g(k)−11g(k)+1. Observe
that both u and v are in L. Consider the word uv. There is no way to
change uv into the constant sequence 0n. The number of 0’s we can change
to a 1 is bounded above by 2g(k). Each string of 0’s we obtain must have a
length belonging to S. Suppose our modified word has ℓ strings of zeroes of
length n1, . . . , nℓ ∈ S. Each of these lengths is bounded above by (2(n−1))!,

and ℓ ≤ 2g(k) + 1. Thus,
∑ℓ

i=1 ni ≤ 2(g(k) + 1)(2(n − 1))! < 2n(2(n − 1))!.
There are at most 4g(k) + 2 < 8n + 2 entries of 1. Thus, if we were able
to modify uv into an admissible word using 2g(k) mistakes, then its length
would be strictly less than 2(2n)! which is a contradiction.
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4. Application to coded systems

A shift space is coded if its language L is freely generated by a countable
set of words—that is, if there exist words {wn}n∈N ⊂ L such that

L = {wn1wn2 · · ·wnk | ni ∈ N},

where {·} denotes closure under the operation of passing to subwords. We
refer to the words wn as the generators of the coded system (X, σ). For
more information, see [BH86, FF92].

The language of a coded system has a natural decomposition L = CpGCs

for which G has (Per)-specification. Namely, we may consider

G = {wn1 · · ·wnk | ni ∈ N},

the collection of all concatenations of generators (note that here we do not
allow passing to subwords), together with

Cp = {isk(w
n) | n ∈ N, 1 ≤ k ≤ |wn|},

Cs = {ipk(w
n) | n ∈ N, 1 ≤ k ≤ |wn|}.

That is, Cp is the collection of all suffixes of generators, and Cs is the collec-
tion of all prefixes of generators. Conditions (I) and (III) hold for much the
same reasons as they did for the S-gap shifts. Indeed, it is immediate that
G has (Per)-specification with t = 0, so Condition (I) holds.

For Condition (III), we observe that given u ∈ Cp, there exists a generator
w such that u = is|u|(w). Let τp(u) be the minimum value of |w| over all

such generators. Given u ∈ Cs, define τ s(u) similarly, as the minimum value
of |w| over all generators w such that u is a prefix of w.

Given M ∈ N, define τ s(M) and τp(M) by

τ s(M) = max{τ s(u) | u ∈ Cp, |u| ≤ M},

τp(M) = max{τp(u) | u ∈ Cs, |u| ≤ M}.

Let τ(M) = τp(M) + τ s(M); then given any word v ∈ G(M), there exist
words x1, x2 with |x1| ≤ τ s(M) and |x2| ≤ τp(M) such that x1vx2 ∈ G.
This proves Condition (III).

The number cn defined before Theorem B is nothing but #(Cp∪Cs)n and
so limn→∞

1
n

log cn = h(Cp ∪Cs). Thus, Theorem B follows from Theorem C
and Theorem D. We remark that our results on β-shifts, S-gap shifts, and
their factors (Theorem A) are a special case of Theorem B.

5. Proof of Theorem C

5.1. Uniform estimates on numbers of words. We obtain estimates on
the growth rates of #Ln and #Gn. The estimates in this section require
only conditions (I) and (II): condition (III) will not be used until we prove
the Gibbs property in Section 5.3. The following lemma is a special case of
[KH95, Lemma 18.5.3] or [Bow74, Lemma 2-3].
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Lemma 5.1. For every n,

(5.1) #Ln ≥ enh(L).

Proof. It is straightforward to obtain #Lm+n ≤ (#Lm)(#Ln), which yields
#Lkn ≤ (#Ln)k, and upon taking logarithms, 1

kn
log #Lkn ≤ 1

n
log #Ln.

Passing to the limit as k → ∞ gives the result. �

Using condition (I), we can obtain an upper bound on #Gn.

Lemma 5.2. There exists C1 > 0 such that for all n,

(5.2) #Gn ≤ C1e
nh(L).

Proof. Condition (I) immediately implies that #Lk(n+t) ≥ (#Gn)k, which
gives

1

k(n + t)
log #Lk(n+t) ≥

1

n + t
#Gn.

Sending k to infinity, we obtain #Gn ≤ e(n+t)h(L). �

This leads to an upper bound on #Ln by using the decomposition L =
CpGCs together with the bound on Cp and Cs given in condition (II).

Lemma 5.3. There exists C2 > 0 such that for every n,

(5.3) #Ln ≤ C2e
nh(L).

Proof. Fix ε > 0 such that h(Cp ∪ Cs) < h(L) − ε. Then there exists a
constant C3 such that

(5.4) #(Cp
n ∪ Cs

n) ≤ C3e
n(h(L)−ε)

for every n. For every word x ∈ Ln there are non-negative integers i, j, k
that sum to n and for which x can be decomposed as uvw, where u ∈ Cp

i ,
v ∈ Gj , and w ∈ Cs

k. Thus

#Ln ≤
∑

i+j+k=n

(#Cp
i )(#Gj)(#Cs

k)

≤ C1C
2
3

∑

i+j+k=n

ei(h(L)−ε)ejh(L)ek(h(L)−ε)

= C1C
2
3enh(L)

∑

i+j+k=n

e−(i+k)ε

= C1C
2
3enh(L)

n
∑

m=0

m
∑

i=0

e−mε

≤ C1C
2
3enh(L)

∑

m≥0

(m + 1)e−mε.

The sum converges and is independent of n, which completes the proof. �

In place of a lower bound for every #Gn, which is not possible, we obtain
the following estimate.
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Lemma 5.4. There exist constants C4 > 0 and N ∈ N such that for every
n ∈ N, there exists ℓ with n − N ≤ ℓ ≤ n such that

(5.5) #Gℓ ≥ C4e
ℓh(L).

Proof. Given j ∈ N, write aj = #Gje
−jh(L). Choose ε > 0 and C3 so

that (5.4) holds, as in the proof of Lemma 5.3. A similar calculation to the
one there gives

enh(L) ≤ #Ln ≤
∑

i+j+k=n

(#Cp
i )(#Gj)(#Cs

k)

≤ C2
3

∑

i+j+k=n

e(i+k)(h(L)−ε)#Gj .

This implies that

C−2
3 ≤

∑

i+j+k=n

e−(i+k)ε#Gje
−jh(L)

≤
n
∑

m=0

(m + 1)e−mεan−m.

Let N be large enough such that C5 := C−2
3 −

∑

m≥N (m + 1)e−mεC1 > 0,

and let C6 = max{(m + 1)e−mε | m ∈ N}. Then we have

C−2
3 ≤

(

N−1
∑

m=0

C6an−m

)

+





∑

m≥N

(m + 1)e−mεC1



 ,

which yields

C6

N−1
∑

m=0

an−m ≥ C5.

It follows that there exists n − N ≤ ℓ ≤ n such that aℓ ≥ C5/(NC6). �

We use a similar argument to obtain the following estimate for #G(M)n.

Lemma 5.5. For all δ > 0, there exists M = M(δ) ∈ N such that for all n,

(5.6)
#G(M)n

#Ln
≥ 1 − δ.

Proof. Let ε > 0 and C3 be such that (5.4) holds, and choose M so that
C1C

2
3

∑

m>M (m + 1)e−mε ≤ δ.
Once again, we use the decomposition property of L to write any word

in Ln as uvw, where u ∈ Cp
i , v ∈ Gj , and w ∈ Cs

k, with i + j + k = n. If
i + k ≤ M , then uvw ∈ G(M)n, and it follows that

#Ln ≤ #G(M)n +
∑

i+j+k=n
i+k>M

(#Cp
i )(#Gj)(#Cs

k).
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Now using (5.2), (5.4), and (5.1), we have

#Ln ≤ #G(M)n + C1C
2
3

∑

i+j+k=n
i+k>M

e(i+k)(h(L)−ε)ejh(L)

≤ #G(M)n + C1C
2
3 (#Ln)

∑

m>M

(m + 1)e−mε

≤ #G(M)n + δ(#Ln). �

An immediate consequence of Lemma 5.5 is that every collection of words
that grows quickly enough has arbitrarily large intersection with G(M), in
the following sense.

Lemma 5.6. Suppose D ⊂ L and C7 > 0 are such that

(5.7) #Dn ≥ C7e
nh(L)

for every n. Then there exist constants M ∈ N and C8 > 0 such that for
every n ∈ N,

(5.8) #(Dn ∩ G(M)n) ≥ C8e
nh(L).

Proof. Let δ > 0 be sufficiently small that C8 := C7 − δC2 > 0, and let
M = M(δ) be given by Lemma 5.5. Then (5.3), (5.6), and (5.7) yield

#(Dn ∩ G(M)n) ≥ #Dn − #(Dn \ G(M)n)

≥ C7e
nh(L) − #(Ln \ G(M)n)

≥ C7e
nh(L) − δ#Ln

≥ C7e
nh(L) − δC2e

nh(L) = C8e
nh(L). �

5.2. Collections of cylinders with uniformly positive measure. For
a collection of words D and a measure ν, we abuse notation slightly and
write ν(Dn) = ν

(
⋃

w∈Dn
[w]
)

, where [w] is the central cylinder defined by w.
We also write ν(w) in place of ν([w]) where it will not cause confusion.

Lemma 5.7. For all γ ∈ (0, 1) there exists C9 > 0 such that if ν is a
measure of maximal entropy, n ∈ N, and Dn ⊂ Ln has ν(Dn) ≥ γ, then

(5.9) #Dn ≥ C9e
nh(L).

Proof. Recall from the definition of measure-theoretic entropy that

hν(σ) = lim
n→∞

1

n
Hν(A

n) = inf
n≥1

1

n
Hν(A

n),

where An is the partition of X into n-cylinders, and

Hν(A
n) =

∑

w∈Ln

−ν(w) log ν(w).
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Because hν(σ) = htop(XL, σ) = h(L), this yields the following inequality for
every n (we write Dc

n for the complement of Dn in Ln):

nh(L) ≤
∑

w∈Ln

−ν(w) log ν(w)

=
∑

w∈Dn

−ν(w) log ν(w) +
∑

w∈Dc
n

−ν(w) log ν(w).

Normalising each sum yields

(5.10)

nh(L) ≤ ν(Dn)

(

∑

w∈Dn

−
ν(w)

ν(Dn)
log

(

ν(w)

ν(Dn)

)

)

+ ν(Dc
n)





∑

w∈Dc
n

−
ν(w)

ν(Dc
n)

log

(

ν(w)

ν(Dc
n)

)





+ (−ν(Dn) log ν(Dn) − ν(Dc
n) log ν(Dc

n)).

Recall that for any non-negative numbers a1, . . . ak summing to 1, we have

k
∑

i=1

−ai log ai ≤ log k.

We apply this to the first sum in (5.10) with the quantities ai replaced by
ν(w)

ν(Dn) , to the second sum with ai replaced by ν(w)
ν(Dc

n) , and to the last line with

a1 = ν(Dn) and a2 = ν(Dc
n). This yields

nh(L) ≤ ν(Dn) log #Dn + ν(Dc
n) log #(Dc

n) + log 2,

Lemma 5.3 implies that #(Dc
n) ≤ #Ln ≤ C2e

nh(L), and so we have

nh(L) ≤ ν(Dn) log #Dn + (1 − ν(Dn))(log C2 + nh(L)) + log 2

= ν(Dn) log #Dn + log(2C2) + nh(L) − ν(Dn)(log C2 + nh(L)).

Rearranging and using the assumption that ν(Dn) ≥ γ, this gives

ν(Dn) log #Dn ≥ ν(Dn)(log C2 + nh(L)) − log(2C2),

log #Dn ≥ log C2 + nh(L) −
log(2C2)

ν(Dn)

≥ log C2 + nh(L) − γ−1 log(2C2),

and exponentiating both sides yields (5.9). �

Lemma 5.8. For all γ ∈ (0, 1) there exists C10 > 0 and M ∈ N such that
if ν is a measure of maximal entropy, n ∈ N, and Dn ⊂ Ln has ν(Dn) ≥ γ,
then

(5.11) #(Dn ∩ G(M)) ≥ C10e
nh(L).

Proof. This follows from Lemma 5.7 and Lemma 5.6. �
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5.3. A Gibbs property. We build a measure of maximal entropy µ as a
limit of δ-measures µn evenly distributed across n-orbits. In particular, for
every n we choose a finite set of points En such that for every word w ∈ Ln,
the central cylinder [w] contains exactly one element of En. Consider the
measures νn defined by

νn :=
1

#En

∑

x∈En

δx.

In order to obtain invariant measures, we consider the measures

(5.12) µn :=
1

n

n−1
∑

k=0

(σ∗)kνn

and let µ be a weak* limit of the sequence {µn}.

Lemma 5.9. µ is a measure of maximal entropy.

Proof. This is proved in the second part of [Wal82, Theorem 8.6]. �

We prove a Gibbs property for the measure of cylinders corresponding to
words in G.

Lemma 5.10. There exists C11 > 0 such that for every n ∈ N and w ∈ Gn,
we have

(5.13) µ([w]) ≥ C11e
−nh(L).

Proof. By Lemma 5.4, we have N ∈ N, C4 > 0, and a sequence nj ր ∞
with nj+1 − nj ≤ N such that for all j,

(5.14) #Gnj
≥ C4e

njh(L).

Consider w ∈ Gn. We estimate µm([w]) for large m by estimating νm(σ−k([w]))
first. Let t ∈ N be provided by condition (I). Fix k ≤ m. If k − t ≤ N , let
ℓ1 = 0. Otherwise, let ℓ1 ∈ {nj} and satisfy k − t − N ≤ ℓ1 ≤ k − t. Let
ℓ2 ∈ {nj} satisfy m−k− t−n−N ≤ ℓ2 ≤ m−k− t−n. If m−k− t−n < 0,
let ℓ2 = 0.

First assume ℓ1, ℓ2 > 0. It follows from condition (I) that for every v1 ∈
Gℓ1 and v2 ∈ Gℓ2 there exist words u1, u2 ∈ L with |ui| = t such that
x := v1u1wu2v2 ∈ L. Extending x by at most N symbols at each end, we
obtain a word y ∈ Lm. Different choices of v1 and v2 give different words y,
which shows that

νm(σ−k([w])) ≥
(#Gℓ1)(#Gℓ2)

#Lm
.

If ℓi = 0, this formula still holds by setting #Gℓi
= 1.

Since ℓi ∈ {nj}, we may use (5.14) and Lemma 5.3 to obtain

νm(σ−k([w])) ≥ C2
4C−1

2 e(ℓ1+ℓ2)h(L)e−mh(L)

≥ C2
4C−1

2 e−2(N+t)h(L)e−nh(L).
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Writing C11 = C2
4C−1

2 e−2(N+t)h(L) and applying this to (5.12) gives

µm([w]) ≥ C11e
−nh(L),

and passing to the limit gives (5.13). �

Up to this point, we have not used Condition (III) at all. From now on
we will use this condition as well, which will allow us to extend the Gibbs
property in Lemma 5.10 to cylinders corresponding to words in G(M), with
the caveat that the constant in the Gibbs property decays as M → ∞.

Lemma 5.11. For every M ∈ N, there exists a constant KM > 0 such that
for every n ∈ N and w ∈ G(M)n, we have

(5.15) µ([w]) ≥ KMe−nh(L).

Proof. Fix M ∈ N and let τ be given by condition (III). Then given w ∈
G(M)n, there exist words u, v with |u| ≤ τ, |v| ≤ τ , so that uwv ∈ G. Since

[uwv] ⊂ σ−|u|[w], Lemma 5.10 gives

µ([w]) ≥ µ([uwv]) ≥ C11e
−|uvw|h(L) ≥ C11e

−2τh(L)e−nh(L).

Setting KM = C11e
−2τh(L) gives (5.15). �

Finally, we observe that there is a uniform upper bound for the µ-measure
of an n-cylinder.

Lemma 5.12. There exists a constant C12 > 0 such that for every n ∈ N

and w ∈ Ln, we have

(5.16) µ([w]) ≤ C12e
−nh(L).

Proof. Fix m > n and k < m − n. By Lemmas 5.3 and 5.1, we have

νm(σ−k([w])) ≤
(#Lk)(#Lm−k−n)

#Lm

≤ C2
2e−nh(L)

It follows that µm([w]) ≤ C2
2e−nh(L). Passing to the limit as m → ∞, we

obtain (5.16) with C12 = C2
2 . �

Recall that given a set of words Dn ⊂ Ln, we write µ(Dn) = µ(
⋃

w∈Dn
[w]).

Lemma 5.13. Let δ1 > 0. There exists M so that for all n, any subset
Dn ⊂ Ln satisfies

µ(Dn ∩ G(M)) ≥ µ(Dn) − δ1.

Proof. Let δ = (C2C12)
−1δ1. Lemma 5.5 provides M ∈ N such that for all

n,

#G(M)c
n = #(Ln \ G(M)n) ≤ δ#Ln.

Combining this with Lemma 5.12 and Lemma 5.3 gives

µ(G(M)c
n) ≤ δ#LnC12e

−nh(L) ≤ δC2C12 = δ1,
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and we have

µ(Dn) = µ(Dn ∩ G(M)) + µ(Dn ∩ G(M)c)

≤ µ(Dn ∩ G(M)) + µ(G(M)c
n) ≤ µ(Dn ∩ G(M)) + δ1,

as required. �

5.4. Proof that µ is ergodic. We need to show that the measure µ is
ergodic. This is a direct consequence of the following result.

Proposition 5.14. If two measurable sets P, Q ⊂ X both have positive
µ-measure, then limn→∞ µ(P ∩ σ−n(Q)) > 0.

Proof. We begin by considering the case where P and Q are cylinders cor-
responding to words in G.

Lemma 5.15. There exists C13 > 0 and mj → ∞ such that if u, v ∈ G,
then for all sufficiently large j,

(5.17) µ([u] ∩ σ−mj [v]) ≥ C13µ([u])µ([v]).

Proof. As in the proof of Lemma 5.10, we use Lemma 5.4 to obtain N ∈ N,
C4 > 0, and a sequence nj ր ∞ with nj+1 − nj ≤ N such that (5.14) holds
for all j. Let mj = nj + 2t.

Consider u, v ∈ G. Let m ∈ N be large and fix k ≤ m. We estimate

νm(σ−k[u] ∩ σ−(k+mj)[v])).

By a similar argument to Lemma 5.10, we obtain

νm(σ−k[u] ∩ σ−(k+mj)[v])) ≥
(#Gℓ1)(#Gnj

)(#Gℓ2)

#Lm
,

where ℓ1 = ni1 for some i1 and satisfies k − t−N ≤ ℓ1 ≤ k − t (or is 0 if no
such number exists), and similarly, ℓ2 = ni2 and satisfies

m − 3t − mj − |u| − |v| − N ≤ ℓ2 ≤ m − 3t − mj − |u| − |v|,

(or 0 if no such ℓ2 exists). Using Lemmas 5.4, 5.3, and 5.12 we obtain

νm(σ−k[u] ∩ σ−(k+mj)[v])) ≥ C3
4C2e

(ℓ1+ℓ2+nj)h(L)e−mh(L)

≥ C3
4C2e

−2Nh(L)e−(|u|+|v|)h(L)

≥ C3
4C2e

−2Nh(L)C−2
12 µ([u])µ([v]).

Writing C13 := C3
4C2e

−2Nh(L)C−2
12 , this yields

µm([u] ∩ σ−mj [v])) ≥ C13µ([u])µ([v]),

and passing to the limit as m → ∞ gives the required estimate. �

This result immediately extends to unions of cylinders from Gn.
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Lemma 5.16. Let C13 > 0 and mj → ∞ be as in Lemma 5.15, and consider
P ⊂ Gn, Q ⊂ Gn′. Let [P ] =

⋃

w∈P [w], and similarly for Q. Then for all
sufficiently large j,

(5.18) µ([P ] ∩ σ−mj [Q]) ≥ C13µ([P ])µ([Q]).

Proof. This is a straightforward computation.

µ([P ] ∩ σ−mj [Q]) =
∑

w∈P
w′∈Q

µ([w] ∩ σ−mj [w′])

≥
∑

w∈P
w′∈Q

C13µ([w])µ([w′]) = C13µ([P ])µ([Q]). �

Using Condition (III), this result generalises to unions of cylinders from
G(M)n. As before, given P ⊂ Ln, we write µ(P ) = µ([P ]) = µ(

⋃

w∈P [w]).

Lemma 5.17. Given M ∈ N, there exists a constant K ′
M such that for

every P ⊂ G(M)n and Q ⊂ G(M)n′, we have

(5.19) lim
m→∞

µ(P ∩ σ−m(Q)) ≥ K ′
Mµ(P )µ(Q).

Proof. For each w ∈ G(M), using Condition (III), we can choose x(w), y(w) ∈
L such that |x(w)| ≤ τ , |y(w)| ≤ τ , and x(w)wy(w) ∈ G. Given 0 ≤
i, j, i′, j′ ≤ τ , let

P (i, j) = {w ∈ P | i = |x(w)|, j = |y(w)|},

Q(i′, j′) = {w′ ∈ Q | i′ = |x(w′)|, j′ = |y(w′)|}.

There exist i, j, i′, j′ such that

#P (i, j) ≥ (τ + 1)−2#P,

#Q(i′, j′) ≥ (τ + 1)−2#Q.

Now let

P̂ = {x(w)wy(w) | w ∈ P (i, j)} ⊂ Gn+i+j ,

Q̂ = {x(w′)w′y(w′) | w′ ∈ Q(i′, j′)} ⊂ Gn′+i′+j′ .

We can estimate the left-hand side of (5.19) by observing that

lim
m→∞

µ(P ∩ σ−(m+i′+j)(Q)) ≥ lim
m→∞

µ(P̂ ∩ σ−m(Q̂)) ≥ C13µ(P̂ )µ(Q̂),

where the second inequality follows from Lemma 5.16. Furthermore, the
Gibbs properties (5.13) and (5.16) imply that

µ(P̂ ) ≥ #P (i, j)C11e
−(n+i+j)h(L)

≥ (τ + 1)−2#PC11e
−(i+j)h(L)e−nh(L)

≥ (τ + 1)−2C11e
−2τh(L)C−1

12 µ(P ),

A similar estimate on µ(Q̂) suffices to complete the proof. �
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Lemma 5.17 is the key tool in the proof of the following lemma.

Lemma 5.18. Suppose δ1 > 0 and M are such that Lemma 5.13 holds
and let K ′

M be as in Lemma 5.17. Then for every pair of measurable sets
P, Q ⊂ X, we have

(5.20) lim
n→∞

µ(P ∩ σ−n(Q)) ≥ K ′
M (µ(P ) − δ1)(µ(Q) − δ1).

Proof. Fix ε > 0 and choose sets U, V that are unions of cylinders of the
same length and for which µ(U △ P ) < ε and µ(V △ Q) < ε. Let U ′ ⊂ U
be the union of all cylinders in U corresponding to words in G(M), and
similarly for V ′ ⊂ V . By Lemma 5.13, we have µ(U ′) > µ(U) − δ1 and
µ(V ′) > µ(V ) − δ1, and furthermore, by Lemma 5.17,

(5.21) lim
n→∞

µ(U ′ ∩ σ−n(V ′)) ≥ K ′
Mµ(U ′)µ(V ′).

We have U ∩ σ−n(V ) ⊃ U ′ ∩ σ−n(V ′), and so

(5.22) lim
n→∞

µ(U ∩ σ−n(V )) ≥ K ′
M (µ(U) − δ1)(µ(V ) − δ1).

We also observe that

|µ(U ∩ σ−n(V )) − µ(P ∩ σ−n(Q))| ≤ µ((U ∩ σ−n(V )) △ (P ∩ σ−n(Q)))

≤ µ((U △ P ) ∩ σ−n(V △ Q)) < ε

for every n, which together with (5.22) implies

lim
n→∞

µ(P ∩ σ−n(Q)) ≥ K ′
M (µ(P ) − δ1)(µ(Q) − δ1) − ε.

Since ε > 0 was arbitrary, (5.20) follows. �

Now let P, Q ⊂ X be any measurable sets with positive µ-measure. For
sufficiently small δ1 > 0, the right hand side of (5.20) is positive, which
completes the proof of Proposition 5.14. �

5.5. Contradiction if there is another mme. Let µ be the ergodic mme
constructed in the previous sections, and suppose that some ergodic measure
ν ⊥ µ is such that hν(σ) = htop(XL, σ) = h(L). Let D be a collection of
words such that ν(Dn) → 1 and µ(Dn) → 0. Applying Lemma 5.8, we see
that there are constants C10 > 0 and M ∈ N such that

#(Dn ∩ G(M)) ≥ C10e
nh(L)

for every n. Now we use the Gibbs property (5.15) to observe that

µ(Dn) ≥ µ(Dn ∩ G(M)) ≥ KMe−nh(L)#(Dn ∩ G(M)) ≥ KMC10 > 0,

which contradicts the fact that µ(Dn) → 0. This contradiction implies that
any mme ν is absolutely continuous with respect to µ, and since µ is ergodic,
this in turn implies that ν = µ, which completes the proof of the theorem.
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5.6. Characterisation of the unique mme. We prove the final statement
in Theorem C under the assumption that G satisfies (Per)-specification. By
Lemma 5.4, there exist constants C4 > 0 and N ∈ N such that for every n,
there exists n − N ≤ ℓ ≤ n for which

#Gℓ ≥ C4e
ℓh(L).

By (Per)-specification, every word w ∈ Gℓ determines a periodic orbit of
length ℓ + t ≤ n + t, and so we have

# Per(n + t) ≥ C4e
ℓh(L) ≥ C4e

(n−N)h(L).

This in turn yields

1

n + t
log # Per(n + t) ≥

log C4

n + t
+

n − N

n + t
h(L),

and so limn→∞
1
n

log # Per(n) = h(L). Standard arguments such as those
in the proof of [Wal82, Theorem 8.6] show that any limit measure ν of the
sequence µn in (2.3) has hν(σ) = h(L). Since we showed that µ is the unique
measure of maximal entropy, this shows that the sequence µn converges to
µ.

6. Proofs of other technical results

6.1. Proof of Proposition 2.1. Let ǫ denote the empty word, so ǫw =
wǫ = w for every w ∈ L, and [ǫ] = XL. A measure µ induces a function
m : L → [0,∞) by m(w) = µ([w]), and this gives a one-to-one correspon-
dence between Mσ(XL) and functions m : L → [0, 1] satisfying

(1) m(ǫ) = 1;
(2) for every w ∈ L we have m(w) =

∑p
a=1 m(wa) =

∑p
a=1 m(aw).

Because, by σ-invariance, the starting point of the cylinder makes no
difference to the measure, there is also a one-to-one correspondence between
Mσ(X̂L) and functions m satisfying the conditions above. This shows that

the invariant measures of XL and X̂L can be identified. Furthermore, the
entropy of µ is determined by m, so this identification preserves entropy.

6.2. Proof of Proposition 2.2. We study the behaviour of the decom-
position L = CpGCs and its properties under factors, proving Proposition
2.2.

In the following, we sometimes write v · w in place of vw to denote con-
catenation. Let Σ ⊂ Σp and Σ̃ ⊂ Σp̃ be arbitrary closed two-sided invariant

subshifts (the one-sided case is similar), and suppose that Σ̃ is a topological

factor of Σ—that is, there exists a continuous and surjective map π : Σ 7→ Σ̃
such that σ ◦ π = π ◦ σ. By the fundamental result of Curtis–Lyndon–
Hedlund [LM95, Theorem 6.29], π is a block code: there exist k ∈ N and
φ : L2k+1 → {1, . . . , p̃} such that

(πx)n = φ(xn−kxn−k+1 · · ·xn+k−1xn+k).
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This induces a map Φ: Ln+2k → L̃n by

Φ(w1 · · ·wn+2k) = φ(w1 · · ·w2k+1)φ(w2 · · ·w2k+2) · · ·φ(wn · · ·wn+2k).

The map Φ: L → L̃ has the following important properties:

(1) Φ is surjective.
(2) For every word w ∈ L and x ∈ n[w], we have π(x) ∈ n+k[Φ(w)].

If k = 0, then Φ is a homomorphism in the sense that Φ(vw) = Φ(v)Φ(w)
for all words v, w ∈ L. For k > 0, we need to define maps on L that extract
prefixes and suffixes: in particularly, consider maps ipk, i

s
k : L≥k → Lk given

by

ipk(w) = w1 . . . wk,

isk(w) = w|w|−k+1 . . . w|w|.

Now Φ has the property that for every v, w ∈ L, we have

(6.1)

Φ(vw) = Φ(v)Φ(is2k(v) · ip2k(w))Φ(w)

= Φ(v)Φ(is2k(v) · w)

= Φ(v · ip2k(w))Φ(w).

Given a decomposition L = CpGCs, the obvious thing to do is to define
a decomposition of L̃ by applying Φ to each of Cp, G, and Cs. Because
the homomorphism property of Φ takes the form (6.1), we must alter this

slightly and define subsets of L̃ by

G̃ = Φ(G),

C̃p = Φ(Cp · ip2k(G)),

C̃s = Φ(is2k(G) · Cs).

Given u ∈ Cp, v ∈ G, and w ∈ Cs, we see from (6.1) that

Φ(uvw) = Φ(uv)Φ(is2k(v) · w) = Φ(u · ip2k(v))Φ(v)Φ(is2k(v) · w) ∈ C̃pG̃C̃s.

This gives the decomposition of L̃ claimed in Proposition 2.2. Furthermore,
we observe that for every M , we have

Φ(G(M)) = {Φ(uvw) | u ∈ Cp, v ∈ G, w ∈ Cs, |u| ≤ M, |w| ≤ M}

= {Φ(u · ip2k(v))Φ(v)Φ(is2k(v) · w) |

u ∈ Cp, v ∈ G, w ∈ Cs, |u| ≤ M, |w| ≤ M}

= G̃(M).

Now suppose G has (S)-specification. Then given w1, . . . , wn ∈ G̃, we have
wj = Φ(vj) for some vj ∈ G, and by (I) there exist x1, . . . , xn−1 ∈ Lt such
that

v1x1v2x2 · · ·xn−1vn ∈ L.

Applying Φ and writing yj = Φ(is2k(v
j) · xj · ip2k(v

j+1)), we have

w1y1w2y2 · · · yn−1wn ∈ L.
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Thus G̃ has (S)-specification with connecting words of length t+2k. Since π
takes periodic orbits to periodic orbits, (Per)-specification is also preserved
by Φ.

Condition (III) is clearly preserved by Φ. If G(M) satisfies Condition (III)

then for every v ∈ G̃(M), there exists u, v with |u| ≤ t+2k and |w| ≤ t+2k

such that uvw ∈ G̃.
Finally, we observe that #C̃p

n ≤ (#L2k)(#Cp
n), and similarly for Cs, which

completes the proof of Proposition 2.2.

6.3. Proof of Proposition 2.4. We show that (S)-specification implies
positive entropy unless the collection G has a very specific structure.

Lemma 6.1. Let (X, σ) be a shift space whose language L contains a collec-
tion of words G ⊂ L with (S)-specification, and suppose that htop(X, σ) = 0.
Then given any v, w ∈ G, we have vLtw ∩ wLtv 6= ∅; that is, there exist
y, z ∈ Lt such that vyw = wzv.

Proof. Fix v 6= w ∈ G, and suppose vLtw∩wLtv = ∅. We will conclude that
htop(X, σ) > 0, which suffices to prove the lemma.

Given N ∈ N, consider ξ ∈ {1, 2}N . Using (S)-specification, there exists
α(ξ) ∈ L having the form

α(ξ) = a1b1a2b2 · · · bN−1aN ,

where bi ∈ Lt, and where

ai ∈

{

vLtw i = 1,

wLtv i = 2.

Because vLtw ∩ wLtv = ∅, the map α is injective. Furthermore, writing
m = |v| and n = |w|, each word α(ξ) has length N(m + n + 2t) − t, and it
follows that

1

N(m + n + 2t) − t
log #LN(m+n+2t)−t ≥

1

N(m + n + 2t) − t
log 2N .

Taking a limit as N → ∞ yields htop(X, σ) ≥ 1
m+n+2t

log 2 > 0, which
contradicts the zero entropy assumption. �

From now on we assume that htop(X, σ) = 0, and aim to show that X
comprises a single periodic orbit. First we show that every word in G is a
prefix of a single infinite sequence.

Lemma 6.2. There exists x̂ ∈ X such that every word w ∈ G is of the form
w = x̂1 · · · x̂n for some n.

Proof. It suffices to show that for any v, w ∈ G with m = |v| ≤ |w|, we have
w1 · · ·wm = v. This follows from Lemma 6.1, since there are words y, z ∈ Lt

such that vyw = wzv, and comparing the first m symbols of this common
word gives the result. �
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Lemma 6.3. Given v, w ∈ G, write m = |v|, n = |w|, and suppose that n >
m. Then w is (m+t)-periodic; that is, wi = wj whenever j ≡ i mod (m+t).

Proof. We show that w is (k+t)-periodic, where k+t = gcd(m+t, n+t). Let
ui ∈ Lk and xi ∈ Lt be such that x̂ = u1x1u2x2 · · · , where x̂ is the sequence
from Lemma 6.2. Write a = m+t

k+t
and b = n+t

k+t
; then v = u1x1u2 · · ·xa−1ua

and w = u1x1u2 · · ·xb−1ub.
By Lemma 6.1, there are words y, z ∈ Lt such that vyw = wzv. Therefore,

the following two expressions represent the same word:

u1x1 · · ·xa−1ua y u1 x1 · · ·xb−a−1ub−axb−aub−a+1 · · ·ub,

u1x1 · · ·xa−1uaxaua+1xa+1 · · · xb−1 ub z u1 · · · ua.

Comparing the subwords ui and xi in these two expressions, we see that
ui = uj and xi = xj whenever i ≡ j mod a. This follows from a comparison
of the two middle segments, where the words w overlap.

Similarly, a comparison of the final segments, where v appears as a suffix
of w, shows that ub−i = ua−i for all 0 ≤ i < a and xb−i = xa−i for all
1 ≤ i < a. Since gcd(a, b) = 1, this is enough to show that u1 = u2 = · · ·ub

and x1 = · · · = xb−1. �

We use Lemma 6.3 to show that the sequence x̂ ∈ X constructed in
Lemma 6.2 is periodic. Indeed, if we fix v ∈ G and let m = |v|, then x̂ is
(m + t)-periodic. To see this, observe that Lemma 6.3 establishes (m + t)-
periodicity for every w ∈ G with |w| > m. By Condition (III), G contains
arbitrarily long words; consequently, there are arbitrarily large values of n
such that x̂1 · · · x̂n is (m + t)-periodic, and this completes the proof.
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