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Abstract. We obtain Margulis-type asymptotic estimates for the
number of free homotopy classes of closed geodesics on certain
manifolds without conjugate points. Our results cover all compact
surfaces of genus at least 2 without conjugate points.

1. Introduction

1.1. Main results. Given a closed Riemannian manifold (M, g), it is
well known that each free homotopy class of loops contains at least
one closed geodesic. Let P (t) denote the set of free homotopy classes
containing a closed geodesic with length at most t, and #P (t) its car-
dinality. From the point of view of dynamics and geometry it is of
considerable interest to estimate #P (t) as t tends to infinity.

Theorem 1.1. Let (M, g) be a closed connected surface of genus at
least 2 without conjugate points. Then

(1.1) #P (t) ∼ eht

ht
,

where h is the topological entropy of the geodesic flow on the unit tan-

gent bundle SM , and the notation f1 ∼ f2 means f1(t)
f2(t)
→ 1 as t→∞.

In §1.2 we discuss the history of the Margulis asymptotics (1.1) and
various related results, and in §1.3 we outline the proof, which uses
ideas from the original work of Margulis [Mar69, Mar04] and from
a recent preprint of Ricks [Ric19]. The following result clarifies the
ingredients needed for our argument; precise definitions are in §2.

Theorem 1.2. Let (M, g) be a closed Riemannian manifold without
conjugate points that admits a background metric g0 of negative curva-
ture and satisfies the divergence property (intersecting geodesics in the
universal cover diverge). If the geodesic flow has a unique measure of
maximal entropy and if this measure is almost expansive in the sense
of Definition 2.8, then (1.1) holds.
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We proved in [CKW19] that the hypotheses of Theorem 1.2 are sat-
isfies for every surface of genus at least 2 without conjugate points, so
this result implies Theorem 1.1.

In the course of the proof, we establish an equidistribution result
for periodic orbits with lengths in (t − ε, t], which we believe to be of
independent interest. The corresponding result for orbits with lengths
in (0, t] was proved in [CKW19].

Theorem 1.3. Let (M, g) be as in Theorem 1.2, and fix any ε > 0.
Given t > 0, let C(t) be any maximal set of pairwise non-free-homotopic
closed geodesics with lengths in (t− ε, t], and consider the measure

(1.2) νt =
1

#C(t)

∑
c∈C(t)

Lebc
t
,

where Lebc is Lebesgue measure (length) along the curve ċ in the unit
tangent bundle SM . Then as t→∞, the measures νt converge in the
weak* topology to the measure of maximal entropy.

The results in [CKW19], and our arguments here, apply to a class
of higher-dimensional manifolds as well; the following is a consequence
of Theorems 1.2 and 1.3 together with [CKW19].

Theorem 1.4. Let (M, g) be a closed Riemannian manifold without
conjugate points that admits a background metric g0 of negative curva-
ture and satisfies the divergence property. Suppose that the fundamental
group π1(M) is residually finite and that the entropy gap condition in
§2.5 is satisfied. Then (1.1) holds, as does the equidistribution result
in Theorem 1.3.

1.2. History. Here we recall some of the history of (1.1) and weaker
estimates, referring to the survey by Sharp [Mar04] for a more detailed
overview and for a discussion of the stronger asymptotic estimates that
are available in certain settings.

1.2.1. Types of estimates. We are interested in manifolds for which
#P (t) grows exponentially quickly. In this case one can identify three
levels of asymptotic results, each stronger than the last.

• Exponential growth rate: existence of the limit

(1.3) h = lim
t→∞

1

t
log #P (t),

and identification of h with a dynamical or geometric quantity
such as topological entropy or the growth rate of balls in the
universal cover.
• Uniform counting bounds: existence of A,B > 0 such that

(1.4)
A

t
eht ≤ #P (t) ≤ B

t
eht for sufficiently large t.

• Multiplicative asymptotics: the result in (1.1).
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Broadly speaking, there are two types of approaches to proving these
estimates. One approach relies on studying the dynamical properties of
the geodesic flow on SM , with an important role played by the measure
of maximal entropy. The other approach relies on methods from ge-
ometry, analysis, and geometric group theory, and leans heavily on the
fundamental group π1(M), its isometric action on the universal cover
of M as the group Γ of deck transformations, and the correspondence
between free homotopy classes of curves on M and conjugacy classes in
Γ ∼= π1(M).1 As will become clear later, our proof combines elements
of both approaches.

1.2.2. Negative curvature and uniform hyperbolicity. When all sectional
curvatures of (M, g) are negative, each free homotopy class is repre-
sented by a unique closed geodesic, so #P (t) represents the number of
closed geodesics with length at most t. In the 1950’s Huber [Hub59,
Satz 10] proved for closed surfaces of constant curvature −1 that (1.1)
holds with h = 1. He used a relation between the spectrum of the
Laplacian and the length spectrum (the set of lengths of all closed
geodesics) which in its general form is given by Selberg’s trace formula
[Sel56] and involves a sum over conjugacy classes in Γ. Proofs using Sel-
berg’s methods can be found in [McK72, Hej76, Bus92].2 This formula
extends to locally symmetric spaces of negative curvature in arbitrary
dimension, where it was later used to deduce (1.1) by Gangolli [Gan77].

To deal with variable curvature, where there is no Selberg trace for-
mula, different arguments are needed. In 1966, Sinai [Sin66] used dy-
namical methods to prove that if (M, g) has dimension n and all of its
sectional curvatures lie between −b2 and −a2 for some b ≥ a > 0, then
the lower and upper limits in (1.3) lie between (n− 1)a and (n− 1)b;
however, he did not prove existence of the limit.

A striking improvement of Sinai’s bounds was given by Margulis in
his 1969 thesis, which established (1.1) – and hence (1.3) and (1.4) as
well – for every (M, g) with (variable) negative sectional curvatures.
Margulis’s arguments are dynamical and apply to any topologically
mixing Anosov flow, where in this dynamical setting P (t) denotes the
set of periodic orbits with period at most t.3

At the heart of Margulis’s proof is the construction of an invariant
mixing measure m with the following properties:

1This correspondence means that one can obtain estimates on #P (t) by counting
conjugacy classes. It is worth pointing out that the question of growth of conjugacy
classes is distinct from the question of growth of group elements; there are groups
of exponential growth with only two conjugacy classes [Osi10, Corollary 1.2].

2In this context (1.1) is often called the prime number theorem for compact
Riemann surfaces: note that the classical prime number theorem says that if π(x)

is the number of primes less than or equal to x, then π(et) ∼ et

t .
3This yields the geometric conclusion because the geodesic flow on SM is Anosov

when M has negative curvature.
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(1) the conditional measures of m on stable and unstable manifolds
contract and expand with a uniform rate under the flow;

(2) m is a measure of maximal entropy for the flow;
(3) m is the limiting distribution of periodic orbits in the sense of

Theorem 1.3.

Margulis’s results were announced without proof in [Mar69], in which
the right-hand side of (1.1) had the form ct−1eht for some unspecified
constant c, which was stated to be equal to the entropy h in the constant
curvature case. The stronger result that c = h in general was contained
in his thesis itself, which was not published until 2004 [Mar04]. In
the meantime, this equality was established in the 1984 thesis of Toll
[Tol84], which gave an account of Margulis’s ideas in English (albeit
an unpublished one that only circulated informally); a description of
Margulis’s approach was also given in the 1995 book of Katok and
Hasselblatt [KH95, §20.5–6].

After Margulis’s work was announced but before his arguments were
widely known, several important alternate dynamical approaches were
developed. First came the work of Bowen in the early 1970’s, which
used the specification and expansivity properties satisfied by Anosov
and Axiom A flows to prove (1.3) and (1.4) in [Bow72b] and [Bow72a,
Theorem 4.1], respectively, and to show that periodic orbits are equidis-
tributed with respect to an ergodic measure of maximal entropy. In
[Bow74] Bowen proved that this measure of maximal entropy is in fact
unique, and it is now referred to as the Bowen–Margulis measure. In
1983, Parry and Pollicott [PP83] gave an alternative proof of (1.1)
based on symbolic dynamics and zeta functions, which covers Axiom
A flows as well.

1.2.3. Beyond negative curvature. Outside of the uniformly hyperbolic
setting, there are fewer comprehensive results available. In 1982 Katok
used a closing lemma in Pesin theory to show that for a smooth flow
with topological entropy h > 0 and no fixed points, the exponential
growth rate of the number of periodic orbits is at least h [Kat82, The-
orem 4.1], yielding one inequality in (1.3). Recently, Lima and Sarig
strengthened this to the lower uniform bound in (1.4) [LS19, Theorem
8.1] when the flow is on a manifold of dimension 3 (for geodesic flows,
this requires M to be a surface so that dimSM = 3).

On the other hand, without the assumption of uniform hyperbolic-
ity, it is easy to produce flows with uncountably many periodic orbits
below a given length, which suggests that we should really be counting
equivalence classes of periodic orbits, rather than individual orbits. In
the most general setting it is not clear what equivalence relation would
be appropriate, but for geodesic flow on SM it is natural to consider
free homotopy of the underlying geodesics on M , and from now on we
restrict our attention to this setting.
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Now that #P (t) counts free homotopy classes of closed curves, the
upper bound in (1.3) holds without any further assumptions on M
[Kni83, Satz 2.1]: growth of homotopy classes creates entropy. How-
ever, the lower bound in (1.3) no longer holds in general when we are
counting homotopy classes instead of individual geodesics, as evidenced
by the fact that the sphere admits metrics for which the geodesic flow
has positive topological entropy [Don88, BG89]. Thus some assump-
tions must be placed on M to proceed further.

In 1983, the second author studied closed Riemannian manifolds with
nonpositive curvature which admit a geodesic that does not bound a flat
half plane [Kni83] (in particular, this includes manifolds of geometric
rank 1) and proved the exponential growth rate (1.3), where h is the
topological entropy. This used geometric methods, and in particular
the result of Manning [Man79] that h gives the growth rate of the
volume of balls in the universal cover.

In 1990, Kaimanovich [Kai90] showed that on a manifold with neg-
ative curvature, the Bowen–Margulis measure can also be obtained by
building a family of measures on the boundary at infinity using a con-
struction due to Patterson [Pat76] and Sullivan [Sul79]. The second
author then adapted this to the rank 1 nonpositive curvature setting
[Kni97, Kni02] and used it to obtain the uniform bounds (1.4).4 In
[Kni98], he showed that the measure of maximal entropy constructed
from the Patterson–Sullivan measure is unique, and Babillot used the
product structure of this measure to prove the mixing property [Bab02].

Remark 1.5. An alternate proof of uniqueness in rank 1 based on a
variant of Bowen’s specification property was recently given by the first
author together with Burns, Fisher, and Thompson [BCFT18]. As with
Bowen’s original work, this approach can be used to deduce the uniform
estimates (1.4), although this is not done explicitly in the paper.5

Beyond the Riemannian setting, Coornaert [Coo93] studied groups
acting on Gromov hyperbolic metric spaces, and constructed Patterson–
Sullivan measures on the Gromov boundary. Coornaert and the second
author [CK02] used this together with ideas from [Kni83, Kni97] to
prove that if a group Γ acts properly and cocompactly by isometries
on a proper geodesic Gromov hyperbolic metric space whose Gromov
boundary contains at least 3 points, then (1.4) holds for the set P (t) of
conjugacy classes [γ] of elements γ ∈ Γ such that infx∈X d(x, γx) ≤ t.6

4The upper bound in [Kni97] does not have the t in the denominator, but [Kni02,
Proposition 5.3.6] explains how to obtain it.

5See [BCFT18, Corollary 4.8 and Proposition 6.4] for results toward (1.4).
6As with [Kni97], the upper bound in [CK02] has no t in the denominator, but

it could be added with some extra work.
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None of these results, however, establish the Margulis asymptotics
(1.1) in any setting beyond negative curvature.7 For surfaces that have
negative curvature outside of a collection of radially symmetric ‘caps’,
(1.1) was established by Weaver [Wea14], following Margulis’s original
argument with suitable modifications. More recently, in an unpub-
lished preprint [Ric19], Ricks has announced the result in the rank 1
CAT(0) setting, which includes the nonpositive curvature case; he fol-
lows Margulis’s approach, using geometric tools as in [Kni97, Kni98]
to compensate for the lack of uniform hyperbolicity. As we describe
below, we take a similar approach in this paper, although we make a
number of substantial changes that allow us to sidestep locations where
we were unable to follow the argument in [Ric19].

1.3. Outline of the proof. The proof of Theorem 1.2 uses ergodic
theoretic properties of the measure of maximal entropy m for the ge-
odesic flow φt on SM . Beyond the basic geometric properties that we
review in §2 (and prove in Appendix A), the key ingredients are as
follows.

(1) Flow box and slice (§3): small sets B, S ⊂ SM with a product
structure of (stable) × (unstable) × (flow), where B and S
have the same cross-section in the first two components and
have flow-lengths of ε and ε2, respectively.8

(2) Closing lemma (§4): a nearly bijective correspondence between
• the set of ε-segments in which some c ∈ C(t) intersects B,

where C(t) is as in Theorem 1.3, and
• the set of components of S ∩ φ−tB, indexed by a subset

Γ(t) of the fundamental group.

In particular, the measures νt from (1.2) have νt(B) ≈ ε
t

#Γ(t)
#C(t)

.

(3) Product structure and scaling properties (§§3.1 and 5.1): nearly
every component of S∩φ−tB has measure≈ e−htm(S), and thus
m(S ∩ φ−tB) ≈ #Γ(t)e−htm(S);

(4) Mixing property for m (§5.2): m(S ∩ φ−tB) → m(S)m(B) as
t→∞, so #Γ(t) ∼ ehtm(B).

(5) Equidistribution (§6.1): νt → m as in Theorem 1.3, giving the

asymptotic #C(t) ∼ ε
t

#Γ(t)
m(B)

∼ ε · eht/t.

(6) Integration (§6.2): Fixing b > 0 and partitioning (b, T ] into
ε-intervals with endpoints tk gives a Riemann sum

#P (T ) ∼ #(P (T ) \ P (b)) ∼
∑
k

ε · e
htk

tk

ε→0−−→
∫ T

b

1

t
eht dt ∼ 1

hT
ehT .

7For rank 1 manifolds, the asymptotics were announced in the thesis of Gunesch
[Gun02], but a complete proof was never published.

8Here we differ from prior approaches, which only used B.
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These are the same basic ingredients as in Margulis’s original proof,
with one notable exception: he works with components of B ∩ φ−tB,
which may have varying ‘depths’ between 0 and ε, while we work with
S∩φ−tB and can disregard components that do not have full depth ε2.
(This also makes our use the mixing property in §5 somewhat different
from prior approaches.) It should also be pointed out that because we
do not have uniform hyperbolicity, we follow [Kni97, Ric19] and work
with the boundary at infinity instead of stable and unstable manifolds:
this shows up in the definition of the flow box and slice, in the closing
lemma, and in the product structure and scaling properties. Moreover,
we carry out many of the counting steps in terms of the fundamental
group π1(M).

2. Definitions and geometric preliminaries

2.1. Closed curves. Throughout the paper, (M, g) will be a closed
Riemannian manifold. A (smooth) closed curve on M is a smooth map
c : R/Z = S1 →M . Two such curves c0, c1 : R/Z = S1 →M are freely
homotopic if there exists a continuous map H : [0, 1]×R/Z→M such
that H(0, t) = c0(t) and H(1, t) = c1(t) for all t. This is an equivalence
relation on the set of closed curves, whose equivalence classes we call
free homotopy classes.

By Cartan’s Theorem [dC92, Theorem 12.2.2], every free homotopy
class of closed curves contains at least one closed geodesic, which mini-
mizes length within the class. Thus (1.1) can be interpreted either as a
result on the growth rate of free homotopy classes of closed geodesics, or
of free homotopy classes of closed curves, since the two are equivalent.
From now on we will work only with closed geodesics.

Since it is customary to parametrize geodesics with unit speed, we
will write a closed geodesic as c : R/`Z→M , where ` > 0 is the length
of the closed geodesic. For manifolds without conjugate points (defined
below), any two closed geodesics in the same free homotopy class have
the same length; see [CKW19, Lemma 2.29] for the (short) proof.

Given a closed geodesic c and n ∈ N, one can consider the closed
geodesic cn : R/n`Z→ M that consists of n orbits around c. A closed
geodesic is primitive if it cannot be written as cn for some closed geo-
desic c and n ≥ 2. One can show that (1.1) is unaffected by whether
we count all closed geodesics, or only primitive ones (see Remark 4.6).

As we will see in §2.4 below, there is a one-to-one correspondence
between free homotopy classes of closed geodesics and conjugacy classes
in the fundamental group. A conjugacy class is primitive if its elements
cannot be written as proper powers. Note that it is possible to have a
primitive closed geodesic whose free homotopy class corresponds to a
non-primitive conjugacy class in the fundamental group: the boundary
circle of a Möbius strip provides an example.
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2.2. Geodesic flows and standing assumptions. Let SM be the
unit tangent bundle of M , and π : SM → M the canonical projection
that takes each tangent vector to its basepoint. Each v ∈ SM deter-
mines a unique geodesic cv : R → M with cv(0) = π(v) and ċv(0) = v.
The geodesic flow on M is the flow φt on SM given by

(2.1) φt(v) = ċv(t).

Dynamical properties of the geodesic flow are related to curvature prop-
erties of the manifold, and in particular to the behavior of Jacobi fields,
which govern how nearby geodesics evolve in time. Formally, a Jacobi
field along a geodesic c : R→M is a vector field J(t) along c satisfying
J ′′ + R(J, ċ)ċ = 0, where R is the Riemann curvature tensor and ′ is
covariant differentiation along c. Two points p, q on c are conjugate if
there is a nonzero Jacobi field along c that vanishes at both p and q.

Throughout the paper, we consider manifolds without conjugate
points. This class includes all manifolds with nonpositive curvature,
as well as many manifolds with positively curved regions [Gul75]. It
is also characterized by the property that the exponential map is non-
singular, or equivalently, that any two points in the universal cover are
connected by a unique geodesic.

We impose two more standing assumptions:9 we assume that M
admits another Riemannian metric g0 for which all sectional curvatures
are negative, and that M satisfies the divergence property in Definition
2.2 below. In the following sections we gather various definitions and
results about such manifolds; some of the lemmas are quoted directly
from the literature; the remainder are proved in Appendix A.

2.3. Visibility manifolds and the boundary at infinity. Write X
for the universal cover of M and SX for the unit tangent bundle of X
with respect to the lift of the Riemannian metric g. Let pr : X → M
be the canonical projection; we write pr∗ : SX → SM for the map
this induces on the unit tangent bundles. From now on we will use an
underline to denote objects in M and SM , so that for example c will
denote a geodesic on M , and c a geodesic on X that lifts c, that is,
c = pr ◦ c. We write φt for the geodesic flow on both SM and SX.

Following [Ebe72], we can define the boundary at infinity ∂X pro-
vided the following condition is satisfied.

Definition 2.1 ([Ebe72, Definition 1.3]). A simply connected Rie-
mannian manifold X without conjugate points is a uniform visibility
manifold if for every ε > 0 there exists L > 0 such that whenever a geo-
desic c : [a, b]→ X stays at distance at least L from some point p ∈ X,

9Note that these assumptions rule out some higher-dimensional manifolds with
nonpositive curvature.
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then the angle sustained by c at p is less than ε, that is

]p(c) = sup
a≤s,t≤b

]p(c(s), c(t)) < ε.

If M is a Riemannian manifold without conjugate points whose univer-
sal cover X is a uniform visibility manifold, then we say that M is a
uniform visibility manifold.

The uniform visibility property implies the following divergence prop-
erty [Ebe72, Proposition 1.5], and when M admits a negatively curved
“background” metric g0, the two conditions are equivalent [Ebe72, The-
orem 5.1].10

Definition 2.2. The manifold (M, g) has the divergence property if
given any geodesics c1 6= c2 in the universal cover with c1(0) = c2(0),
we have limt→∞ d(c1(t), c2(t)) =∞.

For the remainder of the paper we assume that (M, g) is has no
conjugate points, admits a background metric of negative curvature,
and satisfies the divergence property (and thus the uniform visbility
property as well).

Remark 2.3. In dimension 2, every surface of genus at least 2 without
conjugate points admits a negatively curved metric, and the divergence
property holds by [Gre56]. In higher dimensions the corresponding re-
sult is no longer true: there are rank 1 manifolds of nonpositive cur-
vature, such as the graph manifolds described by Gromov [Kni98, §6],
that admit totally geodesic isometric embeddings of R2 and thus fail the
uniform visibility condition.

We describe a compactification of X following Eberlein [Ebe72].

Definition 2.4. Two geodesic rays c1, c2 : [0,∞) → X are called as-
ymptotic if supt≥0 d(c1(t), c2(t)) <∞. This is an equivalence relation;
we write ∂X for the set of equivalence classes and call its elements
points at infinity. We denote the equivalence class of a geodesic ray
(or geodesic) c by c(∞).

Given v ∈ SX, let cv be the unique geodesic with ċv(0) = v. The
following is proved in [Ebe72, Propositions 1.5 and 1.14].

Lemma 2.5. Given any p ∈ X and ξ ∈ ∂X, there is a unique geodesic
ray c = cp,ξ : [0,∞)→ X with c(0) = p and c(∞) = ξ. Equivalently, the
map fp : SpX → ∂X defined by fp(v) = cv(∞) is a bijection. Moreover,
for a given ξ, the initial vector ċp,ξ(0) depends continuously on p.

Following Eberlein we equip ∂X with a topology that makes it a
compact metric space homeomorphic to Sn−1. Fix p ∈ X and let

10The divergence property is not mentioned in the statement of [Ebe72, Theorem
5.1], but the “Added in proof” section of that paper discusses its necessity.
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fp : SpX → ∂X be the bijection v 7→ cv(∞) from Lemma 2.5. The
topology (sphere-topology) on ∂X is defined such that fp becomes
a homeomorphism. Since the map f−1

q fp : SpX → SqX is a homeo-
morphism for all q ∈ X [Ebe72], the topology is independent of the
reference point p.

The topologies on ∂X and X extend naturally to X̄ := X ∪ ∂X by
requiring that the map ϕ : B1(p) = {v ∈ TpX : ‖v‖ ≤ 1} → X̄ defined
by

ϕ(v) =

{
expp

(
v

1−‖v‖

)
‖v‖ < 1

fp(v) ‖v‖ = 1

is a homeomorphism. This topology, called the cone topology, was
introduced by Eberlein and O’Neill [EO73] in the case of Hadamard
manifolds and by Eberlein [Ebe72] in the case of visibility manifolds.
In particular, X̄ is homeomorphic to a closed ball in Rn. The relative
topology on ∂X coincides with the sphere topology, and the relative
topology on X coincides with the manifold topology.

Remark 2.6. The manifold M is the quotient of X by the isometric
action of the group Γ of deck transformations, which is isomorphic to
the fundamental group π1(M). This extends to a continuous action on
∂X. The geodesic flow is topologically transitive [Ebe72], so every Γ-
orbit in ∂X is dense, i.e., the action on X is minimal. Moreover, the
Morse lemma (see for example [Kni02, Theorem 2.3]) gives a topological
conjugacy between the actions of Γ on the boundaries at infinity with
respect to the two metrics g and g0; in particular, every element γ ∈
Γ \ Id has exactly two fixed points on ∂X, since this is true for g0.

Definition 2.7. Given γ ∈ Γ \ Id, let ξ−γ ∈ ∂X be the repelling fixed
point of γ, and ξ+

γ ∈ ∂X be the attracting fixed point of γ.

Every geodesic c : R→ X determines two distinct points c(−∞) and
c(∞) on ∂X. We will also use the notation

(2.2) v− := cv(−∞) and v+ := cv(∞).

It is useful to write

(2.3) ∂2X := {(ξ, η) ∈ (∂X)2 : ξ 6= η}

and to consider the endpoint map

(2.4) E : SX → ∂2X, v 7→ (v−, v+).

By [Ebe72, Proposition 1.7], every pair of distinct points on ∂X is
joined by at least one geodesic, so the map E is onto. Note that E is
continuous by the definition of the topology on ∂X.

It is sometimes important to work with pairs of points at infinity
that are joined by exactly one geodesic.
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Definition 2.8. The expansive set of X is

(2.5) E := {v ∈ SX | φR(v) = E−1(v−, v+)}.
We say that an invariant Borel probability measure µ on SM is almost
expansive if µ(pr∗ E) = 1.

2.4. Periodic orbits and deck transformations. There is a one-
to-one correspondence between closed geodesics on M and conjugacy
classes in the group Γ of deck transformations. Here we recall some of
the elements of this correspondence that we will need.

Given a closed geodesic c : R/`Z→M , the length ` > 0 is such that
c(t + `) = c(t) for all t ∈ R, and thus for every lift c of c there is a
unique γ ∈ Γ such that

(2.6) c(t+ `) = γc(t) for all t ∈ R.

Definition 2.9. If c, γ, and ` > 0 are such that (2.6) holds, then we
say that γ is the axial isometry of (c, `), and c is an axis of γ.

If c is an axis of some γ, then it follows immediately that c = pr ◦ c
is a closed geodesic on M . Moreover, every axial isometry γ of c (with
any value of `) fixes c(±∞), and by Remark 2.6 and Definition 2.7 this
proves the following lemma.

Lemma 2.10. If c is an axis of γ, then c(−∞) = ξ−γ and c(∞) = ξ+
γ .

Remark 2.11. There may be multiple geodesics connecting ξ±γ besides
c itself; these geodesics may or may not be axes of γ.

It follows from Preissman’s Theorem that in the background metric
g0, given every pair of points on ∂X, the set of γ that fixes these two
points is either trivial or an infinite cyclic subgroup [dC92, Lemma
12.3.5]. Using the topological conjugacy from Remark 2.6 we get the
same result for g.

Lemma 2.12. Given any geodesic c on X such that c = pr◦c is closed,
the set of γ ∈ Γ fixing c(−∞) and c(∞) is an infinite cyclic subgroup.

Remark 2.13. It is possible for the subgroup in Lemma 2.12 to contain
non-identity elements for which neither c nor its reverse is an axis; for
example, this occurs when c lifts a boundary circle of a Möbius strip.

The preceding discussion lets us go from closed geodesics to deck
transformations. We will also need to go in the other direction.

Definition 2.14. Given γ ∈ Γ \ Id, the length of γ is

|γ| := inf{d(q, γq) : q ∈ X}.
Lemma 2.15. For every γ ∈ Γ \ Id, there exists q0 ∈ X such that
d(q0, γq0) = |γ| ≥ 2 inj(M). Moreover, if c : R → X is a geodesic
joining q0 and γq0, then c(t + |γ|) = γc(t) for all t ∈ R, so c := pr ◦ c
is a closed geodesic.
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Lemma 2.15 is standard: the idea of the proof is in [BC64, §11.7,
Theorem 10], and a complete proof is in [Sak96, pages 196–197]. We
need two more standard results relating free homotopy classes, axial
isometries, and endpoints on ∂X; for completeness we provide proofs
in Appendix A.

Lemma 2.16. Let c0 : R/`0Z → M and c1 : R/`1Z → M be closed
geodesics on M that lie in the same free homotopy class.11 Then given
any lift c0 of c0, there is a lift c1 of c1 such that (c0, `0) and (c1, `1) have
the same axial isometry, and hence the same endpoints.

Lemma 2.17. If γ is the axial isometry for both (c0, `0) and (c1, `1),
then `0 = `1 = |γ|, and the corresponding closed geodesics lie in the
same free homotopy class.

We remark that these lemmas (apart from the claim about endpoints
on ∂X) are true for general closed manifolds, although for convenience
our proof of Lemma 2.17 uses ∂X via Lemma 2.10.

2.5. Other geometric hypotheses. In [CKW19] we proved existence
and uniqueness of the measure of maximal entropy for a geodesic flow
on a closed Riemannian manifold M without conjugate points under
the following conditions.

(1) There exists a Riemannian metric g0 on M for which all sec-
tional curvatures are negative.

(2) The visibility axiom is satisfied.12

(3) The fundamental group π1(M) is residually finite: the intersec-
tion of its finite index subgroups is trivial.

(4) There exists h0 < h such that any ergodic invariant Borel prob-
ability measure µ on SM with entropy > h0 is almost expansive.

As discussed in [CKW19, Remarks 2.1 and 3.2], the first of these condi-
tions is a genuine topological restriction, and excludes certain manifolds
of nonpositive curvature that still obey the Margulis asymptotics by
[Ric19]. It is not known whether or not the remaining three conditions
can fail if the first holds. All four conditions hold for every surface of
genus ≥ 2 [CKW19, §3].

In addition to proving existence and uniqueness of the MME, we
proved in [CKW19] that it is mixing and has a product structure and
scaling properties that we describe in the next section.

3. Scaling properties and product structure

3.1. Busemann functions and conformal densities.

11Here we specify the periods `0, `1 explicitly, as in §2.1; notice that replacing `j
with n`j would change the free homotopy class.

12The result in [CKW19] is formulated using the divergence property, but they
are equivalent when there is a negatively curved background metric.
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Lemma 3.1 ([Esc77, Proposition 1]). Given v ∈ SX and q ∈ X, the
limit

bv(q) := lim
t→∞

(
d(q, cv(t))− t

)
exists and defines a C1 function on X. Moreover, we have

grad bv(q) = lim
t→∞

grad
(
d(q, cv(t))− t

)
.

The function bv is called the Busemann function associated to v. It
is in fact C1,1 [Kni86, Satz 3.5].

Definition 3.2. Given p ∈ X and ξ ∈ ∂X, let v ∈ SpX be the unique
unit tangent vector at p such that cv(∞) = ξ. We call bξ(q, p) := bv(q)
the Busemann function based at ξ and normalized by p (bξ(p, p) = 0).

The zero set of the Busemann function is the horosphere through p
centered at ξ, say Hξ(p), and bξ(q, p) can be interpreted as the distance
you need to travel along the geodesic from q towards ξ in order to reach
this horosphere; see Figure 1. With this interpretation the following
cocycle property of the Busemann function becomes transparent:

(3.1) bξ(p, q) = bξ(p, r) + bξ(r, q) for all ξ ∈ ∂X and p, q, r ∈ X.
Note also that

(3.2) bξ(p, q) = −bξ(q, p) for all ξ ∈ ∂X and p, q ∈ X.
Figure 1 also illustrates the function βp : ∂2X → (0,∞) defined by

(3.3) βp(ξ, η) = −(bξ(q, p) + bη(q, p)),

where q is a point on a geodesic c connecting ξ and η. Geometrically,
βp(ξ, η) is the length of the segment c which is cut out by the horoballs
through (p, ξ) and (p, η). Since gradq bξ(q, p) = − gradq bη(q, p) for all
points q on geodesics connecting ξ and η, this number is independent
of the choice of q.

q

ξ
p

bξ(q, p) = ±d(q,Hξ(p))

− + ξ

η

p

βp(ξ, η)

Figure 1. Geometric interpretation of bp(q, ξ) and βp(ξ, η).

It is easy to see that bξ(p, q) is 1-Lipschitz in both p and q by ei-
ther using the definition directly or by using (3.1) and the fact that
|bξ(p, q)| ≤ d(p, q). We will also need to know how bξ(p, q) varies with
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ξ. This is equivalent to understanding how Hξ(p) varies with ξ, which
is accomplished by the following result; see [CKW19, Proposition 6.2]
for the statement we use and for precise references to the proof, which
can be found in [Pes77] and uses results from [Ebe72] (see also [Rug07,
Lemma 4.11]).

Proposition 3.3. Let (M, g) be a closed Riemannian manifold with-
out conjugate points that satisfies the uniform visibility condition and
admits a background metric of negative curvature, and let X be its uni-
versal cover. Then for every p ∈ X, the map ξ 7→ Hξ(p) is continuous
in the following sense: if ξn → ξ ∈ ∂X and K ⊂ X is compact, then
Hξn(p) ∩K → Hξ(p) ∩K uniformly in the Hausdorff topology.

Corollary 3.4. The functions (v, q) 7→ bv(q) and (ξ, p, q) 7→ bξ(p, q)
are continuous on SX ×X and ∂X ×X ×X, respectively.

Now we can define the types of measures that we work with to carry
out the counting argument.

Definition 3.5. Given h > 0, an h-conformal density on ∂X is a
family of finite measures {µp}p∈X on ∂X with the following properties.

(1) suppµp = ∂X for all p ∈ X.
(2) {µp}p∈X is Γ-equivariant: for all Borel sets A ⊂ ∂X, we have

µγp(γA) = µp(A).

(3) dµq
dµp

(ξ) = e−hbξ(q,p) for almost all ξ ∈ ∂X.

In the setting of Theorem 1.2, an h-conformal density was obtained in
[CKW19, Proposition 5.1] via a Patterson–Sullivan construction, where
h is the topological entropy of the geodesic flow. Given a conformal
density, the proof of [Kni98, Lemma 2.4] gives the following.

Lemma 3.6. For p ∈ X, the measure µ̄ on ∂2X ⊂ (∂X)2 defined by

(3.4) dµ̄(ξ, η) = ehβp(ξ,η) dµp(ξ) dµp(η)

is Γ-invariant.

Under the hypotheses of Theorem 1.2, we proved in [CKW19, Theo-
rem 5.6 and Remark 5.7] that µ̄-a.e. pair (ξ, η) ∈ ∂2X is connected by
a unique geodesic V (ξ, η), and that writing λξ,η for Lebesgue measure
along the trajectory corresponding to V (ξ, η), the measure defined on
SX by

(3.5) m(A) =

∫
∂2X

λξ,η(A) dµ̄(ξ, η)

is related to the unique MME m on SM by

(3.6) m(A) =

∫
SM

#(pr−1
∗ (v) ∩ A) dm(v).
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Moreover, in [CKW19, Theorem 6.1 and Remark 6.2] we used an argu-
ment of Babillot [Bab02] to prove that the flow is mixing with respect
to m under these same assumptions.

3.2. Local product structure near expansive vectors. From now
on we fix an expansive vector v0 ∈ E (which is nonempty since it has
full measure for m), and let p = π(v0) ∈ X. This will be a ‘reference
point’ for all the definitions that follow, and we will suppress v0 and p

from the notation. We fix a scale ε ∈ (0,min(1
8
, inj(M)

4
)], where inj(M)

is the injectivity radius of M . At the very end of the proof, in §6.2, we
will need to take a limit as ε→ 0, but until then ε will be fixed.

Definition 3.7. The Hopf map H : SX → ∂2X × R for p ∈ X is

(3.7) H(v) := (v−, v+, s(v)), where s(v) := bv−(πv, p).

The following fundamental fact will be useful:

(3.8) s(φtv) = s(v) + t for all v ∈ SX and t ∈ R.
Note that the Hopf map is continuous by Corollary 3.4 and the def-

inition of the topology on ∂X. Following Ricks [Ric19], we use the
Hopf map to define a local product structure on a neighborhood in
SX. Given disjoint sets P,F ⊂ ∂X, the set H−1(P× F× {0}) repre-
sents the set of all v ∈ SX whose past history under φt is given by P,
whose future evolution is given by F, and such that bv−(πv, p) = 0.

Lemma 3.8. For any disjoint closed sets P,F ⊂ ∂X, the set H−1(P×
F× {0}) ⊂ SX is compact.

We will use the following choice of P,F: given our fixed choice of
v0 ∈ SpX ∩ E , we consider for each θ > 0 the sets

(3.9)
P = Pθ := {w− : w ∈ SpX and ]p(w, v0) ≤ θ},
F = Fθ := {w+ : w ∈ SpX and ]p(w, v0) ≤ θ}.

The function θ 7→ µ̄(Pθ × Fθ) is nondecreasing and thus has at most
countably many discontinuities; from now on we assume that θ is chosen
to be a point of continuity of this function, so that

(3.10) lim
ρ→θ

µ̄(Pρ × Fρ) = µ̄(Pθ × Fθ).

The assumption that v0 ∈ E lets us strengthen the boundedness result
in Lemma 3.8.

Lemma 3.9. Let v0, p, ε be as above. Then there exists θ1 > 0 such
that for all 0 < θ ≤ θ1 we have diamπH−1(P× F× {0}) < ε

2
.

Given α ∈ (0, 3
2
ε], we consider the flow box

(3.11)

B = Bα
θ := H−1(P× F× [0, α])

= {w ∈ SX : (w−, w+) ∈ P× F and s(w) ∈ [0, α]}

=
⋃
{φ[0,α]w : (w−, w+) ∈ P× F and s(w) = 0},
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which is a union of tangent vectors to geodesic rays of length α; note
that each trajectory of φt that enters B must do so through the “front
face” H−1(P× F× {0}).

We will occasionally write Bα or Bθ when only one of α, θ needs to
be explicitly specified (the other being constant through a long portion
of the proof). In fact we will only need to consider the cases α = ε,
α = ε ± 4ε2, and α = ε2. The last of these is important enough to
deserve its own notation, and we write

(3.12) S = Sθ := Bε2

θ = H−1(P× F× [0, ε2]).

Thus from now on we will always use B to denote a box with depth
α ≈ ε, and S to denote the slice with depth exactly ε2. We point out
that since 0 < ε ≤ 1

8
, we have ε + 4ε2 ≤ 3

2
ε and ε − 4ε2 ≥ ε

2
. We also

observe that by (3.10) and the product structure of S and B, we have

(3.13) lim
ρ→θ

m(Sρ) = Sθ and lim
ρ→θ

m(Bα
ρ ) = m(Bα

θ )

for every α, and also

(3.14) m(∂Bα
θ ) = 0.

The following is an immediate consequence of Lemma 3.9.

Lemma 3.10. Let v0, p, ε be as above, and let θ1 be as in Lemma 3.9.
Then for all 0 < θ ≤ θ1 and α ≤ 3

2
ε, we have diamπBα

θ < 2ε.

The following lemma will be used in Lemmas 4.11 and 5.2; see Ap-
pendix A for the proof.

Lemma 3.11. Given v0, p, ε > 0 as above, there exists θ2 > 0 such
that for all 0 < θ ≤ θ2, given any ξ, η ∈ Pθ and any q lying within 2ε
of πH−1(Pθ × Fθ × [0,∞)), we have |bξ(q, p) − bη(q, p)| < ε2, with a
similar estimate when the roles of Pθ and Fθ are reversed.

Let θ0 = min(θ1, θ2); from now on we will always consider 0 < θ ≤ θ0

so that Lemmas 3.9, 3.10, and 3.11 all hold.
Using Lemma 3.10 and the fact that ε < 1

4
inj(M), we see that the

quotient map pr : X →M is injective on πB, and similarly pr∗ : SX →
SM is injective on B. We will write

(3.15) B = Bα
θ := pr∗(B

α
θ ) and S = Sθ := pr∗(Sθ)

for the flow box and the slice in SM .

4. Counting with the fundamental group

4.1. An upper counting bound. In §2.4, we described the relation-
ship between closed geodesics and deck transformations γ ∈ Γ. Now
we return to this question, restricting our attention to closed geodesics
that “pass through” B ⊂ SM in the sense that ċ(s) ∈ B for some s.
In particular, we estimate #C(t) from Theorem 1.3 in terms of νt(B)
(recall (1.2)) and a certain subset of Γ. In §5 we will use the scaling
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and mixing properties of m to estimate the size of this subset; then
in §6 we will show that νt → m and combine all of these estimates to
complete the proof.

To describe the subset of Γ that we work with, start by recalling
from Theorem 1.3 that C(t) is any maximal set of pairwise non-free-
homotopic closed geodesics in M with lengths in (t − ε, t], and that
(1.2) gives

(4.1) #C(t) =

∑
c∈C(t) Lebc(B

α
θ )

tνt(B
α
θ )

for every α, θ.

By the definition of Bα
θ , every v ∈ Bα

θ has the property that the con-
nected component of 0 in {s ∈ R : φsv ∈ Bα

θ } is an interval of length
α, which begins when φsv ∈ pr∗H

−1(P × F × {0}). Let Π(t) be the
set of tangent vectors initiating one of these segments; that is,

(4.2) Π(t) := {ċ(s) ∈ pr∗H
−1(P× F× {0}) : c ∈ C(t), s ∈ R}.

The set Π(t) is finite and does not depend on α. From (4.1) we get

(4.3) #C(t) =
α

t

#Π(t)

νt(Bα
θ )
.

We estimate #Π(t) by associating to each v ∈ Π(t) the axial isometry
of an appropriate lift.

Definition 4.1. Given v ∈ Π(t), let ` = `(v) ∈ (t − ε, t] be such
that φ`v = v, and let v be the unique lift of v such that v ∈ Bα

θ . Define
Θ(v) ∈ Γ to be the axial isometry of (cv, `); that is, the unique isometry
of X such that φ`v = Θ(v)∗v. Observe that |Θ(v)| = `.

Observe that for each v ∈ Π(t) and γ = Θ(v), we have φtv =
φt−`γ∗v ∈ γ∗B

ε
θ, and so v ∈ Sθ ∩ φ−tγ∗Bε

θ. With this in mind, we
define for each t > 0 and α ∈ (0, 3

2
ε] the set

(4.4) Γ(t, α) = Γθ(t, α) := {γ ∈ Γ : Sθ ∩ φ−tγ∗Bα
θ 6= ∅}

and observe that Θ(Π(t)) ⊂ Γ(t, ε). To relate #Π(t) and #Γ(t, ε), we
need to control the multiplicity of Θ.

In some instances, such as when M is an oriented surface, it can be
shown that Θ is injective. In general, injectivity may fail: for example,
if β acts as translation once around a Möbius strip whose central circle
has length t/2, then the boundary circle of length t will correspond to
two elements of Π(t), and Θ maps each of these to β2.

Definition 4.2. Given γ ∈ Γ, let d = d(γ) ∈ N be maximal such that
γ = βd for some β ∈ Γ.

Lemma 4.3. For every t and γ, we have #Θ−1(γ) ≤ d(γ).

Proof. Suppose v, w ∈ Π(t) have Θ(v) = Θ(w) =: γ. Then cv and cw
are both axes of γ. By Lemma 2.12, the set of isometries fixing the
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endpoints of cv and cw is an infinite cyclic group; let β be a generator
of this group such that γ = βd(γ).

Lemma 2.17 implies that cv and cw are free-homotopic as curves of
length |γ|. Since the elements of C(t) are pairwise non-free-homotopic,
we conclude that cv and cw are reparametrizations of the same closed
geodesic; in other words, there is s ∈ (0, |γ|] such that φs(v) = w.
Lifting gives τ ∈ Γ such that φsv = τ∗w, and thus

τw+ = lim
r→∞

τπφrw = lim
r→∞

πφr+sv = v+ = w+.

Similarly, τ fixes w−, so τ = βk for some k ≥ 1 (it must be positive
since s > 0), and moreover k ≤ d(γ) because

k|β| = |τ | = d(π(φs(v)), πw)

≤ d(π(φs(v)), πv) + d(πv, πw) ≤ d(γ)|β|+ ε
2
≤ (d(γ) + 1

2
)|β|,

where the last two inequalities use Lemma 3.9 and the fact that ε ≤
1
4

inj(M) < |β| (by Lemma 2.15). Fixing v we see that w is uniquely
determined by τ , and since there are at most d(γ) choices for τ , this
proves the lemma. �

From Lemma 4.3, we deduce that

(4.5) #Π(t) ≤ #Γ(t, ε) +
∑

γ∈Θ(Π(t))
d(γ)≥2

d(γ).

To use (4.3) and (4.5) to estimate #C(t) in terms of #Γ(t, ε), we need
to estimate how many γ ∈ Θ(Π(t)) have larger values of d(γ).

Definition 4.4. Given disjoint closed sets Q,R ⊂ ∂X, consider for
each d ≥ 2 and t > 0 the set

(4.6) Γd(Q,R, t) := {γ ∈ Γ : ξ−γ ∈ Q, ξ+
γ ∈ R,

d(γ) ≥ d, and |γ| ∈ (t− ε, t]},

where ξ±γ are as in Definition 2.7.

Observe that {γ ∈ Θ(Π(t)) : d(γ) ≥ 2} ⊂ Γ2(P,F, t).

Lemma 4.5. Given any disjoint closed sets Q,R ⊂ ∂X, there is K > 0
such that for all ε ∈ (0, injM ] and t > 0 we have∑

γ∈Γ2(Q,R,t)

d(γ) ≤ Ke
2
3
ht.

Proof. Let A := πH−1(Q × R × {0}); note that diamA < ∞ by
Lemma 3.8. Fix q ∈ A. Freire and Mañé proved in [FM82] that
h = limr→∞

1
r

log vol(B(q, r)), where B(q, r) is the ball of radius r cen-
tered at q in X. Thus fixing δ ∈ (0, h/3), there is K0 > 0 such that

(4.7) vol(B(q, r)) ≤ K0e
(h+δ)r for all r > 0.
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Given d ≥ 2 and γ ∈ Γd(Q,R, t), write γ = β(γ)d(γ). Every axis of
β(γ) is an axis of γ, and thus has endpoints ξ±γ by Lemma 2.10. In

particular, we can choose v ∈ H−1(Q ×R × {0}) tangent to such an
axis, and observe that φ|β(γ)|v = β(γ)∗v, so that

(4.8)

d(q, β(γ)q) ≤ d(q, πv) + d(πv, πβ(γ)∗v) + d(πβ(γ)∗v, β(γ)q)

≤ 2d(q, πv) + d(πv, πφ|β(γ)|v)

≤ 2 diamA+ |β(γ)|.
Observe that as γ ranges over Γd(Q,R, t), the sets B(β(γ)q, injM) all
have the same volume V (since deck transformations act isometrically)
and are all disjoint because γ 7→ β(γ) is injective (this uses our choice
of ε and the fact that |β| ≥ 2 inj(M) > ε for all β 6= Id). Thus their
union has volume V · #Γd(Q,R, t). Since this union is contained in
B(q, 2 diamA+ t

d
), we can use (4.7) to deduce that

V ·#Γd(Q,R, t) ≤ vol(B(q, 2 diamA+ t
d
)) ≤ K0e

(h+δ)(diamA+ t
d

).

Writing K1 = V −1K0e
(h+δ) diamA, we have

(4.9) #Γd(Q,R, t) ≤ K1e
(h+δ)t/d.

Observe that d(γ) = |γ|/|β(γ)| ≤ |γ|/ inj(M) by Lemma 2.15, so∑
γ∈Γ2(Q,R,t)

d(γ) = 2#Γ2(Q,R, t) +
∑

3≤d≤t/ inj(M)

Γd(Q,R, t).

From (4.9) we see that #Γd(Q,R, t) ≤ K1e
(h+δ)t/2 for each d ≥ 2, and

thus ∑
γ∈Γ2(Q,R,t)

d(γ) ≤ tK1

inj(M)
e(h+δ)t/2.

Since (h+ δ)/2 < 2h/3, this proves the lemma. �

Combining Lemma 4.5 with (4.3) and (4.5) gives

(4.10) #C(t) ≤ ε

tνt(B
ε)

(
#Γ(t, ε) +Ke

2
3
ht
)
.

Remark 4.6. Once we show that limt→∞
1
t

log #Γ(t, ε) = h, it will
follow that the last term in (4.10) does not affect the asymptotics of
#C(t). This same argument shows that the validity of (1.1) is not
affected by whether we count all homotopy classes or only primitive
ones; the number of nonprimitive ones is of a lower exponential order,
and thus its contribution to the ratio of interest vanishes in the limit.

4.2. A type of closing lemma. We will eventually complement the
upper bound in (4.10) by getting a lower bound for #C(t) in §4.4, but
first we need a way to guarantee that the intersection S ∩ φ−tγ∗Bα

θ

actually contains a periodic orbit.
Recall from Lemma 2.15 that every γ ∈ Γ \ Id has an axis c, which

projects to a closed geodesic on M . To produce a set of γ for which



20 VAUGHN CLIMENHAGA, GERHARD KNIEPER, AND KHADIM WAR

this axis passes through B, we need a condition guaranteeing that
c(−∞) ∈ P and c(+∞) ∈ F, since then the tangents to c will pass
through B. To this end we consider

(4.11) Γ∗ = Γ∗θ := {γ ∈ Γ : γFθ ⊂ Fθ and γ−1Pθ ⊂ Pθ}.

Lemma 4.7. Given any γ ∈ Γ∗, there exists an axis c for γ such that
c(−∞) ∈ P and c(+∞) ∈ F.

Proof. By the Brouwer fixed point theorem, γ has one fixed point in P
and one in F. By Lemma 2.15, it has an axis c. By Lemma 2.10, the
fixed points of γ are the endpoints of c. �

This lemma guarantees that given any γ ∈ Γ∗, there is v ∈ S such
that φ|γ|v = γ∗v. We will apply this in the situation when S∩γ∗φ−tB 6=
∅; in §4.3 we explore the relationship between t and |γ|. The result
here, together with the control on the period established there, can be
thought of as a type of closing lemma.

For the moment we establish a relationship between Γρ(t) and Γ∗θ
that will be important in §5.2, when we combine the lower and upper
bounds into a single asymptotic estimate.

Lemma 4.8. For every 0 < ρ < θ, there exists t0 > 0 such that for all
t ≥ t0 we have Γρ(t) ⊂ Γ∗θ.

To prove Lemma 4.8 we need the following consequence of the uni-
form visibility axiom.

Lemma 4.9. Let Q,R ⊂ ∂X be disjoint compact sets. Fix a compact
subset A ⊂ X and consider for each T > 0 the set

CT
Q := {cp,ξ(t) : p ∈ A, ξ ∈ Q, t ≥ T},

where cp,ξ is as in Lemma 2.5, and define CT
R similarly.

Then given any open sets U,V ⊂ ∂X such that U ⊃ Q and V ⊃ R,
there exists T > 0 such that if γ ∈ Γ satisfies γ(CT

Q) ∩ A 6= ∅ and

γ(A) ∩ CT
R 6= ∅, then γ(∂X \U) ⊂ V and γ−1(∂X \V) ⊂ U.

Proof. We prove the first inclusion; the second is similar. Choose ε > 0
sufficiently small that for every p ∈ A, ξ ∈ R, and η ∈ ∂X with
]p(ξ, η) < 2ε, we have η ∈ V, and similarly with R,V replaced by
Q,U. (Existence of such an ε for each individual p is immediate from
the definition of the topology on ∂X; the fact that ε can be chosen
independently of p uses compactness of A and continuity of the map
p 7→ ċp,ξ(0) from Lemma 2.5.) Let L = L(ε) be given by the uniform
visibility property (see Definition 2.1), and let T = 2L+ diamA.

Fix γ satisfying the hypothesis of the lemma, and let x, y ∈ A be
such that γy ∈ CT

R and γ−1x ∈ CT
Q. By definition of CT

R, there is p ∈ A
such that ξ := cp,γy(∞) ∈ R and d(p, γy) ≥ T . Similarly, there is q ∈ A
such that cq,γ−1x(∞) ∈ Q and d(q, γ−1x) ≥ T .
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Figure 2. Proving Lemma 4.9

Given an arbitrary η ∈ ∂X \U, we will show that ]p(ξ, γη) < 2ε.
Observe that

(4.12) ]p(ξ, γη) ≤ ]p(ξ, γq) + ]p(γη, γq) = ]p(γy, γq) + ]γ−1p(η, q).

We bound ]p(γy, γq) by observing that d(γy, γq) = d(y, q) ≤ diamA,
while d(p, γy) ≥ T . Thus for every point y′ on the geodesic segment
connecting γy and γq, we have d(p, y′) ≥ T − diamA ≥ L, and the
uniform visibility property implies that

(4.13) ]p(γy, γq) < ε.

To bound ]γ−1p(η, q), first note by our choice of ε and q, for every z on
the geodesic ray from q to η we have ]q(γ−1x, z) = ]q(γ−1x, η) ≥ 2ε.
By the uniform visibility property, for each such z there is z′ on the
geodesic segment from z to γ−1x such that d(q, z′) ≤ L. Note also that

d(z, γ−1x) ≥ d(z′, γ−1x) ≥ d(q, γ−1x)− d(q, z′) ≥ T − L,

and thus

d(z, γ−1p) ≥ d(z, γ−1x)− d(γ−1x, γ−1p) ≥ T − L− diamA ≥ L

since γ−1 acts isometrically. Applying the uniform visibility property
once more gives ]γ−1p(η, q) < ε. Together with (4.12) and (4.13) this
gives ]p(ξ, γη) < 2ε, and thus γη ∈ V, which proves the lemma. �

Proof of Lemma 4.8. We apply Lemma 4.9 by putting Q = Pρ, R =
Fρ, A = πBρ, and letting U,V be the interiors of Pθ,Fθ, respectively.
Let T be given by that lemma; then for every t ≥ T and γ ∈ Γρ(t), there
exists v ∈ Sρ ⊂ Bρ such that w := γ−1

∗ φtv ∈ Bρ. Putting x = πv ∈ A
we have

γ−1x = πγ−1
∗ v = πφ−tw;
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since πw ∈ A, w− ∈ Pρ = Q, and t ≥ T , this implies that γ−1x ∈ CT
Q.

Similarly, putting y = πw ∈ A gives

γy = πγ∗w = πφtv;

since πv ∈ A, v+ ∈ Fρ = R, and t ≥ T , this gives γy ∈ CT
R, and

Lemma 4.9 yields the desired result. �

4.3. Depths of intersections. Recall that we fix v0 ∈ E and p = πv0.
Consider the set

(4.14) Γ∗θ(t, α) := Γ∗ ∩ Γθ(t, α) = {γ ∈ Γ∗ : Sθ ∩ γ∗φ−tBα
θ 6= ∅}.

We need to understand how |γ| and t are related when γ ∈ Γ∗(t, α).

Definition 4.10. Given ξ ∈ ∂X and γ ∈ Γ, let bγξ := bξ(γp, p).

Lemma 4.11. For all ξ, η ∈ P and every γ ∈ Γθ(t, α) with t > 0, we
have |bγξ − bγη | < ε2.

Proof. Given any such γ, there exists v ∈ S ∩ γ∗φ−tBα, so φtv ∈ γ∗Bα.
Thus there is q ∈ πBα such that γq = πφtv ∈ πH−1(Pθ×Fθ× [0,∞)).
Since p ∈ πBα, we have d(γp, γq) = d(p, q) < 2ε by Lemma 3.10,
so γp satisfies the condition of Lemma 3.11, and we have |bξ(γp, p) −
bη(γp, p)| < ε2 for all ξ, η ∈ Pθ. �

Lemma 4.12. If c is an axis of γ and ξ = c(−∞), then bγξ = |γ|.

Proof. Let q be any point on c; then |γ| = d(γq, q) = bξ(γq, q). Thus
(3.1) gives

|γ| − bγξ = bξ(γq, q)− bξ(γp, p)
= (bξ(γq, γp) + bξ(γp, q))− (bξ(γp, q) + bξ(q, p))

= bξ(γq, γp)− bγξ(γq, γp),

where the last step uses the fact that γ acts isometrically so Busemann
functions are unchanged when γ is applied to all three arguments. Fi-
nally, γξ = ξ, so the lemma is proved. �

Lemma 4.13. Given any γ ∈ Γ∗ and any t ∈ R, we have13

S ∩ φ−tγ∗Bα = {w ∈ E−1(P× γF) : s(w) ∈ [0, ε2] ∩ (bγw− − t+ [0, α])}.

Proof. To prove that S ∩ φ−1γ∗B
α ⊂ E−1(P × γF), we observe that

if E(w) /∈ P × γF, then either w− /∈ P, so w /∈ S, or w+ /∈ γF, so
w /∈ φ−tγ∗Bα.

13The asymmetry in this lemma – the fact that w− appears and w+ does not – is
due to the fact that we define s(w) using w−; in the original proof by Margulis, one
must similarly choose whether to construct the front of the flow box as a union of
stable leaves or unstable leaves. Of course either choice leads to a similar argument.
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It remains to show that given w ∈ E−1(P× γF), we have

w ∈ S ⇔ s(w) ∈ [0, ε2], and(4.15)

w ∈ φ−tγ∗Bα ⇔ s(w) ∈ bγw− − t+ [0, α].(4.16)

The first of these is immediate from the definition of S. For the second,
we observe that s(v) = bv−(πv, p) = bγv−(γπv, γp), and thus

γ∗B
α = {γ∗v : v ∈ E−1(P× F) and bv−(πv, p) ∈ [0, α]}

= {w ∈ E−1(γP× γF) : bw−(πw, γp) ∈ [0, α]}
By (3.1) and (3.2), we have

bw−(πw, γp) = bw−(πw, p) + bw−(p, γp) = s(w)− bγw− ;

moreover, since s(φtw) = s(w) + t by (3.8), we see that φtw ∈ γ∗Bα if
and only if s(w)− bγw− + t ∈ [0, α], which proves (4.16) and completes
the proof of the lemma. �

Lemma 4.14. If γ ∈ Γ∗(t, α), then |γ| ∈ [t− α− ε2, t+ 2ε2].

Proof. Since S ∩ φ−tγ∗Bα is nonempty, Lemma 4.13 guarantees that
there exist ζ ∈ P and τ ∈ [0, ε2] such that τ ∈ bγζ − t + [0, α]; this
implies that

bγζ ∈ t+ τ − [0, α] ⊂ [t− α, t+ ε2].

From Lemmas 4.11 and 4.12, we have |γ| ∈ [bγζ − ε2, bγζ + ε2], which
proves the lemma. �

4.4. A lower counting bound. Now we can obtain a lower bound
for #Π(t) = #Θ(Π(t)), and hence for #C(t). We define

(4.17) Γ′(t, α) := {γ ∈ Γ∗(t, α) : γ 6= βn for any β ∈ Γ, n ≥ 2}.
Lemma 4.15. Let α = ε−4ε2; then Θ(Π(t)) ⊃ Γ′(t−2ε2, α), and from
(4.3) we obtain

(4.18) #C(t) ≥ α

t
· #Γ′(t− 2ε2, α)

νt(B
α)

.

Proof. By Lemma 4.7, given any γ ∈ Γ′(t − 2ε2, α), there exists v ∈
H−1(P× F× {0}) such that φ|γ|v = γ∗v. By Lemma 4.14, we have

|γ| ≥ (t− 2ε2)− α− ε2 = t− 3ε2 − (ε− 4ε2) > t− ε,
|γ| ≤ (t− 2ε2) + 2ε2 = t,

and thus v := pr∗v ∈ SM lies on a closed geodesic cv with length
|γ| ∈ (t − ε, t] (this uses the assumption that γ is not a nontrivial
power of another isometry). By Lemmas 2.16 and 2.17, every closed
geodesic in the free homotopy class of cv has the same period, so we
choose c ∈ C(t) that is homotopic to cv, and note from Lemma 2.16

that there is a lift c with w := ċ(0) ∈ H−1(P×F×{0}). It follows from
(4.2) that w := pr∗w ∈ Π(t), and from Definition 4.1 and irreducibility
of γ that Θ(w) = γ, which proves the lemma. �
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Observe that Γ∗(t−2ε2, α)\Γ′(t−2ε2, α) ⊂ Γ2(P,F, t), so by Lemma
4.5 we have

#Γ∗(t− 2ε2, α)−#Γ′(t− 2ε2, α) ≤ Ke
2
3
ht.

Using this together with Lemma 4.15 gives

(4.19) #C(t) ≥ α

tνt(B
α)

(
#Γ∗(t− 2ε2, α)−Ke

2
3
ht
)
, α = ε− 4ε2.

From (4.10) and (4.19) we see that we must now estimate #Γ(t, α) and
#Γ∗(t, α); we do this in the next section. Then in §6 we use these esti-
mates to deduce the equidistribution result (Theorem 1.3) and combine
them with the lemmas from this section to obtain good estimates on
#C(t). This yields estimates on #P (t) via Riemann sums, and sending
ε→ 0 yields integrals that we can evaluate to prove Theorem 1.2.

5. Consequences of scaling and mixing

In what follows, it will be convenient to use the following notations,
along with f ∼ g:

f(t) = e±Cg(t) ⇔ e−Cg(t) ≤ f(t) ≤ eCg(t) for all t;

f(t) . g(t) ⇔ lim sup
t→∞

f(t)

g(t)
≤ 1;

f(t) & g(t) ⇔ lim inf
t→∞

f(t)

g(t)
≥ 1;

f(t) ∼ e±Cg(t) ⇔ e−Cg(t) . f(t) . eCg(t).

5.1. Scaling. Given α ≤ 3
2
ε, we will estimate #Γ(t, α) and #Γ∗(t, α)

using the product structure, scaling properties, and mixing property
of m. Note from Lemma 4.13 that although B and S have a product
structure given by (3.11) and (3.12), the sets S∩φ−tγ∗Bα do not always
have such a structure. Using the formula in that lemma, though, we
can give a sufficient condition for these intersections to have a product
structure.

Lemma 5.1. Given any α, t > 0 and γ ∈ Γ∗(t, α), we have

S ∩ φ−(t+2ε2)γ∗B
α+4ε2 = H−1(P× γF× [0, ε2]) =: Sγ.

Proof. By Lemma 4.13, the fact that S∩φ−tγ∗Bα 6= ∅ implies existence
of η ∈ P such that

(bγη − t+ [0, α]) ∩ [0, ε2] 6= ∅,
from which we deduce that

bγη − t− ε2 + [0, α + 2ε2] ⊃ [0, ε2].

By Lemma 4.11, it follows that every ξ ∈ P has

(bγξ − t− ε
2 + [0, α + 2ε2]) ∩ [0, ε2] 6= ∅,
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which in turn implies that

bγξ − t− 2ε2 + [0, α + 4ε2] ⊃ [0, ε2].

By Lemma 4.13, this completes the proof. �

Given γ ∈ Γ∗, let Sγ := H−1(P× γF× [0, ε2]) as in Lemma 5.1, and
write Sγ = pr∗S

γ ⊂ SM .

Lemma 5.2. For each γ ∈ Γ∗, we have

m(Sγ) = e±2hεe−h|γ|m(S),

and similarly with m,S, Sγ replaced by m,S, Sγ.

Proof. Since m(Sγ) = m(Sγ) = ε2µ̄(P × γF), and m(S) = m(S) =
ε2µ̄(P× F), it suffices to show that µ̄(P× γF) = e±2hεe−h|γ|µ̄(P× F).

We will use the definition of µ̄ in (3.4) and the scaling properties
of the conformal measure in Definition 3.5; thus we need to control
βp(ξ, η) for (ξ, η) ∈ P× F, and bη(γ

−1p, p) for η ∈ F. The former will
be close to 0, and the latter will be close to |γ|.

Indeed, given (ξ, η) ∈ P × F, we can take q to lie on a geodesic
connecting ξ and η, with bξ(q, p) = 0; then (3.3) gives

|βp(ξ, η)| = |bξ(q, p) + bη(q, p)| ≤ d(q, p) < ε/2,

where the last inequality uses Lemma 3.9. Using this together with
(3.4) gives

µ̄(P× F) = e±hε/2µp(P)µp(F) and µ̄(P× γF) = e±hε/2µp(P)µp(γF),

and thus

(5.1)
µ̄(P× γF)

µ̄(P× F)
= e±hε

µp(γF)

µp(F)
.

We will estimate the latter ratio using Definition 3.5, whose Property
2 gives

µp(γF) = µγ−1p(F),

and whose Property 3 gives

dµγ−1p

dµp
(η) = e−hbη(γ−1p,p).

When η = c(−∞), where c is the axis for γ−1, we have η ∈ F because
γ ∈ Γ∗, and bη(γ

−1p, p) = |γ−1| = |γ| by Lemma 4.12. For other choices
of η ∈ F, Lemma 3.11 implies that the value of bη(γ

−1p, p) varies by

at most ε2. We conclude that µp(γF) = e±ε
2
e−h|γ|µp(F), and together

with (5.1) this proves the lemma. �

From Lemmas 4.14 and 5.2 we immediately deduce the following.

Corollary 5.3. Given α ≤ 3
2
ε and γ ∈ Γ∗(t, α), we have

∣∣t−|γ|∣∣ ≤ 2ε,

and thus m(Sγ) = e±4hεm(S), and similarly for m,S, Sγ.
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5.2. Asymptotic estimates. It follows from Lemmas 4.8 and 5.1 that
given any α ∈ (0, 3

2
ε] and ρ ∈ (0, θ), for all sufficiently large t we have

Sρ ∩ φ−tBα
ρ ⊂

⋃
γ∈Γ∗(t,α)

Sγθ ⊂ Sθ ∩ φ−(t+2ε2)Bα+4ε2

θ .

Using Corollary 5.3 gives

(5.2) m(Sγθ ) = e±4hεe−htm(Sθ)

for all γ ∈ Γ∗(t), and thus

e−4hεm(Sρ ∩ φ−tBα
ρ ) ≤ #Γ∗(t, α)e−htm(Sθ)

≤ e4hεm(Sθ ∩ φ−(t+2ε2)Bα+4ε2

θ ).

Sending t→∞, using mixing, and dividing through by m(Sθ)m(Bα
θ ) =

m(Sθ)m(Bα
θ ), we get

e−4hεm(Sρ)

m(Sθ)

m(Bα
ρ )

m(Bα
θ )
.

#Γ∗(t, α)

ehtm(Bα
θ )
. e4hεm(Bα+4ε2

θ )

m(Bα
θ )

By (3.13), θ is a point of continuity for ρ 7→ m(Sρ) and ρ 7→ m(Bα
ρ ),

so we can send ρ↗ θ and obtain

(5.3) e−4hε .
#Γ∗(t, α)

ehtm(Bα
θ )
. e4hε(1 + 4ε2/α).

We will also need to use (5.3) with Γ∗ replaced by Γ. Observe that
for every ρ > θ, Lemma 4.8 gives Γ∗θ(t, α) ⊂ Γθ(t, α) ⊂ Γ∗ρ(t, α) for all
sufficiently large t, and thus (5.3) gives

e−4hεehtm(Bα
θ ) . #Γ∗θ(t, α) . #Γθ(t, α)

. #Γ∗ρ(t, α) . e4hε(1 + 4ε2/α)m(Bα
ρ )eht

Sending ρ↘ θ and using (3.13) gives

(5.4) e−4hεehtm(Bα
θ ) . #Γθ(t, α) . e4hε(1 + 4ε2/α)ehtm(Bα

θ ).

6. Completion of the proofs

6.1. Equidistribution to the measure of maximal entropy. The
following is a standard result in ergodic theory; see for example the
proof of [Wal82, Theorem 9.10].

Lemma 6.1. Let Y be a compact metric space and φt a continuous
flow on Y . Fix ε > 0 and suppose that Et ⊂ Y is a (t, ε)-separated set
for all sufficiently large t. Then the measures µt defined by

(6.1) µt(A) :=
1

#Et

∑
v∈Et

1

t

∫ t

0

χA(φsv) ds

have the property that if tk → ∞ and the weak* limit µ = limk→∞ µtk
exists, then hµ(φ1) ≥ lim supk→∞

1
tk

log #Etk .
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In particular, if limt→∞
1
t

log #Et is the topological entropy of the
flow, then every weak* limit point of the family of measures µt is a
measure of maximal entropy.

Corollary 6.2. Let Y be a compact metric space and φt a continuous
flow on Y with a unique measure of maximal entropy µ. Fix ε > 0. If
{Et ⊂ Y }t is a family of (t, ε)-separated sets for which limt→∞

1
t

log #Et
is the topological entropy of the flow, then the measures µt defined in
(6.1) converge to µ in the weak* topology.

Proof of Theorem 1.3. Let C(t) be as in the statement of Theorem 1.3.
By (4.19), we have

#C(t) ≥ α

t

(
#Γ∗(t− 2ε2, α)−Ke

2
3
ht
)
, α = ε− 4ε2,

and then (5.3) gives

(6.2) lim
t→∞

1

t
log #C(t) ≥ h.

We claim that the set {ċ(0) : c ∈ C(t)} is (t, ε)-separated for any
ε ∈ (0, inj(M)). Indeed, if it were not, then C(t) would contain c0 6= c1

such that d(c0(t), c1(t)) ≤ inj(M) for all t ∈ R, and thus there would
be lifts c0, c1 satisfying the same inequality, so that c0(±∞) = c1(±∞).
By Lemma 2.12 there is γ ∈ Γ such that the axial isometries of c0, c1

are both of the form γk. Since ε < inj(M) < |γ|, the value of k is
the same for both geodesics, so Lemma 2.17 implies that c0 and c1 are
homotopic, contradicting our assumption.

We conclude that the limit in (6.2) exists and is equal to h, and
Corollary 6.2 implies that the measures νt from (1.2) converge to the
unique measure of maximal entropy, which completes the proof of The-
orem 1.3. �

By Theorem 1.3 and (3.14), we have νt(B
ε)→ m(Bε) = m(Bε). Now

(4.10) and (5.4) give

(6.3) #C(t) .
ε

t
· #Γ(t, ε) +Ke

2
3
ht

m(Bε)
. e4hε(1 + 4ε)

ε

t
eht.

Similarly, (4.19) and (5.3) (with α = ε− 4ε2) give

#C(t) &
ε− 4ε2

t
· #Γ∗(t− 2ε2, α)−Ke 2

3
ht

m(Bα)
& (1− 4ε)e−4hε ε

t
ehte−2hε2 .

Combining this with (6.3) gives

(6.4) #C(t) ∼ e±Qε
ε

t
eht

where Q is a universal constant depending only on h.
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6.2. Riemann sums and integrals. To complete the proof, we use
(6.4) to estimate #P (t) via a Riemann sum, and then send ε → 0 to
convert this to an integral and send the size of the error to 0. See
[Ric19, §13] for a more axiomatic approach to this step.

Since #P (T )→∞ as T →∞, and each #P (b) is finite, we see that
#P (T ) ∼ #(P (T ) \ P (b)) for every b > 0. Summing over tk = T − kε
gives

(6.5)

b(T−b)/εc∑
k=0

#C(tk) ≤ #(P (T ) \ P (b)) ≤
d(T−b)/εe∑

k=0

#C(tk).

By (6.4) we can choose b sufficiently large that #C(t) = e±2Qε ε
t
eht for

all t ≥ b, and thus (6.5) gives

(6.6) e−2Qε

b(T−b)/εc∑
k=0

ε
ehtk

tk
≤ #(P (T ) \ P (b)) ≤ e2Qε

d(T−b)/εe∑
k=0

ε
ehtk

tk
.

Assume that b is also chosen large enough that t 7→ eht

t
is nondecreasing

on (b,∞). Then the first sum in (6.6) is an upper bound for
∫ T
b

eht

t
dt,

and the second sum is a lower bound for
∫ T+ε

b
eht

t
dt, so we conclude

that

(6.7) e−2Qε

∫ T

b

eht

t
dt ≤ #(P (T ) \ P (b)) ≤ e2Qε

∫ T+ε

b

eht

t
dt.

Integrating by parts gives

(6.8)

∫ T

b

eht

t
dt =

eht

ht

∣∣∣T
b

+

∫ T

b

eht

ht2
dt ≥ ehT

hT
− ehb

hb
,

and similarly∫ T+ε

b

eht

t
dt =

eht

ht

∣∣∣T+ε

b
+

∫ T+ε

b

eht

ht2
dt ≤ eh(T+ε)

h(T + ε)
+

1

hb

∫ T+ε

b

eht

t
dt,

which yields (
1− 1

hb

)∫ T+ε

b

eht

t
dt ≤ ehε

ehT

hT
.

Choosing b sufficiently large that 1 − 1
hb
≥ e−hε, we can combine this

with (6.7) and (6.8) to obtain

e−2Qε
(ehT
hT
− ehb

hb

)
≤ #P (b, T ) ≤ e2Qεe2hε e

hT

hT
.

Sending T →∞ gives

#P (T ) ∼ #(P (T ) \ P (b)) ∼ e±2(Q+h)ε e
hT

hT
.

Since ε > 0 can be arbitrarily small, this implies (1.1) and completes
the proof.
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Appendix A. Proofs of basic geometric results

Proof of Lemma 2.16. Let {cs : R/`sZ → M}s∈[0,1] be a homotopy be-
tween c0 and c1. Lifting to a homotopy {cs : R→ X}s∈[0,1] we observe
that for each s ∈ [0, 1] there is γs ∈ Γ such that cs(t+ `s) = γscs(t) for
all t ∈ R. Moreover, s 7→ γs is continuous, hence constant, so γ1 = γ0,
which proves the lemma. �

Proof of Lemma 2.17. Since γ acts isometrically, we have

d(c0(0), c1(0)) = d(γnc0(0), γnc1(0)) = d(c0(n`0), c1(n`1))

for all n ∈ N, and the triangle inequality gives

n|`1 − `0| = d(c1(n`1), c1(n`0))

≤ d(c1(n`1), c0(n`0)) + d(c0(n`0), c1(n`0))

≤ d(c0(0), c1(0)) + d(c0(n`0), c1(n`0)).

Lemma 2.10 gives c1(∞) = c0(∞), so supn d(c0(n`0), c1(n`0)) <∞, and
we conclude that supn n|`1− `0| <∞, which implies `1 = `0. Applying
this result to the geodesic shows that the common value is |γ|.

To prove that c0 and c1 lie in the same free homotopy class, let
s 7→ cs(0) be any path from c0(0) to c1(0), and define cs(|γ|) := γcs(0).
This defines cs(t) as a continuous function of (s, t) on the boundary of
[0, 1]×[0, |γ|]. Since X is simply connected this extends to a continuous
map on all of [0, 1] × [0, |γ|], and then to [0, 1] × R by defining cs(t ±
|γ|) := γ±1cs(t); this gives the desired homotopy. �

Proof of Lemma 3.8. By continuity ofH, it suffices to show thatH−1(P×
F×{0}) is bounded. Let H0 be the Hopf map for the background met-
ric g0. It is a homeomorphism, so H−1

0 (P×F×{0}) is compact, hence
bounded. Using the Morse lemma (see in particular [CKW19, Lemma
2.4]), H−1

0 ◦H : SX → SX has the property that there is R > 0 such
that d(H−1

0 ◦ H(v), v) ≤ R for all v ∈ SX, and H−1(P × F × {0}) is
contained in the R-ball around the bounded set H−1

0 (P×F×{0}). �

Proof of Lemma 3.9. Assume that this is not the case. Then there
exist sequences θn ↘ 0 and vn, wn ∈ H−1(Pθn × Fθn × {0}) such that
d(πvn, πwn) ≥ ε

2
. By Lemma 3.8, H−1(Pθn × Fθn × {0}) is compact,

so there is a subsequence nk → ∞ such that vnk → v and wnk → w,
with d(v, w) ≥ ε

2
and v, w ∈ H−1(Pθn ∩ Fθn × {0}) for every n. This

implies that v 6= w and that E(v) = E(w) = (v−0 , v
+
0 ), contradicting

the assumption that v0 ∈ E . �

Lemma 3.11 is an immediate consequence of the following general
result, which we prove using Corollary 3.4.

Lemma A.1. Let M be a closed Riemannian manifold without con-
jugate points that satisfies the uniform visibility condition and admits
a background metric of negative curvature, and let X be its universal
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cover. Fix p ∈ X. Suppose A ⊂ SpX is closed and B ⊂ X is such
that A+ := {v+ : v ∈ A} and B∞ := {limn qn ∈ ∂X : qn ∈ B} are
disjoint subsets of ∂X. Then the family of functions A → R indexed
by B and given by v 7→ bv(q) are equicontinuous: for every ε > 0 there
exists δ > 0 such that if ]p(v, w) < δ, then |bv(q)− bw(q)| < ε for every
q ∈ B.

Proof. We start by defining bx(q, p) and βp(x, y) when x, y ∈ X, not
just when x, y ∈ ∂X. Given x, q, p ∈ X, let

(A.1) bx(q, p) := d(q, x)− d(p, x).

This represents how much longer it takes to get to x if you start at
q, compared to starting at p. When x ∈ ∂X, recall that bx(q, p) is
the Busemann function defined by Definition 3.2, and if a sequence
xn ∈ X converges to x ∈ ∂X, then bxn(q, p) → bx(q, p); see [CKW19,
Corollary 2.18]. Thus by Corollary 3.4, (x, q, p) 7→ bx(q, p) is continuous
on X̄ ×X ×X.

Now given x, q, p ∈ X, let

(A.2) βp(x, y) = d(x, p) + d(y, p)− d(x, y).

This represents the extra distance it takes to travel via p when going
from x to y. Given any point q on the geodesic from x to y, we have
d(x, y) = d(x, q) + d(q, y) and thus

(A.3)
βp(x, y) = d(x, p) + d(y, p)− d(x, q)− d(y, q)

= −(bx(q, p) + by(q, p)).

Comparing this to (3.3), we see that (p, x, y) 7→ βp(x, y) is a continuous
function on X × (X̄ × X̄ \ {(ξ, ξ) : ξ ∈ ∂X}). (Recall that if x ∈ ∂X
then the value of βp(x, x) would be infinite.) Moreover, given p, q ∈ X
and ξ ∈ ∂X, we have

βp(q, ξ) = −bξ(q, p)− bq(q, p) = −bξ(q, p) + d(q, p).

Now in the setting of Lemma A.1, we have fixed p ∈ X and see that
for each q ∈ B and v ∈ A we have

(A.4) bv(q) = bv+(q, p) = d(q, p)− βp(q, v+).

Let B̄ be the set of all limit points of B in X̄, and observe that A+× B̄
is a compact set on which βp is continuous; this is where we use the
assumption that A+∩B∞ = ∅. Thus βp is uniformly continuous on this
set, and for every ε > 0 there is δ > 0 such that if ]p(v, w) < δ, then
|βp(q, v+)−βp(q, w+)| < δ, in which case (A.4) gives |bv(q)−bw(q)| < ε,
which completes the proof of Lemma A.1. �
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