Specification and measures of maximal entropy

Vaughn Climenhaga University of Houston

Beyond uniform specification Beyond symbolic dynamics Applications

Big Ideas in Dynamics February 3, 2023

Measures of maximal entropy

Consider an experiment with *d* possible outcomes, and a probability vector **p** giving their likelihoods

Entropy $H(\mathbf{p})$ = expected information gain

Fundamental inequality for probability vectors: entropy maximized when all outcomes equally likely

Entropy is maximized at a unique probability vector

Anything to say about dynamical systems?

The basic questions

Big idea: Equidistribution maximizes entropy

$$H(\mathbf{p}) = \sum_{i=1}^{d} -p_i \log p_i \leq \log d$$

"=" iff equidistributed ($p_i = 1/d$)

Assumption of maximum ignorance

Hyperbolic dynamics

Beyond uniform hyperbolicity

The basic questions

X a compact metric space, $f: X \to X$ continuous

 $\mathcal{M} = \{\text{invariant probability measures}\}$

Each $\nu \in \mathcal{M}$ has an **entropy** $h_{\nu} \in [0, \infty]^{<}$

Topological entropy $h = \sup\{h_{\nu} : \nu \in \mathcal{M}\}$

Measure of maximal entropy (MME):

 $\nu \in \mathcal{M}$ such that $h_{\nu} = h$

Existence?
Uniqueness?
Properties?

Rate of expected information gain (= expected rate of information gain)

Connections and motivations:

- Asymptotic behavior of system
- Periodic orbit estimates (Margulis)
- Other equilibrium states, thermodynamic formalism, multifractal analysis
- Physically relevant SRB measure

Uniform hyperbolicity

(Anosov diffeo, subshift of finite type, etc.)

- There is a unique MME
- It is mixing, K, Bernoulli
- It has exponential decay of correlations
- Similar results hold for equilibrium states for Hölder potentials

How to prove it?

Expansivity and specification

(Rufus Bowen, Math. Syst. Theory, 1974/5)

Nearby trajectories diverge

Can join any past to any future (approximately) (and uniformly) (and repeatedly)

Ruelle-Perron-Frobenius operator

Markov partitions

Anisotropic
Banach spaces

Looking ahead

Can we study existence and uniqueness of MMEs for systems that are:

- non-uniformly hyperbolic? (logistic map, Hénon, Lorenz)
- partially hyperbolic?
- hyperbolic with singularities? (billiards)

We will discuss non-uniform specification (Climenhaga-Thompson), but other approaches can be extended too.

Many open questions

References:

C.-T., Israel Journal, 2012

C.-T., *JLMS*, 2013

C.-T., ETDS, 2014

C.-T., Advances, 2016

C.-T., Thermodynamic Formalism (Springer LNM 2290), 2021

Related:

C.-Pesin-Zelerowicz, BAMS, 2018

Some counter-examples

Some counterexamples

when we go beyond uniform hyperbolicity

Existence: can fail for some diffeos with only finitely many derivatives (Buzzi)

Uniqueness: can fail for some shift spaces

- Disjoint union of two shifts with the same entropy (this feels like cheating)
- Same thing, but "glue them together" / without creating entropy (Haydn)
- The Dyck shift: symbols are () [] and they must pair correctly (Krieger)

```
Alphabet = { 0, 1, 2, 3, 4 }
Rule: every sequence is either
```

- all red
- all blue
- ... red 0s blue 0s red 0s...
 with # zeroes at least # adjacent reds and blues

Entropy is log(2), two ergodic MMEs

```
([]()) is legal, but ([) is not
```

Need not all close: ...(((((... is legal

Entropy is log(3), two ergodic MMEs

- One MME: every left bracket has a corresponding right bracket
- The other MME: vice versa

Existence and uniqueness

in shift spaces with specification

Shift space: a closed σ -invariant subset X of $\{1, \ldots, d\}^{\mathbb{N}}$, where σ is the left shift map.

Language: write $\mathcal{L}_n \subset \{1, 2, ..., d\}^n$ for the set of words of length n that appear in some $x \in X$

Cylinders: given $w \in \mathcal{L}_n$, write $[w] = \{x \in X : x_1 \cdots x_n = w\}$

Topological entropy: $h = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{L}_n$

 $\#\mathcal{L}_n \approx e^{nh}$: more precisely, $c_n = \#\mathcal{L}_n e^{-nh}$ is subexponential ($\lim \frac{1}{n} \log c_n = 0$)

Why does this limit exist?

Initial upgrades

Existence (in general)

Uniqueness for SFTs

Specification

Big idea:
Need to upgrade
"subexponential" to "uniform"
(in multiple places)

Shannon–McMillan–Breiman: If ν is an MME then $\nu[w] \approx e^{-nh}$ for "most" $w \in \mathcal{L}_n$.

Katok estimate: If ν is an MME and $\nu(Z) > 0$, then $\#\{n\text{-cylinders intersecting } Z\} \approx e^{nh}$.

Initial upgrades

 $h = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{L}_n$ exists by Fekete's lemma:

- $\#\mathcal{L}_{n+k} \leq (\#\mathcal{L}_n)(\#\mathcal{L}_k)$
- $a_n := \log \# \mathcal{L}_n$ is subadditive $(a_{n+k} \leq a_n + a_k)$
- Fekete: $\lim \frac{1}{n} a_n$ exists and = $\inf \frac{1}{n} a_n$

Get $h \leq \frac{1}{n}a_n$ for all n, so $\log \#\mathcal{L}_n = a_n \geq nh$, so $\#\mathcal{L}_n \geq e^{nh}$.

Can also prove this directly:

$$\#\mathcal{L}_k \leq d^k \quad \Rightarrow \quad h = \lim_k \frac{1}{k} \log \#\mathcal{L}_k \leq \log d$$

$$\#\mathcal{L}_{nk} \leq (\#\mathcal{L}_n)^k \quad \Rightarrow \quad h = \lim_k \frac{1}{nk} \log \#\mathcal{L}_{nk} \leq \frac{1}{n} \log \#\mathcal{L}_n$$

Uniform lower counting bound for free. A uniform upper counting bound will require more hypotheses (later).

Fekete's lemma also guarantees existence of $h_{\nu} = \lim \frac{1}{n} H_{\nu}(\beta_n)$, since $n \mapsto H_{\nu}(\beta_n)$ is subadditive. Again, it *also* gives $h_{\nu} \leq \frac{1}{n} H_{\nu}(\beta_n)$ for all n, which will be important in the proof of uniqueness (via the "uniform Katok estimate").

Measure-theoretic entropy:

$$\beta_n = \{[w] : w \in \mathcal{L}_n\}$$
 (partition into *n*-cylinders)

$$H_{\nu}(\beta_n) = \sum_{w \in \mathcal{L}_n} -\nu[w] \log \nu[w] \leq \log \# \mathcal{L}_n$$

$$h_{\nu}(\sigma) = \lim \frac{1}{n} H_{\nu}(\beta_n) \le h$$

Constructing an MME

Misiurewicz's proof of the variational principle contains a construction that produces an MME for every shift space.

Equidistribution maximizes entropy:

Let m_n be any measure with $m_n[w] = 1/\#\mathcal{L}_n$ for all $w \in \mathcal{L}_n$.

Push forward and average to get invariance:

Let
$$\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} \sigma_*^k m_n$$
.

Then any limit point $\mu = \lim_{k} \mu_{n_k}$ is an MME.

Measure-theoretic entropy:

$$\beta_n = \{[w] : w \in \mathcal{L}_n\}$$
 (partition into *n*-cylinders)

$$H_{\nu}(\beta_n) = \sum_{w \in \mathcal{L}_n} -\nu[w] \log \nu[w] \leq \log \# \mathcal{L}_n$$

$$h_{\nu}(\sigma) = \lim \frac{1}{n} H_{\nu}(\beta_n) \le h$$

Upgrade SMB to uniform Gibbs bound

For SFTs, can use eigendata of transition matrix to build an MME (Parry measure) with the property that there is c > 0 such that $\mu[w] \ge ce^{-nh}$ for all $w \in \mathcal{L}_n$.

Uniqueness

Adler-Weiss argument: for SFTs and more

Idea: any two MMEs should be equidistributed, hence equivalent (absolutely continuous). But if μ is ergodic and $\nu \ll \mu$ is invariant, then $\nu = \mu$, giving uniqueness.

Suppose we have an ergodic MME satisfying the **Uniform Gibbs bound:** $\mu[w] \ge ce^{-nh}$ for all $w \in \mathcal{L}_n$

Then we immediately get a

Uniform counting bound: $\#\mathcal{L}_n \leq Qe^{nh}$ with Q = 1/c.

This in turn leads to a

Uniform Katok estimate: If ν is any MME and Z is covered by s_n n-cylinders, then $s_n \geq Q(2Q)^{-1/\nu(Z)}e^{nh}$.

Using the Gibbs bound gives $\mu(Z) \ge (c/2)^{1/\nu(Z)} > 0$ whenever $\nu(Z) > 0$, so $\nu \ll \mu$.

Proof of uniform Katok estimate

Theorem: If the shift space has an ergodic MME μ with the lower Gibbs bound, then μ is the *unique* MME.

Uniform Katok estimate

Upgrade "subexponential" to "uniform"

Theorem: If ν is any MME for a shift satisfying $\#\mathcal{L}_n \leq Qe^{nh}$, and if Z_n is a union of s_n n-cylinders, then $s_n \geq Q(2Q)^{-1/\nu(Z_n)}e^{nh}$.

Proof:

$$nh = h_{\nu}(\sigma^n) \leq H_{\nu}(\beta_n) = H_{\nu}(\zeta_n) + H_{\nu}(\beta_n \mid \zeta_n)$$

$$H_{\nu}(\beta_n \mid \zeta_n) = \nu(Z_n)H_{\nu}(\beta_n|_{Z_n}) + \nu(Z_n^c)H_{\nu}(\beta_n|_{Z_n^c})$$

$$\leq \nu(Z_n)\log s_n + \nu(Z_n^c)\log \#\mathcal{L}_n$$

$$\begin{aligned} nh &\leq \log 2 + \nu(Z_n) \log s_n + \nu(Z_n^c) \log \# \mathcal{L}_n \\ 0 &\leq \log 2 + \nu(Z_n) \log(s_n e^{-nh}) + \nu(Z_n^c) \log(\# \mathcal{L}_n e^{-nh}) \\ &\leq \log 2 + \nu(Z_n) \log(s_n e^{-nh}) + (1 - \nu(Z_n)) \log Q \\ &= \log(2Q) + \nu(Z_n) \log(s_n e^{-nh}Q^{-1}) \end{aligned}$$

 β_n is the partition into *n*-cylinders

$$\zeta_n = \{Z_n, Z_n^c\} \text{ has } H_{\nu}(\zeta_n) \leq \log 2$$

 $H_{\nu}(\cdot \mid \cdot)$ is conditional entropy

 $H_{\nu}(\beta_n|_{Z_n})$ is entropy of ν restricted to Z_n and nor all ed

Uniform counting for SFTs

Specification

Lower counting bound:

Natural map $\mathcal{L}_{n+m} \to \mathcal{L}_n \times \mathcal{L}_m$ is injective, so $\#\mathcal{L}_{n+m} \leq (\#\mathcal{L}_n)(\#\mathcal{L}_m)$.

 $a_n = \log \# \mathcal{L}_n$ is subadditive: $a_{n+m} \leq a_n + a_m$

$$a_{nk} \leq ka_n \Rightarrow \frac{1}{nk}a_{nk} \leq \frac{1}{n}a_n$$

Sending $k \to \infty$ gives $a_n \ge nh$, so $\#\mathcal{L}_n \ge e^{nh}$.

Upper counting bound:

Cannot expect $\#\mathcal{L}_{n+m} \geq (\#\mathcal{L}_n)(\#\mathcal{L}_m)$.

Use mixing property to get $\#\mathcal{L}_{n+\tau+m} \geq (\#\mathcal{L}_n)(\#\mathcal{L}_m)$.

Proceed as above to get $\#\mathcal{L}_n \leq Qe^{nh}$.

Fekete's lemma: by subadditivity, $h = \lim_{n \to \infty} \frac{1}{n} a_n$ exists (and = $\inf_{n \to \infty} \frac{1}{n} a_n$)

Mixing SFT: $\tau \in \mathbb{N}$ such that in τ steps, we can get from any symbol to any other symbol

Given any $v \in \mathcal{L}_n$ and $w \in \mathcal{L}_m$, we can find $u \in \mathcal{L}_{\tau}$ such that $vuw \in \mathcal{L}_{n+\tau+m}$

Obtain injective map $\mathcal{L}_n \times \mathcal{L}_m \to \mathcal{L}_{n+\tau+m}$

Specification

A shift space has the **specification property** if there is $\tau \in \mathbb{N}$ such that for every $v, w \in \mathcal{L}$, there is $u \in \mathcal{L}_{\tau}$ such that $vuw \in \mathcal{L}$.

True for mixing SFTs.
Gives uniform counting bounds.

Proposition: Uniform counting bounds and specification give uniform Gibbs bounds via the Misiurewicz construction.

Idea of proof: Control $\sigma_k^* m_n[w]$ by estimating the number of words of length n that see the word w starting in position k.

$$\mathcal{L} = \bigcup_n \mathcal{L}_n$$

Equivalently, for every $w^1, \ldots, w^k \in \mathcal{L}$, there are $u^i \in \mathcal{L}_{\tau}$ such that $w^1 u^1 w^2 u^2 \cdots u^{k-1} w^k \in \mathcal{L}$.

Theorem (Bowen): Every shift space with specification has a unique MME.

Non-uniform specification

Climenhaga-Thompson:

Can use a weaker version of specification and still get uniqueness

First applied to beta-shifts, S-gap shifts

Also geodesic flow in nonpositive curvature, Lorenz attractor, and more

Decompositions

Big idea:

If "obstructions" have small entropy, uniform bounds still hold

Uniform counting bounds (still)

Decomposing the language

Let X be a shift space with language \mathcal{L} .

A **decomposition** of \mathcal{L} consists of \mathcal{C}^p , \mathcal{G} , $\mathcal{C}^s \subset \mathcal{L}$ such that given any $w \in \mathcal{L}$, there are $u^{p,s} \in \mathcal{C}^{p,s}$ and $v \in \mathcal{G}$ satisfying $w = u^p v u^s$.

Say that \mathcal{G} has **specification** if there is $\tau \in \mathbb{N}$ such that given any $w^1, \ldots, w^k \in \mathcal{G}$, there are $u^i \in \mathcal{L}_{\tau}$ such that $w^1u^1w^2u^2\cdots u^{k-1}w^k \in \mathcal{L}$.

Define $h(\mathcal{C}^p \cup \mathcal{C}^s) = \overline{\lim} \frac{1}{n} \log \#(\mathcal{C}^p_n \cup \mathcal{C}^s_n)$, think of this as "entropy of obstructions to specification".

Suppose we can get $h(\mathcal{C}^p \cup \mathcal{C}^s) < h...$

Every word in \mathcal{L} can be transformed into a "good" word (in \mathcal{G}) by removing a prefix from \mathcal{C}^p and a suffix from \mathcal{C}^s .

Example: Given $S \subset \mathbb{N}$ infinite, the S-gap shift is $X \subset \{0,1\}^{\mathbb{Z}}$ defined by forbidding all words 10^n1 with $n \notin S$. One decomposition is

$$C^p = \{0^n : n \ge 0\}$$
 $G = \{10^{n_1}10^{n_2} \cdots 10^{n_k} : n_i \in S\}$
 $C^s = \{10^n : n \ge 0\}$

Here \mathcal{G} has specification (with $\tau = 0$) and $h(\mathcal{C}^p \cup \mathcal{C}^s) = 0$.

Uniform counting

Assume: decomposition such that \mathcal{G} has specification and $h(\mathcal{C}^p \cup \mathcal{C}^s) < h$.

Earlier proofs give $\#\mathcal{L}_n \geq e^{nh}$ and $\#\mathcal{G}_n \leq Qe^{nh}$

Let $c_n = \#(\mathcal{C}_n^p \cup \mathcal{C}_n^s)e^{-nh}$, then $\sum c_n < \infty$, and

$$\#\mathcal{L}_n \leq \sum_{i+j+k=n} (\#\mathcal{C}_i^p)(\#\mathcal{G}_j)(\#\mathcal{C}_k^s)$$

$$\leq \sum_{i+j+k=n} (c_i e^{ih}) (Q e^{jh}) (c_k e^{kh})$$

$$= Qe^{nh} \sum_{i+j+k=n} c_i c_k \leq Qe^{nh} \sum_{i=0}^{\infty} c_i \sum_{k=0}^{\infty} c_k$$

We conclude that $\#\mathcal{L}_n \leq Q\Sigma^2 e^{nh}$.

 $\overline{\lim} \, \frac{1}{n} \log c_n = h(\mathcal{C}^p \cup \mathcal{C}^s) - h < 0$ so c_n decays exponentially fast

Decomposition map $\mathcal{L}_n \to \bigcup_{i+j+k=n} \mathcal{C}_i^p \times \mathcal{G}_j \times \mathcal{C}^s$

What about uniform Gibbs? This gives a Gibbs bound for the constructed MME, but only for "good" words

Uniqueness

Theorem: Let X be a shift space whose language \mathcal{L} has a decomposition \mathcal{C}^p , \mathcal{G} , \mathcal{C}^s such that

- (1) \mathcal{G} has specification
- (2) $h(\mathcal{C}^p \cup \mathcal{C}^s) < h$

Then *X* has a unique MME.

Original proof by Climenhaga—Thompson required an extra condition. Recently Pacifico—Yang—Yang showed that this can be removed.

In the proof of uniqueness, an important step was "approximate Z by Z_n , a union of n-cylinders, and use the Gibbs property". This must be done more carefully here because the Gibbs property only applies to **some** n-cylinders.

"The collection $\mathcal{G}^M := \{u^p v u^s : |u^p|, |u^s| \leq M\}$ has specification for every $M \in \mathbb{N}$ "

Topological/smooth dynamics

X a compact metric space, $f: X \to X$ continuous

Fix $\epsilon > 0$, replace cylinder $[x_1 \cdots x_n]$ with **Bowen ball**

$$B_n(x, \epsilon) = \{ y \in X : d(f^k x, f^k y) < \epsilon \text{ for all } 0 \le k < n \}$$

 $E \subset X$ is (n, ϵ) -separated if $B_n(x, \epsilon) \cap E = \{x\}$ for all $x \in E$

Replace $\#\mathcal{L}_n$ with $\Lambda_n^{\epsilon} := \max\{\#E : E \text{ is } (n, \epsilon)\text{-separated}\}$

Topological entropy: $h = \lim_{\epsilon \to 0} \frac{1}{n \to \infty} \frac{1}{n} \log \Lambda_n^{\epsilon}$

Need to remove this limit

Expansivity

Specification

Big idea:

Dictionary between symbolic and non-symbolic settings **if** we can work at a fixed scale

The guts of the proof

A non-uniform result

Entropy at scale ϵ

Expansivity

Let
$$h^{\epsilon} := \overline{\lim_{n \to \infty}} \frac{1}{n} \log \Lambda_n^{\epsilon}$$
, so $h = \lim_{\epsilon \to 0} h^{\epsilon}$.

Misiurewicz construction: let m_n be equidistributed on a maximal (n, ϵ) -separated set, and proceed as before. Limit measure μ has $h_{\mu} \geq h^{\epsilon}$.

Definition: $f: X \to X$ is **expansive** up to scale $\epsilon > 0$ if for every $x \neq y$ there is n such that $d(f^n x, f^n y) \geq \epsilon$.

Roughly speaking, all information makes it to scale ϵ , and we have $h^{\delta} = h^{\epsilon}$ for all $\delta \in (0, \epsilon]$, so $h = h^{\epsilon}$

In particular, Misiurewicz construction gives an MME.

Symbolic case: equidistributed on *n*-cylinders

One-sided: $n \ge 0$ (appropriate if non-invertible) Two-sided: $n \in \mathbb{Z}$ (appropriate if invertible)

We consider one-sided case for simplicity. Then expansive iff $\bigcap_{n>0} B_n(x, \epsilon) = \{x\}$ for all $x \in X$.

Arguments and estimates are done with finite values of ϵ and n. Expansivity and uniform counting estimates guarantee that working with these finite values gives us a complete enough picture; sending $\epsilon \to 0$ and $n \to \infty$ doesn't override what we find out for fixed ϵ, n .

Specification

Dictionary: "replace cylinders by Bowen balls"

How to write specification in terms of cylinders?

Given $v \in \mathcal{L}_n$ and $w \in \mathcal{L}_m$, TFAE:

- $\exists u \in \mathcal{L}_{\tau}$ such that $vuw \in \mathcal{L}$
- $\exists u \in \mathcal{L}_{\tau}$ and $x \in X$ such that $x \in [vuw]$
- $\exists x \in X$ such that $x \in [v]$ and $\sigma^{n+\tau}(x) \in [w]$

Writing $[v] = B_n(y, \delta)$ and $[w] = B_m(z, \delta)$, can rewrite:

• $\exists x \in X \text{ s.t. } x \in B_n(y, \delta) \text{ and } \sigma^{n+\tau}(x) \in B_m(z, \delta)$

In non-symbolic systems, going from 1-step to multistep requires some expansion/contraction

"space of orbit segments"

 $f: X \to X$ has **specification** down to scale $\delta > 0$ if there is $\tau \in \mathbb{N}$ such that: for every $(x_1, n_1), \ldots, (x_k, n_k) \in X \times \mathbb{N}$, there is $y \in X$ such that writing $s_j = \sum_{i=1}^{j-1} (n_i + \tau)$, we have $f^{s_j}(y) \in B_{n_j}(x, \delta)$ for each j.

Can δ -shadow anything using gaps of length τ

Theorem (Bowen): Let X be a compact metric space and $f: X \to X$ a continuous map with expansivity and specification. Then (X, f) has a unique MME.

up to scale $\epsilon > 40\delta$

down to scale δ

Technical irritants

Try to run the symbolic arguments through the dictionary

Proof of lower counting bound $\#\mathcal{L}_n \geq e^{nh}$ relied on submultiplicativity: use the injective map $\mathcal{L}_{n+k} \to \mathcal{L}_n \times \mathcal{L}_k$ to deduce that $\#\mathcal{L}_{n+k} \leq (\#\mathcal{L}_n)(\#\mathcal{L}_k)$

Proof of uniqueness relied on approximating Z by Z_n , a union of *n*-cylinders, and using Gibbs bound on each cylinder.

Let E_n^{ϵ} be a maximal (n, ϵ) -separated set, with $\Lambda_n^{\epsilon} = \#E_n$.

Direct analogue of symbolic argument: $E_{n+k}^{\epsilon} \to E_n^{\epsilon} \times E_k^{\epsilon}$ taking x to (y, z) such that $x \in B_n(y, \epsilon)$ and $f^n(x) \in B_k(z, \epsilon)$.

Might not be injective! To guarantee injectivity, we need to instead consider $E_{n+k}^{2\epsilon} \to E_n^{\epsilon} \times E_k^{\epsilon}$.

This cannot be iterated, so do it all at once: $E_{nk}^{2\epsilon} \to (E_n^{\epsilon})^k$

Similar "scale-changing" is necessary for specification-based arguments

Approximation relies on cylinders forming a partition.

Bowen balls do not form a partition.

Construct and use a partition α_n such that

- $\alpha_n = \{A_1, A_2, ..., A_L\}$ $E_n^{2\epsilon} = \{x_1, x_2, ..., x_L\}$ (in fact $L = \Lambda_n^{2\epsilon}$)
- $B_n(x_i, \epsilon) \subset A_i \subset B_n(x_i, 2\epsilon)$ for each i

Such a partition is called **adapted**.

This leads to yet more scale-changing

Obstructions to expansivity

The **non-expansive set** at scale $\epsilon > 0$ is

 $NE(\epsilon) = \{x \in X : \bigcap_{n \ge 0} B_n(x, \epsilon) \ne \{x\}\}.$

(X, f) is expansive up to scale ϵ iff $NE(\epsilon) = \emptyset$.

Entropy of obstructions to expansivity at scale ϵ :

 $h^{\perp}(\epsilon) = \sup\{h_{\nu} : \nu \text{ an inv. prob. meas., } \nu(NE(\epsilon)) = 1\}.$

Proposition: If $h^{\perp}(\epsilon) < h$, then $h^{\epsilon} = h$.

A **decomposition** consists of C^p , G, $C^s \subset X \times \mathbb{N}$ such that given any $(x, n) \in X \times \mathbb{N}$, there are $p, g, s \in \mathbb{N}$ with p + g + s = n and

$$(x,p)\in\mathcal{C}^p, \qquad (f^px,g)\in\mathcal{G}, \qquad (f^{p+g}x,s)\in\mathcal{C}^s.$$

Thus Misiurewicz construction gives an MME

(With Pacifico-Yang-Yang improvement)

Theorem (Climenhaga–Thompson): Let *X* be a compact metric space and $f: X \to X$ continuous. Suppose $\epsilon > 40\delta > 0$ are such that $h^{\perp}(\epsilon) < h$ and that there is a decomposition satisfying

- (1) \mathcal{G} has specification at scale δ , and
- (2) $h^{\delta}(\mathcal{C}^p \cup \mathcal{C}^s) < h$.

Then (X, f) has a unique MME.

Applications

The strategy is always to identify the obstructions to expansivity and specification, and then find a way to control their entropy

Partial hyperbolicity

Non-uniform hyperbolicity

Symbolic examples

Symbolic examples

Beta-shifts, S-gap shifts, and factors (C.-T., *Israel Journal*, 2012)

Many shifts of quasi-finite type (C., Comm. Math. Phys., 2018)

S-limited shifts (Matson-Sattler, *Real An. Exch.*, 2018)

1-sided almost specification (C.-Pavlov, *ETDS*, 2019)

Negative beta shifts (Shinoda-Yamamoto, *Nonlin*, 2020)

S-graph shifts (Dillon, *DCDS*, 2022)

Partial hyperbolicity and dominated splittings

Bonatti-Viana examples (C.-Fisher-T., *Nonlinearity*, 2018)

Mañe examples (C.-Fisher-T., *ETDS*, 2019)

Certain partially hyperbolic attractors (Fisher-Oliveira, *Nonlinearity*, 2020)

Katok example (Tianyu Wang, *ETDS*, 2021)

Lorenz attractor, sectional-hyperbolic flows (Pacifico, Fan Yang, Jiagang Yang, *Nonlinearity* 2022 and arXiv:2209.10784)

Geodesic flows

Non-positive curvature (Burns-C.-Fisher-T., GAFA, 2018)

Non-uniformly hyperbolic geodesic flows No focal points (Chen-Kao-Park, *Nonlinearity* 2020 and *Advances* 2021)

Surfaces with no conjugate points (C.-Knieper-War, *Advances*, 2021)

CAT(-1) spaces (Constantine-Lafont-T., *Groups Geom. Dyn.*, 2020)

Flat surfaces with singularities (Call-Constantine-Erchenko-Sawyer-Work, *IMRN*, 2022)

