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Exponential growth rates for closed geodesics

M = closed connected Riemannian manifold

G (t) = {closed geodesics on M with length ≤ t}
What can we say about #G (t) as t →∞?

Three levels of results in negative curvature:
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First: 1
t log#G (t)→ h > 0

#G (t) = c(t)eht

c(t) is subexponential

Second: A
t e

ht ≤ #G (t) ≤ B
t e

ht tc(t) bounded away
from 0 and ∞

Third:
Margulis

#G (t) ∼ eht

ht (ratio of sides → 1) tc(t)→ 1
h

(True in any dimension. New results later are two-dimensional.)
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Main result: same estimates for “no conjugate points”

M = closed connected surface with genus ≥ 2

G (t) = {closed geodesics on M with length ≤ t}
Negative curvature (Margulis 1970): #G (t) ∼ eht

ht

f (t) ∼ g(t) means f (t)
g(t) → 1 as t →∞
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no conjugate points
(any two points in universal

cover joined by unique geodesic)

nonpositive
curvature

negative
curvature

In general, can have continuum of closed geodesics (flat cylinder),
so let P(t) = {free homotopy classes in G (t)}

Theorem (C., Knieper, War, to appear in Comm. Contemp. Math.)

No conjugate points ⇒ #P(t) ∼ eht

ht (dim 2, some higher-dim)
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From geometry to dynamics; geodesic flow and curvature

ϕt : SM → SM geodesic flow on unit tangent bundle

v ∈ SM ⇝ cv geodesic with ċv (0) = v ⇝ ϕt(v) := ċv (t)

Closed geodesics ↔ periodic orbits for geodesic flow

K > 0 K = 0 K < 0
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Constant negative curvature and scaling of leaf measures

Constant negative curvature: universal cover is hyperbolic plane
H = {x + iy : y > 0} with Riemannian metric proportional to Euc

y

Normal vector fields to horocycles are uniformly contracted by ϕ±t ,
giving an Anosov splitting TSH = Eu ⊕ E s ⊕ E 0 (flow direction)

Let ms ,mu be Lebesgue measure along stable/unstable leaves, then

mu(ϕtA) = ehtmu(A) and ms(ϕtA) = e−htms(A)

The product mu ×ms × Leb gives Liouville measure on SM.
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Margulis leaf measures

Variable negative curvature still gives a topologically mixing
Anosov flow, but Lebesgue measure may not scale by

mu(ϕtA) = ehtmu(A) and ms(ϕtA) = e−htms(A) (⋆)

For any Anosov flow, Margulis built mu,ms satisfying (⋆), where
now h is topological entropy (growth rate of (t, ϵ)-separated set)

Fixed point argument on an appropriate space (Margulis 1970)

Can also use Hausdorff measure in appropriate metric
(Hamenstädt 1989, Hasselblatt 1989, ETDS)

Interpretation via Bowen’s alternate definition of entropy
(C.–Pesin–Zelerowicz BAMS 2019, also C. arXiv:2009.09260)

For geodesic flow can also use Patterson–Sullivan approach

m = mu ×ms × Leb is flow-invariant Bowen–Margulis measure
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Properties of Bowen–Margulis measure

mu(ϕtA) = ehtmu(A) and ms(ϕtA) = e−htms(A) (⋆)

For a topologically mixing Anosov flow, the Bowen–Margulis
measure m = mu ×ms × Leb has the following properties.

Mixing (can use Hopf argument and product structure)

Unique measure of maximal entropy (Adler, Weiss, Bowen)

Equidistribution: given ϵ > 0, let

C (t) = {periodic orbits with period in (t − ϵ, t]}

νt =
1

#C (t)

∑
c∈C(t)

1

t
Lebc

Periodic orbit measures νt
weak*−−−→ m as t →∞

(Equidistribution follows from uniqueness if periodic orbits are
separated and limt→∞

1
t log#C (t) = h)
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Three levels of counting estimates

P(t) = {per. orbits : per. ≤ t} N(t) =max #((t, ϵ)-sep. set)

Growth rate: h = lim
t→∞

1

t
logN(t) = lim

t→∞

1

t
log#P(t) closing

lemma

Uniform counting estimates: (crucial for uniqueness)

(Fekete: ak+n ≤ ak + an ⇒ an
n → inf an

n =: h ⇒ an ≥ nh)

N(s + t) = C±1N(s)N(t) (“quasi-sub/supermultiplicative”) gives

Aeht ≤ N(t) ≤ Beht ⇒ A′

t
eht ≤ #P(t) ≤ B ′

t
eht

Margulis estimates: #P(t) ∼ eht

ht , ie., A
′,B ′ → 1

h as t →∞
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Sketch of (modified) proof of Margulis estimates

Eventual goal: Estimate the cardinality of

C (t) = {periodic orbits with period in (t − ϵ, t]}

and sum to get cardinality of P(t) (becomes integral as ϵ→ 0).
Use periodic orbit measures νt and Bowen–Margulis measure m.

Step 1. Use local product structure to
define flow box B with depth ϵ (in flow
direction) and slice/slab S with depth ϵ2

We will study the quantity

νt(B) =
1

t#C (t)

∑
c∈C(t)

Lebc(B)

=
ϵ

t#C (t)

∑
c∈C(t)

(number of times c crosses B)
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Closing lemma and components of intersection (νt)

Goal: Estimate #C (t) = #{per. orbits with period in (t − ϵ, t]}
via νt(B) =

ϵ
t#C(t)

∑
c∈C(t) (number of times c crosses B)

easy−−−−−−−−→
closing lemma←−−−−−−−−

Step 2. Let Γ(t) = {connected components of S ∩ ϕ−tB}. The
closing lemma gives a correspondence between Γ(t) and the orbit
segments in which an element of c crosses B. Thus

νt(B) ≈
ϵ

t

#Γ(t)

#C (t)
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Scaling of leaf measures, and mixing property (m)

C (t) = {per. orbits with per. in (t − ϵ, t]}
Γ(t) = {conn. comp. of S ∩ ϕ−tB}

νt(B) ≈
ϵ

t

#Γ(t)

#C (t)

Now we estimate m(S ∩ ϕ−tB) in two different ways. . .

Step 3. m = mu×ms ×Leb and mu,s scale
by eht , so nearly every component A in Γ(t)
has m(A) = e−htm(S), giving

m(S ∩ ϕ−tB) ≈ #Γ(t)e−htm(S)

Step 4. m is mixing, so m(S ∩ ϕ−tB)→ m(S)m(B), giving

m(S)m(B) ≈ #Γ(t)e−htm(S) ⇒ m(B) ≈ e−ht#Γ(t)
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Equidistribution (both νt and m)

C (t) = {per. orbits with per. in (t − ϵ, t]}
Γ(t) = {conn. comp. of S ∩ ϕ−tB}

νt(B) ≈
ϵ

t

#Γ(t)

#C (t)

m(B) ≈ e−ht#Γ(t) ⇒ #Γ(t) ≈ m(B)eht

Preliminary estimate of #C (t) by combining the above:

#C (t) ≈ ϵ

t

#Γ(t)

νt(B)
≈ ϵ

t

m(B)

νt(B)
eht ⇒ lim

t→∞

1

t
log#C (t) = h (1)

Step 5. General argument as in proof of variational principle uses
this estimate to show that every limit point of (νt)t→∞ is an
MME, and uniqueness gives equidistribution result νt → m. Then
the first part of (1) gives #C (t) ≈ ϵ

t e
ht .
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Conclusion of the proof and review of tools

C (t) = {per. orbits with per. in (t − ϵ, t]}
P(T ) = {per. orbits with per. ≤ T}

#C (t) ≈ ϵ

t
eht

Step 6. Divide (1,T ] into ϵ-intervals (tk − ϵ, tk ]:

#P(T ) ≈
∑
k

#C (tk) ≈
∑
k

ϵ
ehtk

tk

ϵ→0−−→
∫ T

1

1

t
eht dt ≈ ehT

hT

What did we use?

The flow has a local product structure

There are leaf measures ms ,mu that scale by e±ht

m = ms ×mu × Leb is mixing and is the unique MME

Periodic orbits are ϵ-separated
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Foliations via horospheres

M a manifold without conjugate points, X universal cover

Given v ∈ SX , can define stable horosphere

Hs(v) = lim
r→∞

∂BX (cv (r), r)

where cv is the geodesic with ċv (0) = v . Normal vector field to
Hs(v) gives stable foliation W s . Reverse time for unstable W u.

Leaves may not contract, W s,u may not be transverse (e.g. R2)

Nonpositive curvature: W s,u are continuous, get contraction and
transversality on an open and dense set if M is “rank 1”

No conjugate points: W s,u can be discts (Ballmann, Brin, Burns
“dinosaur”), no proof of contraction/transversality on any open set

How to define the flow box B? Requires product structure. . .
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Product structure from the boundary at infinity

Assume no conjugate points, surface with genus ≥ 2

v ,w on same leaf of W s ⇒ supt>0 d(cv (t), cw (t)) <∞
Write cv ∼ cw in this case; boundary at infinity ∂X is set of
equivalence classes (“set of possible futures/pasts”)

Join all pasts/future: for all (ξ, η) ∈ ∂2X = (∂X )2 \ diag,
there is a geodesic c in X with c(−∞) = ξ and c(∞) = η

Use Busemann functions, define Hopf map

H : SX → ∂2X × R
v 7→

(
cv (±∞), bcv (−∞)(πv , p)

) q

ξ
p

bξ(q, p) = ±length

− +

A flow-invariant µ on SM gives measure µ̄ on ∂2X that is invariant
under action of Γ = π1(M), and vice versa (pull back by H)
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Constructing conformal measures: a rough idea

MME/Gibbs: “every orbit segment of length t gets weight e−ht .”

Of course this is nonsense: uncountable! Options to resolve:

1 Use periodic orbits or (t, ϵ)-separated sets (Bowen)

2 Use isometric action of Γ = π1(M) on X (Patterson–Sullivan)
Geodesic segment corresponds to pair of points in X

Now with a countable set, can sum:

1
∑

c∈{periodic orbits} e
−h·length(c) Lebc

2
∑

γ∈Γ e
−hd(x ,γx)δγx for x ∈ X

But these are infinite! Two options:

1 Finite part of sum, normalize, limit

2 Replace h with s > h, normalize,
take s ↘ h

x
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Patterson–Sullivan construction and Margulis measure

Fix reference point x ∈ X . For each p ∈ X get conformal density

νp = lim
s↘h

[
normalize

(∑
γ∈Γ

e−sd(p,γx)δγx

)]
(supp νp = ∂X )

Can construct a Γ-invariant probability measure
µ̄ on ∂2X (a geodesic current) by

d µ̄(ξ, η) = ehβp(ξ,η) dνp(ξ) dνp(η)

Use Hopf map to pull back to a flow-invariant
measure on SM, which maximizes entropy.

ξ

η

p

βp(ξ, η)

Scaling properties of νp w.r.t. p lead to Margulis relations
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Prior results using Patterson–Sullivan approach

Negative curvature. Kaimanovich (1990) showed that the
construction due to Patterson and Sullivan (1970s) can be used to
obtain Bowen–Margulis measure.

Roblin (2003) used this approach to get Margulis estimates for
closed geodesics (applies to some noncompact manifolds)

Nonpositive curvature, rank 1. Knieper (1997–98) got unique
MME via Patterson–Sullivan. His proof gives uniform counting
estimates for closed geodesics (level 2 of the 3-level hierarchy)

Babillot (2002) showed that the unique MME is mixing

Ricks (2019) proved Margulis counting estimates (in CAT(0))

Defines flow box using Hopf map: B = H−1(P× F× [0, ϵ])
where P,F are disjoint neighborhoods in ∂X



Main result and background Counting estimates for Anosov flows Geodesic flows without conjugate points

New challenges for manifolds with no conjugate points

No conjugate points. Desired ingredients:

Periodic orbits are ϵ-separated (Count free homotopy classes)

Product structure for flow (Provided by ∂X and Hopf map)

Leaf measures ms ,mu that scale by e±ht (Patterson–Sullivan)

m = ms ×mu × Leb is mixing and is the unique MME (???)

Still get MME, but no proof of ergodicity/uniqueness/mixing

The Adler–Weiss–Bowen proof of uniqueness relies on ergodicity
and the Gibbs property. Where to get ergodicity?

Theorem (C.–Knieper–War 2021, Adv. Math.)

For surfaces of genus ≥ 2 without conjugate points, a “coarse
specification” argument establishes uniqueness of the MME.

With this in hand, Margulis argument (via Ricks) goes through.
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Getting uniqueness. . .

Theorem (C.–Knieper–War 2021, Adv. Math.)

For surfaces of genus ≥ 2 without conjugate points, a “coarse
specification” argument establishes uniqueness of the MME.

Khadim will tell you about this on Wednesday. . .

Highlights:

Background metric of negative curvature

Morse lemma relates geodesics in the two metrics

Get a “coarse specification” property

Pass to a finite cover to apply a general Bowen-style result:
“specification + weak expansivity implies unique MME”
(C.–Thompson)
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