
POSITIVE ENTROPY EQUILIBRIUM STATES

VAUGHN CLIMENHAGA AND VAN CYR

Abstract. For transitive shifts of finite type, and more generally for
shifts with specification, it is well-known that every equilibrium state for
a Hölder continuous potential has positive entropy as long as the shift
has positive topological entropy. We give a non-uniform specification
condition under which this property continues to hold, and demonstrate
that it does not necessarily hold for other non-uniform versions of spec-
ification that have been introduced elsewhere.

1. Introduction

Given a compact metric space X, a continuous map f : X → X, and a
continuous potential function ϕ : X → R, an equilibrium state for (X, f, ϕ)
is an f -invariant measure realising the supremum in the variational prin-
ciple P (ϕ) = supµ(hµ(f) +

∫
ϕdµ). It is often important to know under

what conditions an equilibrium state is forced to have positive entropy, or
equivalently, for which potentials we have

(1.1) P (ϕ) > sup
µ

∫
ϕdµ.

Following [IRRL12], a potential satisfying (1.1) will be called hyperbolic.
If (X,σ) is a transitive subshift of finite type (SFT) with positive topo-

logical entropy, then every Hölder potential is hyperbolic. This also holds
for all systems with the specification property [CFT17, Theorem 6.1].

The importance of (1.1) is discussed in [Buz04]; see [DKU90, Buz01] for
its consequences regarding uniqueness of equilibrium states, and [Ryc83,
Kel84, BK90] for its connection to quasi-compactness of the transfer opera-
tor, which has implications for the statistical properties of the system.

In [Buz04], Buzzi considers continuous piecewise monotonic interval maps
f and shows that if f is topologically transitive and ϕ is Hölder continuous
in the natural coding via the branch partition, then (1.1) holds. Buzzi
conjectured that the result remains true without the assumption that the
map f is continuous, but so far this question remains open.

We offer partial progress towards this conjecture by giving a general con-
dition under which every Hölder potential satisfies (1.1). Our condition is
formulated in terms of the symbolic representation of f , and can be thought
of as a stronger version of the almost specification property [PS07, Tho12].
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Given a shift space X, we write L for the language of X (the set of all
finite words appearing in some element of X), and say that a subset G ⊂ L
has specification if there is τ ∈ N such that for every v, w ∈ G there is u ∈ L
with |u| ≤ τ and vuw ∈ G. Given a function g : N → N, the language L is
said to be g-Hamming approachable by G if every sufficiently long w ∈ L can
be transformed into a word in G by changing no more than g(|w|) symbols.

Theorem 1.1. Let X be a shift space on a finite alphabet with positive
topological entropy, and L its language. If there is a function g : N → N
with limn→∞ g(n)/ log(n) = 0 and a set G ⊂ L with specification such that
L is g-Hamming approachable by G, then every Hölder continuous potential
on X is hyperbolic.

An important class of shifts satisfying the conditions of the theorem is
given by the β-shifts, which code the transformations x 7→ βx (mod 1) for
β > 1. In this case g(n) = 1 for every n, and it was already shown in [CT13,
Proposition 3.1] that every Hölder potential is hyperbolic. The proof there
relied strongly on the lexicographic structure of the β-shifts; in particular it
does not apply to their factors. Our approach here does pass to factors.

Proposition 1.2. Let X be a shift space satisfying the hypotheses of Theo-
rem 1.1. Then every subshift factor of X satisfies them as well.

Proof. By the proof of [CTY17, Lemma 2.12], if g(n) works for X, and X̃ is a
subshift factor obtained via an r-block code, then g̃(n) = (4r+3)g(n+2r)+4r

works for X̃. �

Corollary 1.3. Let X be any subshift factor of a β-shift. Then every Hölder
potential on X satisfies (1.1), and has a unique equilibrium state, which has
exponential decay of correlations and the central limit theorem for Hölder
observables.

Proof. Theorem 1.1 and Proposition 1.2 give (1.1); for the rest, see [Cli,
Theorem 1.3, Example 3.14, and §3.3.5]. �

Remark 1.4. Another class of shift spaces studied in [CT12, CTY17] are the
S-gap shifts, for which there is no function g as in Theorem 1.1; the best
that can be done in general is g(n) ≈

√
n, see [CTY17, §5.1.2]. On the other

hand, it was shown in [CTY17, (5.1)] that every Hölder potential for these
shifts is hyperbolic. The corresponding question for their subshift factors
remains open.

Remark 1.5. Another condition that appears in the literature to guarantee
hyperbolicity of Hölder potentials is the ‘local specification’ condition of
Hofbauer and Keller [HK82, Theorem 3], which can be stated as follows.
Given k ∈ N, let Fk be the set of w ∈ L such that for every v ∈ L, there
is u ∈ L with |u| ≤ k such that wuv ∈ L. (Then L has specification iff
there is k such that Fk = L.) The ‘local specification’ property from [HK82,
Theorem 3] is equivalent to: for every x ∈ X and every infinite J ⊂ N, there
is k ∈ N and an infinite J ′ ⊂ J such that x1 · · ·xj ∈ Fk for every j ∈ J ′.
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Another result for interval maps was given in [LRL14], which showed
that for a class of smooth interval maps with critical points and some non-
uniformly expanding properties, (1.1) holds for every Hölder continuous po-
tential (not just those that are Hölder in the natural coding).

Beyond β-transformations, it is natural to study the class of interval maps
given by x 7→ α+βx for α ∈ (0, 1), β > 1. The coding spaces for these maps
can be represented in terms of a countable graph using the general theory
of Hofbauer [Hof79], but it is not clear what mistake function g these shifts
admit, and so Buzzi’s conjecture remains open for this class.

In light of Remark 1.4 above on S-gap shifts, and other results from
[CTY17] in which g(n)/n → 0 seems to be the relevant condition, it is
natural to ask how sharp the sublogarithmic condition on g is. In fact, one
cannot do much better, as the following family of examples shows.

Theorem 1.6. Let f : N→ N be nondecreasing with 1 ≤ f(n) ≤ n/2 for all
sufficiently large n. Let G = {0a1b | a, b ≥ f(a+ b)}, and let X be the coded
shift generated by G. Then for ϕ = −1[1], the potentials tϕ have P (tϕ) ≥ 0
for all t ∈ R, and t 7→ P (tϕ) is non-increasing. Writing

(1.2) t0 = inf{t | P (tϕ) = 0} = sup{t | P (tϕ) > 0}
for the first root of Bowen’s equation (possibly +∞), the following are true.

(i) L = L(X) is 2f -Hamming approachable by G = G∗.
(ii) Given t ≥ 0, the potential tϕ is hyperbolic if and only if t < t0.
(iii) If 0 ≤ t < t0, then there is a unique equilibrium state for tϕ, and it

has positive entropy.
(iv) If t > t0, then δ0 is the unique equilibrium state for tϕ.

(v) t0 <∞ if and only if there exists γ > 0 such that
∑

n∈N γ
f(n) <∞.

Remark 1.7. In the specific case f(n) = n/2, the examples in Theorem 1.6
were studied by Conrad [Con], who showed that for sufficiently large values
of t, the potential tϕ has the delta measure δ0 as its unique equilibrium
state, and in particular is not hyperbolic.

The last statement in Theorem 1.6 allows us to give a class of shifts for
which there is a Hölder potential that is not hyperbolic.

Corollary 1.8. If lim inf g(n)/ log(n) > 0, then the conclusion of Theorem
1.1 fails in the following sense: there is a shift X with language L and a
collection G ⊂ L such that G∗ ⊂ G and L is g-Hamming approachable by G,
but there is a locally constant potential function with a delta measure as its
unique equilibrium state.

Remark 1.9. In fact, Theorem 1.6 shows that hyperbolicity can fail for some
error functions g with lim inf g(n)/ log(n) = 0 and lim sup g(n)/ log(n) > 0,

as long as there is γ > 0 such that
∑

n γ
g(n) < ∞. This does not cover all

functions g with lim inf = 0 and lim sup > 0; it would be interesting to know
if Theorem 1.1 can be extended to include functions g where lim sup > 0
but

∑
n γ

g(n) =∞ for all γ > 0.
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2. Background definitions

2.1. Shift spaces. Given a finite set A, let σ : AN → AN denote the left
shift map.1 Equip AN with the product topology; equivalently, define a
metric on A by d(x, y) = 2−min{n∈N|xn 6=yn}. A shift space over the alphabet
A is a closed σ-invariant subset X ⊂ AN.

Write A∗ =
⋃∞
n=0A

n for the collection of all finite words over A. Given a
shift space X, the language of X is

L = L(X) = {w ∈ A∗ | x1 · · ·xn = w for some x ∈ X and n ∈ N}.
Given D ⊂ L, write Dn = D ∩ An for the set of all words of length n in D.
In particular, Ln denotes the set of all words of length n in the language of
X. Given w ∈ Ln, let [w] = {x ∈ X | x1 · · ·xn = w} be the corresponding
cylinder in X.

2.2. Thermodynamic formalism and equilibrium states. Let X be a
shift space and L its language. Given a continuous function ϕ : X → R,
which we call a potential, consider for each w ∈ Ln the quantity

Φ(w) := sup
x∈[w]

Snϕ(x),

where Snϕ(x) =
∑n−1

k=0 ϕ(σkx). Given D ⊂ L, the nth partition sum associ-
ated to D and ϕ is

Λn(D, ϕ) :=
∑
w∈Dn

eΦ(w).

The pressure of D with respect to ϕ is

P (D, ϕ) := lim
n→∞

1

n
log Λn(D, ϕ).

In the specific case ϕ = 0, this reduces to the entropy of D:

h(D) := lim
n→∞

1

n
log #Dn.

When D = L(X), we write P (X,ϕ) = P (L(X), ϕ). Let Mσ(X) denote
the set of σ-invariant Borel probability measures on X. The variational
principle [Wal82, Theorem 9.10] says that

P (X,ϕ) = sup

{
hµ(σ) +

∫
ϕdµ | µ ∈Mσ(X)

}
.

A measure achieving this supremum is called an equilibrium state.
Write I(ϕ) = {

∫
ϕdµ : µ ∈ Mσ(X)}. Following [IRRL12], we call a

potential function hyperbolic if it satisfies (1.1); that is, if P (X,ϕ) > sup I.
Given ε > 0, there is n ∈ N such that 1

nSnϕ(x) < sup I + ε for all x ∈ X;
consequently, ϕ is hyperbolic if and only if there is n ∈ N such that

(2.1) P (X,ϕ) > sup
x∈X

1

n
Snϕ(x).

1Our results all remain true for two-sided shifts (σ : AZ → AZ).



POSITIVE ENTROPY EQUILIBRIUM STATES 5

Equivalently, one may observe that ϕ and 1
nSnϕ(x) are cohomologous,2 and

so ϕ is hyperbolic if and only if there is a potential ψ cohomologous to ϕ
such that

(2.2) P (X,ϕ) = P (X,ψ) > sup
x∈X

ψ(x).

2.3. Specification, decompositions, and uniqueness. Following the
definition in [CTY17, Cli], say that G ⊂ L has specification if there is τ > 0
such that for every v, w ∈ G there exists u ∈ L with length |u| ≤ τ such that
vuw ∈ G. This is a version of a condition that appeared in [CT12, CT13]
and generalises the classical specification property of Bowen [Bow75], which
corresponds roughly to this definition with G = L.

If G has specification with τ = 0, then we have vw ∈ G whenever v, w ∈ G,
and in this case we say that G has the free concatenation property.

When L has specification, it was proved by Bertrand [Ber88] that L con-
tains a sychronising word ; that is, a word s ∈ L with the property that if
vs ∈ L and sw ∈ L, then vsw ∈ L. In this case the collection {sw : sws ∈ L}
has the free concatenation property. The following generalisation of this fact
was proved in [Cli, Remark 3.5 and Proposition 3.7].

Proposition 2.1. If G ⊂ L has specification, then there is a collection
F ⊂ L and a number N ∈ N such that

(1) F has the free concatenation property, and
(2) given any w ∈ G, there are u, v ∈ L with |u|, |v| ≤ N and uwv ∈ F .

See [Cli] for a more explicit description of the collection F ; all we will need
are the properties listed above. Writing d = gcd{|v| : v ∈ F}, it follows from
the free concatenation property that we can choose N ∈ N large enough that
Fn 6= ∅ whenever n ≥ N is a multiple of d. Thus Proposition 2.1 has the
following consequence.

Corollary 2.2. Given G,F as in Proposition 2.1 and d as in the previous
paragraph, there is N ∈ N such that given any w ∈ G and any n ≥ |w|+ 2N
that is a multiple of d, there are u, v ∈ L with |u| ≤ N , uwv ∈ F , and
|uwv| = n.

Proof. Proposition 2.1 gives u, v′ ∈ L with |u|, |v′| ≤ N such that uwv′ ∈ F .
By definition, |uwv′| is a multiple of d, and thus n−|uwv′| is also a multiple
of n, so there is v′′ ∈ F with |v′′| = n − |uwv′|, hence uwv′v′′ ∈ F and
|uwv′v′′| = n. �

If G is ‘large enough’, then specification for G can be used to deduce
uniqueness of the equilibrium state. More precisely, a decomposition of L is
a choice of Cp,G, Cs ⊂ L such that for every w ∈ L there are up ∈ Cp, v ∈ G,
and us ∈ Cs with w = upvus.

2Put ξ(x) = 1
n

∑n−1
k=0 (n− k)ϕ(σkx), then ξ(x)− ξ(σx) = 1

n
Snϕ(x)− ϕ(x).
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Theorem 2.3 ([Cli], Theorem 1.1). Suppose that G has specification and is
closed under intersections and unions in the following sense: if u, v, w ∈ L
are such that uvw ∈ L, uv ∈ G, and vw ∈ G, then we have v, uvw ∈ G. Let
ϕ be a Hölder potential and CpGCs a decomposition of L with P (Cp∪Cs, ϕ) <
P (ϕ). Then ϕ has a unique equilibrium state µ, and µ has exponential decay
of correlations (up to a finite period) and satisfies the central limit theorem
for Hölder observables.

One can also use the results of [CT13] to deduce uniqueness (but not the
statistical properties) under extremely similar hypotheses.

Remark 2.4. For β-shifts and their factors, one can find a decomposition
with h(Cp ∪ Cs) = 0, and then the pressure gap condition in Theorem 2.3
can be verified by proving hyperbolicity of the potential function, since an
easy argument shows that P (D, ϕ) ≤ h(D) + supµ

∫
ϕdµ for every D ⊂ L.

2.4. Hamming approachability and asymptotic estimates. Given a
function g : N → N, we say that L is g-Hamming approachable by G ⊂ L if
there is n0 ∈ N such that for every n ≥ n0 and w ∈ Ln, there is v ∈ Gn with

dHam(v, w) := #{1 ≤ i ≤ |w| : vi 6= wi} ≤ g(|w|).

This follows [CTY17, Definition 2.10], with the difference that we include
the function g in the notation, and will ultimately require that g be sublog-
arithmic, not just sublinear. We assume without loss of generality that g is
nondecreasing.

We will also need to use the fact that for any k ≤ m ∈ N and any w ∈ Lm,
we have

(2.3) #{v ∈ Lm : dHam(v, w) ≤ k} ≤
(
m

k

)
(#A)k.

This becomes more useful with an estimate for
(
m
k

)
. Recall from Stirling’s

formula that log(n!) = n log n− n+O(log n), and thus

log

(
m

k

)
= (m logm−m)− (k log k − k)

− ((m− k) log(m− k)− (m− k)) +O(logm)

= k log
m

k
+ (m− k) log

m

m− k
+O(logm).

Writing h(t) = −t log t− (1− t) log(1− t) for the bipartite entropy function,
this gives

(2.4) log

(
m

k

)
= h

( k
m

)
m+O(logm),

and so there is a constant Q such that (2.3) gives

(2.5) #{v ∈ Lm : dHam(v, w) ≤ k} ≤ emh(k/m)mQ(#A)k.
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Lemma 2.5. Suppose D ⊂ L has h(D) > 0, and let β > 0 be small enough
that h(β) + β log(#A) < h(D). Then for every N ∈ N there are arbitrarily
large m ∈ N with the following property: given any w1, . . . , wN ∈ Dm, there
is v ∈ Dm with dHam(v, wi) > βm for all 1 ≤ i ≤ N .

Proof. Choose η, ξ > 0 such that h(β) + β log(#A) + ξ < η < h(D). Given
m ∈ N and w1, . . . , wN ∈ Dm, (2.5) gives

#
N⋃
i=1

{v ∈ Lm : dHam(v, wi) ≤ βm} ≤ Nemh(β)mQ(#A)βm < NmQe(η−ξ)m.

The right-hand side is < #Dm whenever NmQ < emξ and #Dm ≥ emη; this
happens infinitely often. �

2.5. Coded systems. Given a finite alphabet A and a collection of words
G ⊂ A∗, the coded shift generated by G is the subshift X over the alphabet
A whose language consists of all subwords of elements of G∗. We refer to
G as a generating set for X. The generating set is said to be uniquely
decipherable if whenever u1u2 · · ·um = v1v2 · · · vn with ui, vj ∈ G, we have
m = n and uj = vj for all j [LM95, Definition 8.1.21].

Theorem 2.6. [Cli, Theorem 1.6] Let X be a coded shift on a finite alphabet
and ϕ a Hölder potential on X. If X has a uniquely decipherable generating
set G such that D = D(G) := {w ∈ L : w is a subword of some g ∈ G}
satisfies P (D, ϕ) < P (ϕ), then ϕ has a unique equlibrium state µ, and µ
has exponential decay of correlations (up to a finite period) and satisfies the
central limit theorem for Hölder observables.

3. Proof of Theorem 1.1

In §3.1 we establish some preliminary results that are needed in order to
describe precisely (in §3.2) the mechanism by which we generate entropy.

3.1. Preliminaries for the proof. We start with the following conse-
quence of Corollary 2.2.

Lemma 3.1. Under the hypotheses of Theorem 1.1, there are N ∈ N and
F ⊂ L with the free concatenation property such that writing d = gcd{|v| :
v ∈ F}, the following is true: for every w ∈ L such that |w| ≥ 2N and |w|
is a multiple of d, there is some w′ ∈ F such that |w| = |w′| and

(3.1) dHam(w[1,|w|−i], w
′
(i,|w′|]) ≤ g(|w|) + 2N for some 0 ≤ i ≤ N − 1.

Proof. Let F be as in Proposition 2.1 and N as in Corollary 2.2. Then
x = w[1,|w|−2N ] has y ∈ G|w|−2N such that dHam(x, y) ≤ g(|w|−2N) ≤ g(|w|).
Corollary 2.2 gives u, v ∈ L such that |u| < N , uyv ∈ F and |uyv| = |w|.
Let w′ = uyv and i = |u|; then writing w = xzz′ where |z′| = i, we have

dHam(w[1,|w|−i], w
′
(i,|w′|]) = dHam(xz, yv) = dHam(x, y) + dHam(z, v)

≤ g(|w|) + |z| ≤ g(|w|) + 2N. �
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Consider the map Ln → Fn given by w 7→ w′ as in Lemma 3.1. By

(2.5), the multiplicity of this map is at most Nenh
(
g(n)+2N
n−N

)
nq(#A)g(n)+2N .

Writing c(n) for this quantity we observe that #Fn ≥ (#Ln)/cn whenever
n is a multiple of d, and that limn→∞

1
n log cn = 0, so h(F) = h(L) =

htop(X) > 0. Thus we can take β > 0 small enough that h(β)+β log(#A) <
h(F), and fix some m ≥ max(3N,n0) such that the conclusion of Lemma
2.5 holds. Note that m must be a multiple of d = gcd{|v| : v ∈ F}.

Now we fix several more parameters that will be used in the proof. First
we will find V > 0 that controls |Φ(v)−Φ(w)| in terms of dHam(v, w); then
we will choose γ > 0 small relative to m,V ; then we choose a large L > 0
that helps us control

∑
i g(ni); and finally we will choose δ > 0 small enough

that a certain entropy estimate later on is positive.

Let α > 0 be the Hölder exponent of ϕ, and write |ϕ|α = supx 6=y
|ϕ(x)−ϕ(y)|
d(x,y)α .

Then for every n ∈ N, w ∈ Ln, and x, y ∈ [w], we have

|Snϕ(x)− Snϕ(y)| ≤
n−1∑
k=0

|ϕ(σkx)− ϕ(σky)| ≤
n−1∑
k=0

|ϕ|α2−(n−k)α <
|ϕ|α

1− 2−α
.

In particular, writing V := |ϕ|α(1− 2−α)−1, we have

(3.2) |Snϕ(x)− Φ(w)| ≤ V for all n ∈ N, w ∈ Ln, and x ∈ [w].

This has the corollary that for every v, w ∈ L with |v| = |w|, we have

(3.3) |Φ(v)− Φ(w)| ≤ V dHam(v, w).

Lemma 3.2. For every γ > 0 there is L > 0 such that for every n1, . . . , n` ∈
N we have

(3.4)
∑̀
i=1

g(ni) ≤ `
(
L+ γ log

∑
ni
`

)
.

Proof. Since g(n)/ log n→ 0, there exists K ∈ N such that

(3.5) g(n) < γ log(n) for all n > K.

Let L := max{g(n) : 1 ≤ n ≤ K}. Then we have the following estimate:

given any n > K, ` ∈ N, and n1, . . . , n` ∈ N such that
∑`

i=1 ni = n, we have

(3.6)

∑̀
i=1

g(ni) ≤
∑

{i:ni≤K}

g(ni) +
∑

{i:ni>K}

g(ni)

≤ L#{i : ni ≤ K}+
∑

{i:ni>K}

γ log ni

≤ L`+ γ` log(n/`) = `(L+ γ log(n/`)).

The last inequality uses convexity; the function (x1, . . . , x`) 7→
∑

i log xi is
maximized (subject to the constraint

∑
xi = n) when x1 = · · · = x` = n/`,

for which values we have
∑

i log xi = ` log(n/`). �
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For the duration of the proof, we fix 0 < γ < (16m2V )−1, and let L be
given by Lemma 3.2. Without loss of generality, we assume that L ≥ 2m.
Finally, with V, β,m, γ, L fixed, we choose δ > 0 small enough that

(3.7)
| log δ|
8m2

> 2 log
(2L+ γ| log δ|

βm

)
+ 4V L.

3.2. Construction of nearby words. To prove hyperbolicity of ϕ it suf-
fices to show that for every x ∈ X, we have P (ϕ) > limn→∞

1
nSnϕ(x).

To this end, we take w ∈ L to be a (sufficiently long) word, and estimate

Λ|w|(L, ϕ) in terms of eΦ(w).
Let m ∈ N be as above. Given n� m with (2m)|n, fix kn ∈ [δn, 2δn]∩N,

and let

Jn = {n = (n1, . . . , nkn) :
∑
ni = n and (2m)|ni for all i}.

Given n ∈ Jn, let Nj = n1 +n2 + · · ·+nj−1 be the partial sums. For a fixed
w ∈ Ln, we will associate to each n ∈ Jn a word ψ(n) ∈ Ln such that

(1) ψ(n) is Hamming-close to w on the intervals (Ni, Ni+1 −m];
(2) ψ(n) is Hamming-far from w on the intervals (Ni −m,Ni].

This will allow us to decipher n from ψ(n) up to some (controllable) error;
that is, we will be able to control the multiplicity of the map ψ : Jn → Ln.
Moreover, each ψ(n) will have ergodic sum Φ(ψ(n)) that is close to Φ(w).
These two facts, together with an estimate on #Jn, will give us the desired
lower bound on Λn(L, ϕ).

Let us make this more precise. Given n, we have ni ≥ 2m ≥ m+ 2N for
all i, and so applying Lemma 3.1 to w(Ni,Ni+1−m] ∈ Lni−m gives vi ∈ Fni−m
such that

(3.8) dHam(w(Ni,Ni+1−m−ai], v
i
(ai,ni−m]) ≤ g(ni) + 2N for some 0 ≤ ai < N.

Consequently, we have

(3.9) dHam(vi, w(Ni−ai,Ni+1−m−ai]) ≤ g(ni) + 3N ≤ g(ni) +m.

Moreover, by Lemma 2.5 there are words si ∈ Fm such that

(3.10) dHam(si, w(Ni−m−a,Ni−a]) ≥ βm for all 1 ≤ a ≤ N.

Now we can define the map ψ = ψw : Jn → Ln by

(3.11) ψ(n) = v1s1v2s2 · · · vknskn .

Summing over all n ∈ Jn gives

log Λn(L, ϕ) ≥ Φ(w) + log #Jn − max
n∈Jn

|Φ(ψ(n))− Φ(w)| − max
u∈Ln

#ψ−1(u).
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If we divide both sides by n, send n→∞, and write

hJ := lim
n→∞

1

n
log #Jn,

∆Φ := lim
n→∞

1

n
max
w∈Ln

max
n∈Jn

|Φ(ψw(n))− Φ(w)|,

hψ := lim
n→∞

1

n
max
w∈Ln

max
u∈Ln

#ψ−1
w (u),

we get

(3.12) P (ϕ) ≥ sup I + hJ −∆Φ − hψ,

where we recall that

I =
{∫

ϕdµ : µ ∈Mσ(X)
}

=
[

inf
x∈X

lim
n→∞

1

n
Snϕ(x), sup

x∈X
lim
n→∞

1

n
Snϕ(x)

]
.

To complete the proof of Theorem 1.1, it suffices to show that hJ > ∆Φ+hψ,
which we do in the next section.

3.3. Estimates on errors and entropy.

3.3.1. Entropy gained from J . Using (2.4) and the definition of Jn, we have

log #Jn = log

( n
2m

kn

)
≥ h

( δ

2m

) n

2m
+O(log n),

and thus

(3.13) hJ ≥
δ

4m2

∣∣∣ log
δ

2m

∣∣∣ ≥ δ

4m2
| log δ|.

3.3.2. Errors in ergodic sums. Given any w ∈ Ln and n ∈ Jn, with vi as in
the definition of ψ we see from (3.3) and (3.8) that

|Φ(w(Ni,Ni+1−m])− Φ(vi)| ≤ (g(ni) + 3N)V ≤ (g(ni) +m)V,

and hence |Φ(w(Ni,Ni+1]−Φ(visi)| ≤ (g(ni)+2m)V . Summing over all i and
using Lemma 3.2 gives

|Φ(ψ(n))− Φ(w)| ≤
kn∑
i=1

(g(ni) + 2m)V ≤ kn(L+ 2m+ γ log(n/kn))V,

and since L ≥ 2m we get

(3.14) max
w∈Ln

max
n∈Jn

|Φ(ψ(n))− Φ(w)| ≤ kn(2L+ γ log(n/kn))V.

Dividing by n and using kn ∈ [δn, 2δn] gives

(3.15) ∆Φ ≤ 2δV (2L+ γ| log δ|).
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3.3.3. Multiplicity of ψ. Given u ∈ Ln, let

Ru = {j ∈ [1, n] : m|j and dHam(u[j,j+m), w[j−a,j+m−a)) ≥ βm
for all 0 ≤ a < N}.

It follows from (3.10) that {Ni}kni=1 ⊂ Rψ(n) for all n ∈ Jn. Moreover, given
n ∈ Jn we see from (3.9) that u = ψ(n) has

(3.16)

(Ni+1/m)−1∑
j=Ni/m

dHam(u(jm,(j+1)m], w(jm−ai,(j+1)m−ai]) ≤ g(ni) + 2m

for every 1 ≤ i ≤ nk, and summing over i gives

(3.17)

βm ·#Ru ≤
n/m∑
j=1

min
0≤a<N

dHam(u[jm,jm+m), w[jm−a,jm+m−a))

≤
kn∑
i=1

(g(ni) + 2m) ≤ kn(2L+ γ| log δ|),

where the last inequality again uses Lemma 3.2 and the inequalities L ≥ 2m,
kn ≥ δn. Thus we have

#Ru ≤ kn ·
2L+ γ| log δ|

βm
,

and since n ∈ Jn is determined by a choice of kn elements from Ru, we
conclude from (2.4) that

log #ψ−1(u) ≤ h
( βm

2L+ γ| log δ|

)2δn

βm
(2L+ γ| log δ|) +O(log n),

and so

(3.18)

hψ ≤
βm

2L+ γ| log δ|
log
(2L+ γ| log δ|

βm

) 2δ

βm
(2L+ γ| log δ|)

= 2δ log
(2L+ γ| log δ|

βm

)
3.3.4. Completion of the proof. Combining (3.13), (3.15), and (3.18), we get

hJ −∆Φ − hψ
δ

≥ | log δ|
4m2

− 4V L− 2V γ| log δ| − 2 log
(2L+ γ| log δ|

βm

)
.

Since we chose γ to be smaller than (16m2V )−1, we have

| log δ|
8m2

− 2V γ| log δ| > 0,

and thus

hJ −∆Φ − hψ
δ

>
| log δ|
8m2

− 4V L− 2 log
(2L+ γ| log δ|

βm

)
.
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The right-hand side is positive by our choice of δ in (3.7), and we conclude
that hJ > ∆Φ + hψ. By (3.12), this gives P (ϕ) > sup I, which completes
the proof of Theorem 1.1.

4. Proof of Theorem 1.6

Now we consider the shift space X described in Theorem 1.6. Write
L for the language of X and f : N → N for the function used to define
G = {0a1b : a, b ≥ f(a+b)}. Recall that ϕ = −1[1]. Before we prove the five
statements listed in the theorem, we demonstrate that P (tϕ) is nonnegative
and nonincreasing. Let δ0 be the δ-measure on the fixed point 0 ∈ X. Then
for every t ∈ R we have P (tϕ) ≥ hδ0(σ) + t

∫
ϕdδ0 = tϕ(0) = 0. Since

ϕ ≤ 0 it follows from basic properties of pressure that whenever s < t, we
have P (tϕ) = P (sϕ+ (t− s)ϕ) ≤ P (sϕ+ (t− s)0) = P (sϕ), so the pressure
function is nonincreasing.

4.1. Hamming approachability. We start with a lemma.

Lemma 4.1. Given any u = 0a1b, there is ū ∈ G with |ū| = |u| and
dHam(u, ū) ≤ f(|u|).

Proof. If u ∈ G then we take ū = u. If u /∈ G then either a < f(|u|) or

b < f(|u|). If a < f(a + b) then let ū = 0f(|u|)1|u|−f(|u|), so dHam(u, ū) =

f(|u|)− a ≤ f(|u|). If b < f(a+ b) we take ū = 0|u|−f(|u|)1f(|u|). �

Given any w ∈ L, we can write w as w = upvus, where v ∈ G = G∗

and up, us are both of the form 0a1b. By Lemma 4.1 there are ūp,s ∈ G
such that dHam(up,s, ūp,s) ≤ f(|up,s|) ≤ f(|w|). Thus w̄ = ūpvūs ∈ G has
dHam(w̄, w) ≤ 2f(|w|), which proves the first item in Theorem 1.6.

4.2. Hyperbolicity when P (tϕ) > 0. Let It = {
∫
tϕ dµ : µ ∈ Mσ(X)}.

The second statement in Theorem 1.6 is equivalent to the claim that when
t ≥ 0, we have P (tϕ) > sup It if and only if t < t0, where t0 is the first root
of Bowen’s equation (1.2). Since t 7→ P (tϕ) is nonincreasing, we see that
t < t0 if and only if P (tϕ) > 0. On the other hand, since

∫
ϕ δ1 = −1 ≤

ϕ ≤ 0 =
∫
ϕ δ0, we have It = [−t, 0] for all t ≥ 0, and so sup It = 0, which

proves the desired equivalence.

4.3. Unique equilibrium state when t < t0. To deduce uniqueness of the
equilibrium state for tϕ when 0 ≤ t < t0, we apply Theorem 2.6. (Positive
entropy of the equilibrium state will then follow since tϕ is hyperbolic.) The
shift X is coded with generating set G = {0a1b : a, b ≥ f(a + b)}. This is
uniquely decipherable because if w = u1u2 · · ·um with ui ∈ G, then we
can recover u1 from w as the longest initial segment of the form 0a1b with
a, b ≥ 1, then u2 from the remainder of w by the same procedure, and so
on. Moreover, the set

D = D(G) := {w ∈ L : w is a subword of some g ∈ G}
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is easily seen to satisfy D ⊂ {0a1b : a, b ≥ 0}, and hence #Dn ≤ n + 1, so
h(D) = 0. We conclude that

P (D, tϕ) ≤ h(D) + sup It = sup It for all t,

and since we showed that tϕ is hyperbolic whenever 0 ≤ t < t0, we conclude
that P (D, tϕ) < P (tϕ) for this range of t, and so we can apply Theorem 2.6.

4.4. Only the delta measure past t0. Since t 7→ P (tϕ) is nonincreasing
and nonnegative, we have P (tϕ) = P (t0ϕ) = 0 for all t ≥ t0. Thus δ0 is an
equilibrium state for all t ≥ t0. When t > t0, we observe that every other
µ ∈Mσ(X) has µ[1] > 0 and hence

∫
ϕdµ < 0, so

hµ(σ) +

∫
tϕ dµ = hµ(σ) +

∫
t0ϕdµ+

∫
(t− t0)ϕdµ

≤ P (t0ϕ) + (t− t0)

∫
ϕdµ < 0,

which shows that δ0 is the unique equilibrium state on this range of t.

4.5. Bowen’s equation has a root if and only if
∑
γf(n) <∞. For the

final statement in Theorem 1.6, we fix t > 0 and study the power series

F (x) :=

∞∑
n=1

Λn(G, tϕ)xn and H(x) := 1 +

∞∑
n=1

Λn(G∗, tϕ)xn.

Proposition 4.2. For the shift space in Theorem 1.6 and t > 0, the follow-
ing are equivalent.

(a) P (tϕ) = 0.
(b) The power series H(x) converges for every 0 ≤ x < 1.
(c) The power series F (x) converges for every 0 ≤ x < 1, with F (x) < 1.
(d) The power series F (x) converges for x = 1, with F (1) ≤ 1.

Proof. (a)⇔(b). Consider the power series A(x) =
∑∞

n=0 Λn(X, tϕ)xn (here

Λ0(X, tϕ) = 1). Since lim n
√

Λn(X, tϕ) = eP (tϕ), the root test tells us that

the radius of convergence of A(x) is e−P (tϕ) ≤ 1. In particular, P (tϕ) = 0
if and only if A(x) converges for every 0 ≤ x < 1, so to prove the first
equivalence it suffices to show that the power series A(x) and H(x) converge
for the same values of x ∈ [0, 1). To this end, consider the sets of words

P = {0a1b : a < f(a+ b)} and S = {0a1b : b < f(a+ b)}.

Every w ∈ L admits a unique decomposition as w = upvus for some up ∈ P,
v ∈ G∗, and us ∈ S, and since Φ(upvus) = Φ(up) + Φ(v) + Φ(us), we have

(4.1)

N∑
n=0

Λn(X, tϕ)xn =
∑

a,b,c≥0
a+b+c≤N

Λa(P, tϕ)xaΛb(G
∗, tϕ)xbΛc(S, tϕ)xc.
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Consider the power series associated to P and S:

CP(x) := 1 +
∞∑
n=1

Λn(P, ϕ)xn and CS(x) := 1 +
∞∑
n=1

Λn(S, ϕ)xn.

Write HN , AN , C
P
N , C

S
N for the partial sums (over n ≤ N) of the respective

power series; then (4.1) gives

(4.2) CPN (x)HN (x)CSN (x) ≤ A3N (x) ≤ CP3N (x)H3N (x)CS3N (x).

We claim that CP(x) and CS(x) both converge for all 0 ≤ x < 1. For CS(x)
we have

CS(x) = 1 +

∞∑
n=1

f(n)−1∑
k=0

e−tk

xn = 1 +

∞∑
n=1

(
1− e−tf(n)

1− e−t

)
xn,

which has radius of convergence x = 1 since the coefficients lie in the interval
(0, 1]. Similarly for CP(x), we have

CP(x) = 1 +
∞∑
n=1

f(n)−1∑
k=0

e−t(n−k)

xn = 1 +
∞∑
n=1

(
e−t(n−f(n)) − e−tn

et − 1

)
xn,

and since 1 ≤ f(n) ≤ n/2 for all sufficiently large n, the coefficients converge
to 0 and the radius of convergence of CP(x) is greater than or equal to x = 1.
Thus CP(x) and CS(x) both converge for all 0 ≤ x < 1, and it follows from
(4.2) that for every such x, H(x) converges if and only if A(x) converges.
This proves the equivalence of (a) and (b).

(b)⇔(c). Since X is uniquely decipherable we have

Λn(G∗, tϕ) =
n∑
j=1

∑
n1+···+nj=n

j∏
i=1

Λni(G, tϕ).

It follows that whenever |F (x)| < 1 we have

(4.3) H(x) = 1 +

∞∑
k=1

F (x)k =
1

1− F (x)

and if 0 ≤ x < 1 is such that F (x) ≥ 1, then H(x) does not converge.

(c)⇔(d). Suppose F (1) converges. Then F (x) converges for all |x| < 1 by
standard facts on power series, and since all the coefficients are nonnegative
(and not all of them vanish), the function F is strictly increasing on [0, 1],
so 0 ≤ F (x) < F (1) for all x ∈ [0, 1), which proves (d)⇒(c).

Now we prove (c)⇒(d). Suppose that for all 0 ≤ x < 1 we have F (x) < 1.
Then the partial sums FN (x) also satisfy FN (x) < 1 for all x ∈ [0, 1) and
N ∈ N, since the coefficients are nonnegative. By continuity we get FN (1) ≤
1 for all N ∈ N, and thus F (1) ≤ 1. �



POSITIVE ENTROPY EQUILIBRIUM STATES 15

By Proposition 4.2, in order to complete the proof of Theorem 1.6(v) it
suffices to show that there is t > 0 with F (1) ≤ 1 if and only if there is

γ > 0 such that
∑

n γ
f(n) <∞. Observe that

(4.4) Λn(G, tϕ) =

n−f(n)∑
k=f(n)

e−tk =
e−t(f(n)−1) − e−t(n−f(n))

et − 1

whenever f(n) ≤ n/2, and Λn(G, tϕ) = 0 otherwise. Since f(n) ≤ n/2 for
all sufficiently large n, we have∑ e−t(n−f(n))

et − 1
<∞,

implying that F (1) < ∞ if and only if
∑∞

n=1 e
−t(f(n)−1)/(et − 1) < ∞. In

particular, if F (1) ≤ 1 then
∑
γf(n) <∞ for γ = e−t.

For the converse direction, suppose that γ > 0 is such that
∑
γf(n) <∞.

Then for all t ≥ − log γ, (4.4) gives

∞∑
n=1

Λn(G, tϕ) ≤
∞∑
n=1

e−t(f(n)−1)

et − 1
≤
∞∑
n=1

γf(n)−1

et − 1
≤ 1

γ(et − 1)

∞∑
n=1

γf(n).

By taking t sufficiently large, the right-hand side can be made ≤ 1, so for
this value of t we have F (1) ≤ 1, which completes the proof of Theorem 1.6.
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