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Introduction Main result Manner of proof

The talk in one slide

Behaviour of dissipative maps described by a physical measure.

SRB measures are physical, have non-zero exponents.

Want a condition to check at Lebesgue-typical points:
non-zero Lyapunov exponent does not seem to be enough.

Need to control geometric structures (local manifolds).

New result: non-zero usable hyperbolicity ⇒ SRB measure

Key tool: new version of Hadamard–Perron theorem on existence
of local stable and unstable manifolds.

Applications: use this to study maps on boundary of Axiom A –
dissipative Katok example; neutral fixed point with shear (stable
and unstable directions become degenerate at the fixed point).
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Definition of SRB measure

Describing statistics of orbits

M a compact Riemannian manifold

f : M → M a C 1+ε diffeomorphism

Goal: Study case when f is chaotic – trajectories of f appear
“random” over long time scales.

Describe statistical properties of orbits using appropriate measures.

M = the space of finite Borel measures on M

M(f ) = {µ ∈ M | µ is f -invariant}

Definition

x is generic for µ ∈ M(f ) if limn→∞

1
n

∑n−1
k=0 ϕ(f k(x)) =

∫

ϕ dµ
for every continuous ϕ : M → R. The set of generic points for µ is
its basin of attraction, denoted Gµ.
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Definition of SRB measure

Physically meaningful measures

An ergodic measure µ ∈ M(f ) describes the statistics of
µ-a.e. trajectory: µ(Gµ) = 1.

To be “physically meaningful”, a measure should describe the
statistics of Lebesgue-a.e. trajectory.

Definition

µ ∈ M(f ) is a physical measure if Leb(Gµ) > 0.

Smooth or absolutely continuous invariant measures
(µ(E ) =

∫

E
ρ(x) · d Leb(x)) are physical
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Definition of SRB measure

Physically meaningful measures

An ergodic measure µ ∈ M(f ) describes the statistics of
µ-a.e. trajectory: µ(Gµ) = 1.

To be “physically meaningful”, a measure should describe the
statistics of Lebesgue-a.e. trajectory.

Definition

µ ∈ M(f ) is a physical measure if Leb(Gµ) > 0.

Smooth or absolutely continuous invariant measures
(µ(E ) =

∫

E
ρ(x) · d Leb(x)) are physical, but may not exist. . .

. . . interesting dynamics often happen on a set of Lebesgue
measure zero. (Solenoid, etc.)
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Definition of SRB measure

Lyapunov exponents

“chaotic”  hyperbolic ≈ “has stable and unstable directions”

Don’t need absolute continuity in stable directions – a
δ-measure on a stable fixed point is a physical measure.
Only need absolute continuity in unstable directions.
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Definition of SRB measure

Lyapunov exponents

“chaotic”  hyperbolic ≈ “has stable and unstable directions”

Don’t need absolute continuity in stable directions – a
δ-measure on a stable fixed point is a physical measure.
Only need absolute continuity in unstable directions.

Theorem (Oseledec)

If µ ∈ M(f ) is ergodic, then there exist

Lyapunov exponents λ1 < λ2 < · · · < λp,

an f -invariant decomposition TM = E1 ⊕ E2 ⊕ · · · ⊕ Ep, and

a set Zµ with µ(Zµ) = 1

s.t. limn→∞

1
n

log ‖Df n(x)(v)‖ = λi for all x ∈ Zµ, v ∈ Ei (x).

Definition

µ is hyperbolic if all its Lyapunov exponents are non-zero.
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Definition of SRB measure

SRB measures as physical measures

If µ is hyperbolic and x ∈ Zµ, then TxM = E s(x) ⊕ Eu(x), where

v ∈ E s(x) ⇒ λ(v) < 0 and v ∈ Eu(x) ⇒ λ(v) > 0.

Pesin theory: For hyperbolic µ, then f has stable and unstable
manifolds at µ-a.e. point, tangent to E s(x) and Eu(x).

Definition

µ ∈ M(f ) is an SRB measure if it is hyperbolic and has absolutely
continuous conditional measures on unstable manifolds.

Ergodic SRB measures are physical measures.
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Definition of SRB measure

SRB measures as physical measures

If µ is hyperbolic and x ∈ Zµ, then TxM = E s(x) ⊕ Eu(x), where

v ∈ E s(x) ⇒ λ(v) < 0 and v ∈ Eu(x) ⇒ λ(v) > 0.

Pesin theory: For hyperbolic µ, then f has stable and unstable
manifolds at µ-a.e. point, tangent to E s(x) and Eu(x).

Definition

µ ∈ M(f ) is an SRB measure if it is hyperbolic and has absolutely
continuous conditional measures on unstable manifolds.

Ergodic SRB measures are physical measures.

If µ is an SRB measure, then Leb{x | λ 6= 0} > 0.

Is the converse true? Does Leb{x | λ 6= 0} > 0 imply
existence of an SRB measure?
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Examples, known and otherwise

Uniform geometric structure

SRB measures are known to exist in the following settings.

Uniformly hyperbolic f (Sinai, Ruelle, Bowen)

Partially hyperbolic f with positive/negative central exponents
(Alves–Bonatti–Viana, Burns–Dolgopyat–Pesin–Pollicott)

Key tool is a dominated splitting TxM = E s(x) ⊕ Eu(x).

1 E s , Eu depend continuously on x .

2 ∡(E s ,Eu) is bounded away from 0.

3 ‖Df (x)(vu)‖ > ‖Df (x)(vs)‖.
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Examples, known and otherwise

Uniform geometric structure

SRB measures are known to exist in the following settings.

Uniformly hyperbolic f (Sinai, Ruelle, Bowen)

Partially hyperbolic f with positive/negative central exponents
(Alves–Bonatti–Viana, Burns–Dolgopyat–Pesin–Pollicott)

Key tool is a dominated splitting TxM = E s(x) ⊕ Eu(x).

1 E s , Eu depend continuously on x .

2 ∡(E s ,Eu) is bounded away from 0.

3 ‖Df (x)(vu)‖ > ‖Df (x)(vs)‖.

(

Dominated splitting
)

+
(

Leb{x | λ 6= 0} > 0
)

⇒ SRB measure

For non-uniformly hyperbolic f , the splitting is not dominated.
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Examples, known and otherwise

Non-uniformly hyperbolic maps

The Hénon maps fa,b(x , y) = (a − x2 − by , x)
are a perturbation of the family of logistic
maps ga(x) = a − x2.

1 ga has an absolutely continuous invariant measure for “many”
values of a. (Jakobson)

2 For b small, fa,b has an SRB measure for “many” values of a.
(Benedicks–Carleson, Benedicks–Young)

3 Similar results for “rank one attractors” – small perturbations
of one-dimensional maps with non-recurrent critical points.
(Wang–Young)

Genuine non-uniform hyperbolicity, but only one unstable direction,
and stable direction must be strongly contracting.



Introduction Main result Manner of proof

Examples, known and otherwise

Other non-uniformly hyperbolic maps

Other examples:

1 Hénon fa,b(x , y) = (a − x2 − by , x) for b ≫ 0.

2 Generalised Hénon fa,b(x , y , z) = (a − y2 − bz , x , y): expect
to have two unstable directions, so not rank one.

3 Large perturbations of Axiom A maps: Katok construction
(slowdown near hyperbolic fixed point), no dominated
splitting; slowdown + shear, no continuous splitting.

4 Small perturbations of maps with SRB measures: either local
or global.

Goal: Develop a method for establishing the existence of an SRB
measure that can be applied to these and other examples.
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Existence of an SRB measure

Cone families

SRB measures for diffeomorphisms with usable hyperbolicity

(

x ∈ M
)

+
(

subspace E ⊂ TxM
)

+
(

angle θ
)

 cone

K (x ,E , θ) = {v ∈ TxM | ∡(v ,E ) < θ}.

E , θ depend measurably on x  measurable cone family.
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Existence of an SRB measure

Cone families

SRB measures for diffeomorphisms with usable hyperbolicity

(

x ∈ M
)

+
(

subspace E ⊂ TxM
)

+
(

angle θ
)

 cone

K (x ,E , θ) = {v ∈ TxM | ∡(v ,E ) < θ}.

E , θ depend measurably on x  measurable cone family.

Cone families K s(x),Ku(x) are invariant and transverse if

1 Df (Ku(x)) ⊂ Ku(f (x))

2 Df −1(K s(f (x))) ⊂ K s(x)

3 TxM = E s(x) ⊕ Eu(x)
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Existence of an SRB measure

Usable hyperbolicity

Consider invariant transverse cone families K s(x),Ku(x) ⊂ TxM.

λu(x) = inf{log ‖Df (v)‖ | v ∈ Ku(x), ‖v‖ = 1},

λs(x) = sup{log ‖Df (v)‖ | v ∈ K s(x), ‖v‖ = 1}.

Defect: d(x) = max
(

0, 1
ε
(λs(x) − λu(x)

)

Usable hyperbolicity = expansion − defect

Definition

The usable hyperbolicity at x is λ(x) = λu(x) − d(x).

Let α(x) = ∡(K s(x),Ku(x)). Fix ᾱ > 0 and consider

ρᾱ(x) = lim
n→∞

1

n
#{0 ≤ k < n | α(f k(x)) < ᾱ}.
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Existence of an SRB measure

An existence result

“non-zero exponents”  “non-zero usable hyperbolicity”

S =

{

x
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
ᾱ→0

ρᾱ(x) = 0

and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}
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Existence of an SRB measure

An existence result

“non-zero exponents”  “non-zero usable hyperbolicity”

S =

{

x
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
ᾱ→0

ρᾱ(x) = 0

and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}

Theorem (C.–Dolgopyat–Pesin 2011)

If LebS > 0, then f has an SRB measure.

Remark: Same result holds if S has positive Lebesgue measure
along some manifold tangent to the unstable cones Ku(x).
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Maps on the boundary of Axiom A: Slowdown, no shear

Large perturbations: an indifferent fixed point

f an Axiom A diffeomorphism.

f has an SRB measure.

Small perturbations of f are Axiom A.

Consider perturbation on boundary of
“small”.
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Maps on the boundary of Axiom A: Slowdown, no shear

Large perturbations: an indifferent fixed point

f an Axiom A diffeomorphism.

f has an SRB measure.

Small perturbations of f are Axiom A.

Consider perturbation on boundary of
“small”.

Eu

Es

Near a fixed point p, f is the time-1 map of ẋ = Ax .
ψ(x)

‖x‖

1

r0

Slow down dynamics of f near p: let g =
time-1 map for ẋ = ψ(x)Ax , with g = f

outside of V = B(p, r0).

Theorem (C.–Dolgopyat–Pesin 2011)

g has an SRB measure.
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Maps on the boundary of Axiom A: Slowdown, no shear

Usable hyperbolicity for g

If f has a smooth invariant measure µ, then ψ(x)−1dµ defines
a smooth invariant measure for g .

If the SRB measure for f is not smooth, then the attractor for
f is not g -invariant.

f is Axiom A ⇒ f has invariant cone families Ku(x) and K s(x)
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Maps on the boundary of Axiom A: Slowdown, no shear

Usable hyperbolicity for g

If f has a smooth invariant measure µ, then ψ(x)−1dµ defines
a smooth invariant measure for g .

If the SRB measure for f is not smooth, then the attractor for
f is not g -invariant.

f is Axiom A ⇒ f has invariant cone families Ku(x) and K s(x)

Ku(x) and K s(x) are g -invariant.

λu(x) ≥ 0 ≥ λs(x) and α(x) ≫ 0 for every x .

λ(x) = λu(x) ≥ χ > 0 for every x /∈ V .

1

n

n−1
∑

k=0

λ(gk(x)) ≥ χ ·
1

n
#{0 ≤ k < n | gk(x) /∈ V }

(

usable hyperbolicity
)

≥ χ ·
(

time spent outside V
)
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Maps on the boundary of Axiom A: Slowdown, no shear

Average sojourn times

τ(x) = min{t | g t(x) /∈ V } sojourn time spent in V

G (x) = g τ(x)(x) first return map to outside of V

τn(x) = τ(Gn−1(x)) sojourn time after n returns

Claim: ∃ R > 0 such that lim 1
n

∑n
k=1 τk(x) ≤ R for Leb-a.e. x .

Average sojourn time is bounded for Lebesgue typical trajectories.
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Maps on the boundary of Axiom A: Slowdown, no shear

Average sojourn times

τ(x) = min{t | g t(x) /∈ V } sojourn time spent in V

G (x) = g τ(x)(x) first return map to outside of V

τn(x) = τ(Gn−1(x)) sojourn time after n returns

Claim: ∃ R > 0 such that lim 1
n

∑n
k=1 τk(x) ≤ R for Leb-a.e. x .

Average sojourn time is bounded for Lebesgue typical trajectories.

Ω(t1, . . . , tn) = {x | τk(x) = tk for 1 ≤ k ≤ n}

LebΩ(~t) ≤ Cn
∏n

k=1 t
−γ
k with γ > 2

Model (τk) with i.i.d. (Tk) such that P(Tk = t) = Ct−γ

Claim holds using fact that E (Tk) <∞
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Maps on the boundary of Axiom A: Slowdown and shear

An indifferent fixed point with a shear

Let f be Axiom A with dim Eu = 1. Slow down f near p = f (p) as
before, then add shear.
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Maps on the boundary of Axiom A: Slowdown and shear

An indifferent fixed point with a shear

Let f be Axiom A with dim Eu = 1. Slow down f near p = f (p) as
before, then add shear.

Let N : R
d → R

d be linear such that

N(Rd) ⊂ Eu ⊂ ker N,

and ξ a bump function near p.

Eu

Es

Near p, let g = time-1 map for ẋ = (ψ(x)A + ξ(x)N)x , with
g = f outside of V = B(p, r0).

Theorem (C.–Dolgopyat–Pesin 2011)

g has an SRB measure.
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Maps on the boundary of Axiom A: Slowdown and shear

Stable cones for g

Shear ⇒ stable cone for f is no longer g -invariant. Need to

1 establish existence of stable invariant cones K s(x) for g ;

2 estimate α(x) = ∡(K s(x),Ku(x)).
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Maps on the boundary of Axiom A: Slowdown and shear

Stable cones for g

Shear ⇒ stable cone for f is no longer g -invariant. Need to

1 establish existence of stable invariant cones K s(x) for g ;

2 estimate α(x) = ∡(K s(x),Ku(x)).

Claim: This boils down to estimating average sojourn times.

A = V \ g(V ) (just entered neighbourhood of p)

B = g(V ) \ V (just left the neighbourhood of p)

Let G : A → B and F : B → A be the induced maps

Need to understand action of DG and DF on the space of
s-dimensional subspaces of R

d transverse to Eu.
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Maps on the boundary of Axiom A: Slowdown and shear

Stable cones for g

Shear ⇒ stable cone for f is no longer g -invariant. Need to

1 establish existence of stable invariant cones K s(x) for g ;

2 estimate α(x) = ∡(K s(x),Ku(x)).

Claim: This boils down to estimating average sojourn times.

A = V \ g(V ) (just entered neighbourhood of p)

B = g(V ) \ V (just left the neighbourhood of p)

Let G : A → B and F : B → A be the induced maps

Need to understand action of DG and DF on the space of
s-dimensional subspaces of R

d transverse to Eu.

Identify with R
s (intersections with translations of Eu)

DG acts as a translation (parabolically)

DF acts as multiplication (hyperbolically)
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Maps on the boundary of Axiom A: Slowdown and shear

Stable cones for g (ctd.)

{E ⊂ R
d | E transverse to Eu} ↔ R

s

E → Eu ↔ ~v → ∞

Goal: ~v such that

~v , DG (~v), DF ◦ DG (~v), DG ◦ DF ◦ DG (~v), . . .

does not go to ∞. This corresponds to E ⊂ R
d such that

E , DG (E ), DF ◦ DG (E ), DG ◦ DF ◦ DG (E ), . . .

does not go to Eu.
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Maps on the boundary of Axiom A: Slowdown and shear

Stable cones for g (ctd.)

{E ⊂ R
d | E transverse to Eu} ↔ R

s

E → Eu ↔ ~v → ∞

Goal: ~v such that

~v , DG (~v), DF ◦ DG (~v), DG ◦ DF ◦ DG (~v), . . .

does not go to ∞. This corresponds to E ⊂ R
d such that

E , DG (E ), DF ◦ DG (E ), DG ◦ DF ◦ DG (E ), . . .

does not go to Eu. Given ~v ∈ R
s , we have

|DGx(~v)j | ≥ |vj | − Cτ(x), (translation)

|DFx(~v)j | ≥ λ|vj |, where λ > 1. (multiplication)
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Maps on the boundary of Axiom A: Slowdown and shear

Usable hyperbolicity

Let Rn(x) :=
∑

∞

k=0 Cλ−kτn+k+1(x), so Rn = λ(Rn−1 − Cτn).

Then (DF ◦ DG )B(Rn−1(x)) ⊃ B(Rn(F ◦ G (x)).

If τn(x) is bounded in average, then limRn(x) <∞, so:

B(Rn(x)) contains a ~v whose iterates do not go to ∞

This shows the existence of E s(x)

αn = ∡(E s(gn(x)),Eu(gn(x))) is controlled by Rn

{n | αn ≤ ᾱ} arbitrarily sparse when ᾱ arbitrarily small

Together with the fact that λ(x) = λu(x), we get

bounded average sojourn time

⇒ positive asymptotic rate of usable hyperbolicity

⇒ g has an SRB measure
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Decomposing the space of invariant measures

Constructing invariant measures

Build invariant measures using action on M

f acts on M by f∗ : m 7→ m ◦ f −1.

Fixed points of f∗ are invariant measures.

Césaro averages + weak* compactness ⇒ invariant measures:

µn = 1
n

∑n−1
k=0 f k

∗
m µnj

→ µ ∈ M(f )
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Decomposing the space of invariant measures

Constructing invariant measures

Build invariant measures using action on M

f acts on M by f∗ : m 7→ m ◦ f −1.

Fixed points of f∗ are invariant measures.

Césaro averages + weak* compactness ⇒ invariant measures:

µn = 1
n

∑n−1
k=0 f k

∗
m µnj

→ µ ∈ M(f )

Idea: m = volume ⇒ µ is an SRB measure.

H = {x ∈ M | all Lyapunov exponents non-zero at x}

S = {ν ∈ M | ν(H) = 1, ν a.c. on unstable manifolds}

S ∩M(f ) = {SRB measures}

S is f∗-invariant, so m ∈ S ⇒ µn ∈ S for all n.

S is not compact. So why should µ be in S?
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Decomposing the space of invariant measures

Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V .

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}
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Decomposing the space of invariant measures

Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V .

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}

This set of measures has various non-uniformities.
1 Value of C , λ in definition of n-admissibility.
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Decomposing the space of invariant measures

Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V .

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}

This set of measures has various non-uniformities.
1 Value of C , λ in definition of n-admissibility.
2 Size and curvature of admissible manifolds.
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Decomposing the space of invariant measures

Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V .

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}

This set of measures has various non-uniformities.
1 Value of C , λ in definition of n-admissibility.
2 Size and curvature of admissible manifolds.
3 ‖ρ‖, where ρ is density wrt. leaf volume.
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Decomposing the space of invariant measures

Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V .

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}

This set of measures has various non-uniformities.
1 Value of C , λ in definition of n-admissibility.
2 Size and curvature of admissible manifolds.
3 ‖ρ‖, where ρ is density wrt. leaf volume.

Given K > 0, let Sn(K ) be the set of measures for which these
non-uniformities are all controlled by K .

large K ⇒ worse non-uniformity

Sn(K ) is compact, but not f∗-invariant.
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Decomposing the space of invariant measures

Non-uniformities controlled by K

Admissible manifold V near x defined by

decomposition TxM = G ⊕ F with α = ∡(G ,F ),

C 1+ε function ψ : G ∩ B(0, r) → F with ‖Dψ‖ ≤ γ and
|Dψ|ε ≤ κ such that V = expx(graphψ).

Density ρ ∈ C ε(V ) and backwards dynamics satisfy

L−1 ≤ ρ(x) ≤ L and ‖ρ‖Cε ≤ L,

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y).

K controls all the quantities α, r , γ, κ (geometry of the admissible
manifold), L (density function), and C , λ (dynamics).
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Recurrence to compact sets

Conditions for existence of an SRB measure

M be a compact Riemannian manifold, U ⊂ M open,
f : U → M a local diffeomorphism with f (U) ⊂ U.

Let µn be a sequence of measures whose limit measures are all
invariant. (In applications, µn = 1

n

∑n−1
k=0 f k

∗
Leb.)

Fix K > 0, write µn = νn + ζn, where νn ∈ Sn(K ).

Theorem (C.–Dolgopyat–Pesin 2011)

If µnk
→ µ and limnk→∞ ‖νnk

‖ > 0, then some ergodic component

of µ is an SRB measure for f .
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Recurrence to compact sets

Conditions for existence of an SRB measure

M be a compact Riemannian manifold, U ⊂ M open,
f : U → M a local diffeomorphism with f (U) ⊂ U.

Let µn be a sequence of measures whose limit measures are all
invariant. (In applications, µn = 1

n

∑n−1
k=0 f k

∗
Leb.)

Fix K > 0, write µn = νn + ζn, where νn ∈ Sn(K ).

Theorem (C.–Dolgopyat–Pesin 2011)

If µnk
→ µ and limnk→∞ ‖νnk

‖ > 0, then some ergodic component

of µ is an SRB measure for f .

The question now becomes: How do we obtain recurrence to the
set Sn(K )?
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Sequences of local diffeomorphisms

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a
sequence of local diffeomorphisms.

{f n(x) | n ≥ 0} is a trajectory of f

Un ⊂ Tf n(x)M is a small neighbourhood of 0

fn : Un → R
d = Tf n+1(x)M is the map f in local coordinates
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Sequences of local diffeomorphisms

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a
sequence of local diffeomorphisms.

{f n(x) | n ≥ 0} is a trajectory of f

Un ⊂ Tf n(x)M is a small neighbourhood of 0

fn : Un → R
d = Tf n+1(x)M is the map f in local coordinates

Decompose R
d = TxM = Eu

0 ⊕ E s
0 , let E

u,s
n+1 = Dfn(E

u,s
n ).

Want Eu
n and E s

n asymptotically expanding and contracting.

Want limn ∡(Eu
n ,E

s
n ) > 0.

(limn ∡(Eu
n ,E

s
n ) > 0 is probably unavoidable.)
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Sequences of local diffeomorphisms

Controlling hyperbolicity and regularity

R
d = Tf n(x)M = Eu

n ⊕ E s
n fn = (An ⊕ Bn) + sn

Start with an admissible manifold V0 tangent to Eu
0 at 0 and push

it forward:Vn+1 = fn(Vn).
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Controlling hyperbolicity and regularity

R
d = Tf n(x)M = Eu

n ⊕ E s
n fn = (An ⊕ Bn) + sn

Start with an admissible manifold V0 tangent to Eu
0 at 0 and push

it forward:Vn+1 = fn(Vn).

Vn = graphψn = {v + ψn(v)} ψn : B(Eu
n , rn) → E s

n

Need to control the size rn and the regularity ‖Dψn‖, |Dψn|ε.
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Sequences of local diffeomorphisms

Controlling hyperbolicity and regularity

Consider the following quantities:

λu
n = log(‖A−1

n ‖−1) λs
n = log ‖Bn‖

αn = ∡(Eu
n ,E

s
n ) Cn = |Dsn|ε

Vn = graphψn = {v + ψn(v)} ψn : B(Eu
n , rn) → E s

n

Need to control the size rn and the regularity ‖Dψn‖, |Dψn|ε.
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Sequences of local diffeomorphisms

Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.
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Non-uniform case: λs
n, λ

u
n, αn still uniform, but Cn not.

Cn grows slowly ⇒ rn decays slowly
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Sequences of local diffeomorphisms

Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.

Non-uniform case: λs
n, λ

u
n, αn still uniform, but Cn not.

Cn grows slowly ⇒ rn decays slowly

We want to consider the case where

λs
n < 0 < λu

n may fail (may even have λu
n < λs

n)

αn may become arbitrarily small

Cn may become arbitrarily large (no control on speed)
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Sequences of local diffeomorphisms

Usable hyperbolicity

In order to define ψn+1 implicitly, we need control of the regularity
of ψn. Control ‖Dψn‖ and |Dψn|ε by decreasing rn if necessary. So
how do we guarantee that rn becomes “large” again?
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Sequences of local diffeomorphisms

Usable hyperbolicity

In order to define ψn+1 implicitly, we need control of the regularity
of ψn. Control ‖Dψn‖ and |Dψn|ε by decreasing rn if necessary. So
how do we guarantee that rn becomes “large” again?

Defect – splitting not dominated: dn = max
(

0, 1
ε
(λs

n − λu
n)

)

Distortion – large nonlinearity, small angle: βn = Cn(sinαn+1)
−1

Fix a threshold value β̄ and define the usable hyperbolicity:

λn =

{

λu
n − dn if βn ≤ β̄,

min
(

λu
n − dn,

1
ε
log βn−1

βn

)

if βn > β̄.

Continuous dominated splitting ⇒ λn = λu
n
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Sequences of local diffeomorphisms

Positive usable hyperbolicity

Key criterion is positive usable hyperbolicity:

lim
n→∞

1

n

n−1
∑

k=0

λk > 0 for some β̄

One way to establish this is to have both of the following:

1 Expansion beats defect:

lim
n→∞

1

n

n−1
∑

k=0

λu
k − dk > 0

2 Distortion is almost bounded: Let Γβ̄ = {n | βn > β̄}. Then

Γβ̄ has arbitrarily small upper asymptotic density.
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Frequency of large admissible manifolds

A Hadamard–Perron theorem

Fn = fn−1 ◦ · · · ◦ f1 ◦ f0 : U0 → R
d = Tf n(x)M

V0 ⊂ R
d a C 1+ε manifold tangent to Eu

0 at 0

Vn(r) = connected component of Fn(V0) ∩ B(r) containing 0

Theorem (C.–Dolgopyat–Pesin 2011)

Suppose lim 1
n

∑n−1
k=0 λk > χ̄ > 0 for some β̄. Then there exist

constants ᾱ, γ̄, κ̄, r̄ > 0 and a set Γ ⊂ N with positive lower

asymptotic frequency such that for every n ∈ Γ,

1 ∡(Eu
n ,E

s
n ) ≥ ᾱ;

2 Vn(r̄) = graphψn and ‖Dψn‖ ≤ γ̄, |Dψn|ε ≤ κ̄;

3 if Fn(x),Fn(y) ∈ Vn(r̄), then for every 0 ≤ k ≤ n,

‖Fn(x) − Fn(y)‖ ≥ e(n−k)χ̄‖Fk(x) − Fk(y)‖.
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Frequency of large admissible manifolds

Idea of proof

Start with V0, study Vn = Fn(V0). Choose rn, γn, κn such that

Vn(rn) = graphψn

‖Dψn‖ ≤ γn and |Dψn|ε ≤ κn.

Can improve γn, κn at the cost of reducing rn, or vice versa. Give
conditions on “goodness parameters” rn, γn, κn; inequalities in
terms of λu

n, λ
s
n, and βn.
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Idea of proof

Start with V0, study Vn = Fn(V0). Choose rn, γn, κn such that

Vn(rn) = graphψn

‖Dψn‖ ≤ γn and |Dψn|ε ≤ κn.

Can improve γn, κn at the cost of reducing rn, or vice versa. Give
conditions on “goodness parameters” rn, γn, κn; inequalities in
terms of λu

n, λ
s
n, and βn.

Truncate parameters at threshold values r̄ , γ̄, κ̄:

define goodness gn by g0 = 1 and gn+1 = min(1, eλngn);

rn = r̄ gn, γn = γ̄, κn = κ̄g−ε
n .
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Frequency of large admissible manifolds

Idea of proof

Start with V0, study Vn = Fn(V0). Choose rn, γn, κn such that

Vn(rn) = graphψn

‖Dψn‖ ≤ γn and |Dψn|ε ≤ κn.

Can improve γn, κn at the cost of reducing rn, or vice versa. Give
conditions on “goodness parameters” rn, γn, κn; inequalities in
terms of λu

n, λ
s
n, and βn.

Truncate parameters at threshold values r̄ , γ̄, κ̄:

define goodness gn by g0 = 1 and gn+1 = min(1, eλngn);

rn = r̄ gn, γn = γ̄, κn = κ̄g−ε
n .

positive asymptotic rate of usable hyperbolicity

⇒ positive frequency of usable hyperbolic times (Pliss’ lemma)

⇒ thresholded parameters spend enough time at threshold
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Frequency of large admissible manifolds

Completion of proof

µ0 = Leb |V0

µn = (f n
∗
µ0)|Vn(rn) (normalised)

µn ∈ Sn(K ) for n ∈ Γ

νN = 1
N

∑N−1
k=0 µn

νN has uniformly positive projection to Sn(K ) for N ≫ n
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µn = (f n
∗
µ0)|Vn(rn) (normalised)

µn ∈ Sn(K ) for n ∈ Γ

νN = 1
N

∑N−1
k=0 µn

νN has uniformly positive projection to Sn(K ) for N ≫ n

Problem: lim νN is not invariant because of normalisation.

Final step: Use the fact that the set of points with positive rate of
usable hyperbolicity has positive Lebesgue measure; this lets us
play the above game without cheating.
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Frequency of large admissible manifolds

Completion of proof

µ0 = Leb |V0

µn = (f n
∗
µ0)|Vn(rn) (normalised)

µn ∈ Sn(K ) for n ∈ Γ

νN = 1
N

∑N−1
k=0 µn

νN has uniformly positive projection to Sn(K ) for N ≫ n

Problem: lim νN is not invariant because of normalisation.

Final step: Use the fact that the set of points with positive rate of
usable hyperbolicity has positive Lebesgue measure; this lets us
play the above game without cheating.
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