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The talk in one slide

Hadamard—Perron theorem: linear data governs non-linear
behaviour on small scales

Consequences: SRB measures, closing lemmas, etc.

Uniform hyperbolicity: well-understood, rare

Non-uniform hyp.: understood if asymptotic behaviour known
@ Depends on ergodic theory/infinite information

@ SRB measure: need measure-independent approach

@ Closing lemma: want finite-information

Get these with effective hyperbolicity
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The simplest case

Assumption: f: R? — R9 with f(0) = 0 and Df(0) hyperbolic
@ E°® stable subspace, EY unstable subspace
o [DF(O)(v)| < &¥|v*| and [DF(0)(v*)] > &|v"|
e max(A®,0) < AY

Conclusion: There exists WY = graph
tangent to EY such that

o ||DyY(x")|| = 0 for x* =~ 0
o x,ye W=

d(f~"x,f~"y) < e "™d(x,y)
@ x < AY s arbitrary

Proof uses graph transform Wy +— Wy — W, - -
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Sequences of germs

Away from fixed points, use local coordinates to get sequence f,
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Uniform hyperbolicity

Assumption: f,: RY — R9 with £,(0) =0
e E;" invariant under Df,(0), uniformly transverse
o IDA(0)(v*)] < & v*] and [DF(0)(v*)| > & |1
e max(A®,0) < \¥

Conclusion: There exists WY = graph,
tangent to E such that

o [[Dn(x¥)|| < for [x“| < r

o x,ye W"=
d(f~"x,f~"y) < e"™d(x,y)

@ x < A\Yis arbitrary
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SRB measures

f: M a diffeo, U a trapping region: f(U) C U
@ Describe asymptotics of Lebesgue-typical trajectories
@ Absolutely continuous invariant measure? May not exist

@ Look for SRB measure: non-zero Lyapunov exponents and
absolutely continuous on unstable manifolds

Need Hadamard—Perron theorem to define. How to find?
@ m = Lebesgue measure (volume) on some admissible manifold

o Cesaro averages i, = = Y 1§ L fkm, then fin; — p invariant

Is # SRB? Yes if f is uniformly hyperbolic — continuous splitting
T«M = E“(x) @ E*(x), uniform expansion/contraction
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Closing lemma

Orbit segment x, f(x), ..., fP(x) ~ x. Periodic point nearby?
S

N 6F fo

fP induces graph transform on space of u-admissible manifolds
@ Contraction = fixed point, similarly for s-admissibles

@ Intersection is periodic point
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Non-uniform hyperbolicity

Assumption: f,: RY — R% is C1** with £,(0) =0
e E;" invariant under Df,(0), not uniformly transverse
o |Df,(0)(v®)| < e*|v®| and | Df,(0)(v¥)| > e*n|v!|
o ImLd A5 <0<y <lims> A
Conclusion: There exists W = graph 1, tangent to E} such that
® [[Dipn(x)|| <~ for x| < r/C
o x,y € W= d(f"x,f"y) < Ce”"™d(x,y)

@ C depends on asymptotic behaviour of A\;Y and 6,

Non-uniform set A = |JAc is union of regular sets (Pesin sets)
@ 1 hyperbolic invariant = p(A) =1

@ A invariant, non-compact, A¢ compact, non-invariant
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SRB measures and closing lemmas

NUH lets us define SRB measures, but not find them

@ Recall Cesaro averages p, — need to know how big the images
of admissible manifolds are at f"(x), so need good recurrence
properties to A¢

@ Recurrence properties come from ergodic theory

Closing lemma for NUH as long as both x, fP(x) € A¢ and
d(fP(x),x) < e(C).
@ Determining C requires an infinite amount of information —
knowledge of entire trajectory
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Effective hyperbolicity

fo: EXf @ ES — EF 1 @ ES 4 a CYT germ with £,(0) = 0
o |Df,(0)(v®)| < e|ve| and |DF,(0)(v¥)] > eMr|vY|
e 0,=L(E} E;), write B(0) ={n| 6, < 6}

Splitting is dominated if A5 < A4.

Defect from domination: A, = max(0, (A5 — AY4))

Definition

{fa | n > 0} is effectively hyperbolic if
Q limy_od(B(0)) =0, and
o liimn—)oo % Z;é()‘z - Ak) > 0.
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Return to large scale

Sequence of admissible manifolds W,, = graph v, through 0 and
tangent to EY, with f,(W,) D Wyt
@ Ypn: BY(rn) — E;, think of r, as 'size’ of admissible manifold
@ |DvYpla < Kp, think of k, as ‘curvature’
o rinry <y = |[[Dy| <~

Theorem (C.—Pesin)

If {fy | n > 0} is effectively hyperbolic, then there exists
r>0,k>0, and ' C N such that

Q () >0, and

@ foreveryn el we have r, > r and k, < k.

I" is the set of effective hyperbolic times:

Z)\e m)x forall0 < m<n
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Construction of SRB measures

f a Cl1t diffeo, U a trapping region, X C U an invariant set with
invariant cone families K“*(x)

e S ={x € X | forward trajectory of x is effectively hyperbolic}
N{x € X | K*(x) has negative Lyapunov exponent}

Theorem (C.—Dolgopyat—Pesin)
If Leb(S) > 0 then f has an SRB measure.
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Explicit computation of constants

Consider finite orbit segment {f, | 0 < n < p}
o L= max(|Dfla [log(%:2)]; |log(125E)))
(*] Ag = )\z — An — L1{0n<0}

o MY = maxo<me<n ((n —m)x¥ -t Ai) similarly M3

Definition
Orbit segment is completely effectively hyperbolic with parameters
M, 0 > 0 and rates x°* < 0 < x" if 0p,0, > 6 and

M > max(l\/l,‘,’,M;,l\/lé’,MS),
n—1

M > M+ (A —x°) forall0 < n < p,
k=0

and similarly for M;.
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Finite-information closing lemma

Theorem (C.—Pesin)
Fix parameters M, 6 and rates x*Y. Given § > 0 there ise > 0 and
po € N such that if

Q p>poand{x,...,fP(x)} is completely effectively hyperbolic

with these parameters and rates;

@ d(x,fPx) <e, and E? C K?(x) have d(DfP(E?), E?) < ¢,
then there exists a hyperbolic periodic point z = Pz such that
d(x,z) < 4.
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Example — sheared Katok map

f an Axiom A surface diffeo, p a hyperbolic fixed point

@ Near p the map f is time-1 for linear vector field x = Ax
@ Slow-down: x = Axr® where r = d(x, p) (Katok example)
@ Add shear term: if A= (} _05) then get ODEs

X=7r°x+y

y=—Bry
Parameters M for effective hyperbolicity can be computed directly
from how much time orbit segment spends near p.

@ SRB measure exists (takes some argument to show
Leb(S) > 0)
@ Closing lemma applies based on time spent near shear
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Thanks for listening!
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