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Abstract. We prove that for closed surfaces M with Riemannian met-
rics without conjugate points and genus ≥ 2 the geodesic flow on the
unit tangent bundle T 1M has a unique measure of maximal entropy.
Furthermore, this measure is fully supported on T 1M , is the limiting
distribution of closed orbits, and the flow is mixing with respect to this
measure. We formulate conditions under which this result extends to
higher dimensions.

1. Introduction

Let X be a compact metric space and F = {ft : X → X}t∈R a continuous
flow. The complexity of the flow can be quantified by the topological entropy

htop(F ) = lim
ε→0

lim sup
t→∞

1

t
log Λt(X,F, ε),

where Λt(X,F, ε) is the maximum cardinality of a (t, ε)-separated set – that
is, a set E ⊂ X such that for every x, y ∈ E, there is s ∈ [0, t] such that
d(fsx, fsy) ≥ ε. The variational principle [Wal82, Theorem 8.6] says that

htop(F ) = sup{hµ(f1) : µ ∈MF (X)},
where MF (X) is the space of flow-invariant Borel probability measures on
X, and hµ(f1) is measure-theoretic entropy. A measure µ ∈ MF (X) that
achieves the supremum is called a measure of maximal entropy (MME).

If M is a smooth closed Riemannian manifold of negative sectional cur-
vature, then by classical work of Bowen and Margulis, the geodesic flow
F = {ft}t∈R on the unit tangent bundle T 1M has a unique measure of max-
imal entropy. Moreover, the unique MME is fully supported on T 1M and is
the limiting distribution of closed orbits of the geodesic flow [Bow73, Bow74].
This proof uses Markov partitions; the result can also be proved using ex-
pansivity and the specification property [Bow75, Fra77].
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The corresponding result for rank 1 manifolds with nonpositive sectional
curvatures, where the tools in the previous paragraph may all fail, was
proved by the second author in [Kni98] using Patterson–Sullivan measures.
An alternate proof was recently given in [BCFT18] using non-uniform ver-
sions of expansivity and specification introduced in [CT16].

Once M is allowed to have some positive sectional curvatures, there are
two natural conditions to impose that still guarantee some (non-uniform)
hyperbolicity for the geodesic flow. The more restrictive of these is no
focal points; in this setting many of the tools from nonpositive curvature
still hold, and it is possible to adapt the approaches described above; see
[GR19, LWW20, CKP20].

We work in the broader setting of no conjugate points, where most of
the tools from nonpositive curvature fail in general; see [BBB87, Bur92] for
some discussion of the phenomena that can occur. In particular, each of
the above approaches encounters substantial difficulties, so that there is no
straightforward generalization of either [Kni98] or [BCFT18]. Nevertheless,
by using tools from coarse geometry together with the result from [CT16] on
non-uniform expansivity and specification, we obtain the following result.

Theorem 1.1. Let M be a smooth closed surface of genus ≥ 2, and let g be
a Riemannian metric on M without conjugate points. Then the associated
geodesic flow on T 1M has a unique measure µ of maximal entropy. The
measure µ has full support, is Bernoulli (hence mixing), and is the limit-
ing distribution of (homotopy classes of) closed geodesics in the sense of
Definition 2.27. In particular, the set of closed orbits is dense in T 1M .

In fact, Theorem 1.1 is a specific case of a more general result (Theorem
1.2), which establishes uniqueness for a broad class H of Riemannian man-
ifolds with no conjugate points in arbitrary dimension. The key properties
of a manifold (M, g) ∈ H are:

• M admits a negatively curved “background” Riemannian metric;
• geodesics emanating from a common point on the universal covering

eventually diverge;
• the fundamental group is residually finite;
• all invariant measures of “nearly maximal” entropy must have sup-

port on the expansive set, see (2.11).

See §3 for precise definitions, an explanation of whyH contains every surface
of genus ≥ 2, and a discussion of how restrictive these conditions are.

Uniqueness and ergodicity of the MME are provided by an application of
[CT16] (though see Remark 1.5 below for a discussion of the stark differences
between our result here and the one in [BCFT18], and the novelties required
in the present setting). Bernoullicity in Theorem 1.1 requires a result by
Ledrappier, Lima, and Sarig [LLS16], which only applies when dimM =
2. In higher dimensions, we can still obtain mixing by proving that the
Patterson–Sullivan construction gives the unique MME (once uniqueness is
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known). For nonpositively curved closed manifolds of rank 1, Patterson–
Sullivan measures and their geometric applications were studied in [Kni97].
The properties of the Patterson–Sullivan construction were then used by
Babillot [Bab02] to prove mixing of the flow with respect to the unique
measure of maximal entropy. For manifolds in the class H, we use the
uniqueness result to demonstrate that the construction in [Kni98] gives the
MME, and thus obtain mixing as in [Bab02, Theorem 2].

Theorem 1.2. Let M be a Riemannian manifold with no conjugate points
that lies in the class H. Then the associated geodesic flow on T 1M has
a unique measure of maximal entropy µ. The measure µ has full support,
is mixing, and is the limiting distribution of (homotopy classes of) closed
geodesics in the sense of Definition 2.27. In particular, the set of closed
orbits is dense in T 1M .

Remark 1.3. All closed surfaces of genus at least 2 are in the class H. On
the other hand we do not know of any examples of closed manifolds without
conjugate points that admit a metric of negative curvature which are not
contained in H; see §3 for more details. Thus Theorem 1.2 gives uniqueness
and mixing for the MME on all the known examples of manifolds without
conjugate points supporting a metric of negative curvature.

Remark 1.4. Our proof that the Patterson–Sullivan construction gives a
measure of maximal entropy only uses that (M, g) is a Riemannian manifold
without conjugate points satisfying the first two properties in the definition
of H (see §5). Under the extra (strong) assumption of expansivity, it was
proved by Aurélien Bosché in his thesis [Bos18] that this is in fact the unique
MME, but in our more general setting the Patterson–Sullivan approach does
not provide a proof of uniqueness.

Remark 1.5. The proof of uniqueness in Theorem 1.2 uses nonuniform ex-
pansivity and specification properties as in [CT16]. The idea is to leverage
the coarse hyperbolicity provided by the Morse Lemma, which gives a shad-
owing property in the universal cover at an a priori very large scale R. This
leads to a specification property, which is enough for uniqueness provided
the “obstructions to expansivity” are controlled at an even larger scale. For
this we use residual finiteness of π1(M) to pass to a finite cover of M whose
injectivity radius is much larger than R. This application of tools from
coarse geometry has no analogue in prior work using non-uniform expansiv-
ity and specification properties [BCFT18, CKP20]; in those settings enough
hyperbolicity is available to establish specification at arbitrarily small scales
for a natural family of orbit segments, but those arguments do not work here
due to the failure of various nice properties such as monotonicity of Jacobi
fields and continuity of the stable and unstable foliations.

The proof of mixing in Theorem 1.2 goes along the same lines as in [Bab02,
Theorem 2] for rank 1 manifolds where there is an abstract result for mixing
provided that the length spectrum is not arithmetic, i.e., is not a discrete
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subgroup of R. However, in our case, there are some technicalities related to
the fact that the flow is not expansive and the expansive set is not open in
general. More precisely, in [Bab02], the continuity of the cross-ratio function
that implies the non-arithmeticity of the length spectrum is established by
considering its restriction to the expansive set and using uniform hyperbolic-
ity for the recurrent subset [Kni98, Proposition 4.1]. See §6.2, and especially
Lemma 6.8, for the results that play an analogous role in our setting. We
remark that the cross-ratio has an analogue in the context of contact Anosov
flows, the so called temporal function [Liv04, Figure 2] whose C2 regularity
was key in the proof of exponential mixing for contact Anosov flows.

Remark 1.6. In negative curvature, Margulis proved an asymptotic formula
for the number of closed geodesics [Mar69, Mar04], relying heavily on a
leafwise description of the measure of maximal entropy that can be also
be interpreted via the Patterson–Sullivan approach [Kai90]. A key role is
played by the fact that periodic orbits equidistribute to the MME.

It was natural to conjecture [BK85] that a similar result holds in nonpos-
itive curvature, where one must consider free homotopy classes of closed
geodesics. The construction of the unique MME by the second author
[Kni98] resolved part of this conjecture, and the Margulis asymptotic it-
self has recently been announced in a preprint of Ricks [Ric19].

Theorem 1.2 can be considered as a starting point for extending the Mar-
gulis asymptotic to manifolds without conjugate points, and we complete
this process in a separate paper [CKW20], which in particular includes an
equidistribution result that strengthens the one here; see Remark 2.28.

Structure of the paper. In §2.1, we give definitions and properties of
manifolds without conjugate points and state the Morse lemma in Theorem
2.3. In §2.2, we give the definition of specification and state the general
results for uniqueness in Theorem 2.25. In §2.3, we describe the property
of equidistribution of closed geodesics. In §2.4, we discuss the property of
fundamental group being residually finite which is enough to have a finite
cover of arbitrarily large injectivity radius.

In §3, we give a precise definition of the class H of manifolds to which
Theorem 1.2 applies, and we prove Theorem 1.1 under Theorem 1.2. §4 is
devoted to the proof of Theorem 1.2, modulo the mixing property. In §5,
we prove that the MME in Theorem 1.2 is given by a Patterson–Sullivan
construction as in [Kni98]. This construction is then used in §6 to prove that
the flow is mixing with respect to the measure of maximal entropy which
completes the proof of Theorem 1.2. Certain technical proofs are given in
the appendices.

Acknowledgments. We are grateful to the anonymous referees for a care-
ful reading and for many helpful suggestions.
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2. Background

2.1. Geometry of manifolds without conjugate points.

2.1.1. Geodesic flows. Given a smooth closed n-dimensional Riemannian
manifold (M, g), we write F = {ft : T 1M → T 1M}t∈R for the geodesic
flow on the unit tangent bundle defined by ft(v) = ċv(t), where cv is the
unique geodesic on M with ċv(0) = v. It is convenient for us to use the
metric d1(v, w) = maxt∈[0,1] d(cv(t), cw(t)) on T 1M where d is the metric on
M induced by the Riemannian metric.

Throughout the paper, we will assume that (M, g) is a smooth closed
Riemannian manifold without conjugate points. Such manifolds are char-
acterized by the fact that the exponential map expp : TpM → M is not
singular for all p ∈ M or equivalently, each nontrivial orthogonal Jacobi
field vanishes at most at one point. The following relationships between this
property and other conditions that give some kind of hyperbolic behavior
are straightforward:

nonpositive sectional curvature ⇒ no focal points ⇒ no conjugate points.

The converse implications all fail in general.

The Cartan–Hadamard Theorem says that the universal cover M̃ of (M, g)
is diffeomorphic to Rn via the exponential map and therefore for every pair

of distinct points p, q ∈ M̃ , there is a unique geodesic segment c : [a, b]→ M̃

such that c(a) = p and c(b) = q: geodesics are globally minimizing in M̃ .
The group of deck transformations Γ is isomorphic to the fundamental

group π1(M) and acts isometrically on M̃ . In particular, M is isometric to

the quotient M̃/Γ. We write pr : M̃ → M for the canonical projection and

pr∗ : T 1M̃ → T 1M for the map it induces between the unit tangent bundles.
Given a finite flow-invariant measure µ on T 1M , the lift of µ is the σ-finite

flow-invariant and Γ-invariant measure µ̃ on T 1M̃ defined by

(2.1) µ̃(A) =

∫
T 1M

#(pr−1
∗ (v) ∩A) dµ(v).

We let π : T 1M̃ → M̃ be the standard projection.

2.1.2. Coarse hyperbolicity using a background metric. An important strat-
egy throughout the paper will be to compare the geometric properties of M
with respect to two different Riemannian metrics g and g0, where g is the
original metric we are given, and g0 is a ‘background’ metric which we will
always assume to have negative sectional curvatures.

Remark 2.1. Existence of a negatively curved background metric places gen-
uine topological restrictions on M . In particular, as stated above the uni-
versal covering is diffeomorphic to Rn and by Preissmann’s theorem each
abelian subgroup of the fundamental group is infinite cyclic. Therefore, in
dimension two it forces the genus of M to be at least 2 and in higher dimen-
sions excludes examples such as Gromov’s graph manifolds of nonpositive
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curvature for which uniqueness of the MME is known [Kni98, §6]. On the
other hand in this paper we do not impose any local assumptions such as
restrictions on the curvature.

We will write d, d0 for the distance functions associated to g, g0 on both

M and M̃ . The first crucial observation is that by compactness of M and
the equivalence of the quadratic forms of g and g0, there exists a constant

A > 0 such that for every p, q ∈ M̃ , we have

(2.2) A−1 · d0(p, q) ≤ d(p, q) ≤ A · d0(p, q).

This has an important consequence for topological entropy. Generalizing an
earlier result of Manning [Man79] in nonpositive curvature, it was shown by
Freire and Mañé [FM82] that on a closed manifold without conjugate points,
the volume growth in the universal cover is equal to the topological entropy
of the geodesic flow:

(2.3) htop(F ) = lim
r→∞

1

r
log vol(B(p, r)),

where p is any point in M̃ and B(p, r) ⊂ M̃ is the ball centered at p of
radius r. We say that g has positive topological entropy if its geodesic flow
F has htop(F ) > 0. The following is an immediate consequence of (2.2) and
(2.3).

Lemma 2.2. If M admits a metric g0 without conjugate points that has
positive topological entropy, then every metric g without conjugate points on
M has positive topological entropy. In particular, this occurs if M admits a
metric g0 with negative sectional curvatures.

From now on we consider a closed Riemannian manifold (M, g) without
conjugate points which admits a background metric g0 of negative curvature,
and thus has positive topological entropy. This lets us deduce certain coarse
hyperbolicity properties, for which we recall that Hausdorff distance dH
between two subsets C1, C2 ⊂ M̃ (with respect to g) is defined by

dH(C1, C2) := inf{r > 0 : C1 ⊂ Tr(C2), C2 ⊂ Tr(C1)}
where Tr(C) := {p ∈ M̃ : d(p, C) ≤ r}. We denote by d0

H the Hausdorff
distance with respect to d0. The following result goes back to Morse [Mor24]
in dimension two, and Klingenberg [Kli71] in higher dimensions. We follow
the statement from [GKOS14, Theorem 3.3]; see [Kni02, Lemma 2.7] for a
detailed proof.

Theorem 2.3 (Morse Lemma). If g, g0 are two metrics on M such that
g has no conjugate points and g0 has negative curvature, then there is a

constant R0 = R0(g, g0) > 0 such that if c : [a, b]→ M̃ and α : [a0, b0]→ M̃
are minimizing geodesic segments with respect to g, g0, respectively, joining
c(a) = α(a0) to c(b) = α(b0), then dH(c[a, b], α[a0, b0]) ≤ R0.

We prove the following consequence in Appendix A.
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Lemma 2.4. Let g be a metric on M without conjugate points. If M ad-
mits a metric of negative curvature then for every R1 > 0 there is R2 > 0

such that for every T > 0 if c1, c2 : [0, T ] → M̃ are two geodesics with
d(c1(0), c2(0)) ≤ R1 and d(c1(T ), c2(T )) ≤ R1, then d(c1(t), c2(t)) ≤ R2 for
all t ∈ [0, T ].

Remark 2.5. When g itself has nonpositive curvature, Lemma 2.4 follows
easily from the convexity of the distance function t 7→ d(c1(t), c2(t)) between
two geodesics. In our more general setting we rely on the background metric
of negative curvature and use the Morse Lemma.

2.1.3. Busemann functions and horospheres. Given v ∈ T 1M̃ , recall that

cv : R → M̃ denotes the geodesic with ċv(0) = v. For each t > 0, consider

the function on T 1M̃ defined by bv,t(p) := d(p, cv(t))− t.

Lemma 2.6 ([Esc77, Proposition 1]). For every v ∈ T 1M̃ and p ∈ M̃ ,

the limit bv(p) := limt→∞ bv,t(p) exists and defines a C1 function on M̃ .
Moreover, grad bv(p) = limt→∞ grad bv,t(p).

Existence of the limit is essentially due to the fact that geodesics on M̃ are
globally minimizing. The limiting function bv is called a Busemann function,
and was shown in [Kni86] to be in fact C(1,1).

Observe that if t ≥ τ , then bv,t(cv(τ)) = d(cv(τ), cv(t))− t = (t− τ)− t =
−τ , so we have

(2.4) bv(cv(t)) = −t and − grad bv(cv(t)) = ċv(t) = ft(v).

Given v ∈ T 1M̃ , the stable and unstable horospheres Hs(v) and Hu(v)

are the subsets of M̃ defined by

(2.5) Hs(v) := {p ∈ M̃ : bv(p) = 0} and Hu(v) := Hs(−v).

We refer to cv(∞) as the center of the stable horosphere Hs(v). Similarly,
cv(−∞) := c−v (∞) is the center of Hu(v), where we write c−v (t) = cv(−t).

We also consider the (weak) stable and unstable manifolds, which are the

subsets of T 1M̃ defined by

(2.6) W s(v) := {− grad bv(p) | p ∈ M̃} and W u(v) := −W s(−v).

Some justification for this terminology will be given in the next section. For
the moment we observe that W s(v) is the union of the unit normal vector
fields to horospheres centered at cv(∞), and that it is F -invariant by (2.4).
The regularity of the Busemann function implies that the horospheres are
C(1,1) manifolds and the stable and unstable manifolds are Lipschitz.

2.1.4. Manifolds of hyperbolic type and the boundary at infinity. We say that

(M, g) has the divergence property if any pair of geodesics c1 6= c2 in (M̃, g)
with c1(0) = c2(0) diverge, i.e.,

(2.7) lim
t→∞

d(c1(t), c2(t)) =∞.
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Remark 2.7. Every surface without conjugate points has the divergence
property [Gre56]. In higher dimensions it is unknown whether this con-
dition always holds.

The following definition and theorem are due to Eberlein [Ebe72].

Definition 2.8. A simply connected Riemannian manifold M̃ without con-
jugate points is a (uniform) visibility manifold if for every ε > 0 there exists

L > 0 such that whenever a geodesic c : [a, b]→ M̃ stays at distance at least

L from some point p ∈ M̃ , then the angle sustained by c at p is less than ε,
that is

∠p(c) = sup
a≤s,t≤b

∠p(c(s), c(t)) < ε.

Theorem 2.9. Let (M, g) be a closed manifold without conjugate points

which admits a background metric g0 of negative curvature. Then (M̃, g) is
a visibility manifold if and only if (M, g) has the divergence property.

Remark 2.10. We remark that Ruggiero [Rug03] obtained this result without
assuming the existence of a negatively curved background metric. Instead he

assumed the weaker condition that M̃ is hyperbolic in the sense of Gromov
[Gro87].

Definition 2.11. We say that a closed manifold (M, g) without conjugate
points is of hyperbolic type provided it carries a background metric g0 of
negative curvature and it satisfies the divergence property.

Remark 2.12. By Remark 2.7 and the classification of surfaces, every surface
of genus ≥ 2 without conjugate points is of hyperbolic type.

Now we assume that (M, g) is of hyperbolic type, and describe a compact-

ification of M̃ following Eberlein [Ebe72]. Two geodesic rays c1, c2 : [0,∞)→
M̃ are called asymptotic if d(c1(t), c2(t)) is bounded for t ≥ 0. This is an

equivalence relation; we denote by ∂M̃ the set of equivalence classes and call
its elements points at infinity. We denote the equivalence class of a geodesic
ray (or geodesic) c by c(∞). The following construction is useful.

Lemma 2.13. Given p ∈ M̃ and v ∈ T 1M̃ , for each t > 0 let ct be the
geodesic from p to cv(t), with ct(0) = p. Then the limit w := limt→∞ ċt(0) ∈
T 1
p M̃ exists and has the property that w = − grad bv(p) and cw(∞) = cv(∞).

Proof. Lemma 2.6 gives existence of the limit and the claim regarding bv. To
show that cw(∞) = cv(∞), we apply Lemma 2.4 with R1 = d(p, π(v)) to the

geodesics ct, cv : [0, t]→ M̃ , which gives d(ct(s), cv(s)) ≤ R2 for all s ∈ [0, t]
where R2 depends only on p and v. Since cw(s) = limt→∞ ct(s) for all s > 0,
we conclude that d(cw(s), cv(s)) ≤ R2, and thus cw(∞) = cv(∞). �

Lemma 2.14. Given any p ∈ M̃ and ξ ∈ ∂M̃ , there is a unique geodesic

ray c : [0,∞) → M̃ with c(0) = p and c(∞) = ξ. Equivalently, the map

fp : T 1
p M̃ → ∂M̃ defined by fp(v) = cv(∞) is a bijection.
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Proof. Surjectivity follows from Lemma 2.13. Injectivity is an immediate
consequence of the divergence property. �

Following Eberlein we equip ∂M̃ with a topology that makes it a compact

metric space homeomorphic to Sn−1. Fix p ∈ M̃ and let fp : T 1
p M̃ → ∂M̃ be

the bijection v 7→ cv(∞) from Lemma 2.14. The topology (sphere-topology)

on ∂M̃ is defined such that fp becomes a homeomorphism. Since for all

q ∈ M̃ the map f−1
q fp : T 1

p M̃ → T 1
q M̃ is a homeomorphism, see [Ebe72], the

topology is independent on the reference point p.

The topologies on ∂M̃ and M̃ extend naturally to cl(M̃) := M̃ ∪ ∂M̃ by

requiring that the map ϕ : B1(p) = {v ∈ TpM̃ : ‖v‖ ≤ 1} → cl(M̃) defined
by

ϕ(v) =

{
expp

(
v

1−‖v‖

)
‖v‖ < 1

fp(v) ‖v‖ = 1

is a homeomorphism. This topology, called the cone topology, was intro-
duced by Eberlein and O’Neill [EO73] in the case of Hadamard manifolds
and by Eberlein [Ebe72] in the case of visibility manifolds. In particular,

cl(M̃) is homeomorphic to a closed ball in Rn. The relative topology on ∂M̃

coincides with the sphere topology, and the relative topology on M̃ coincides
with the manifold topology.

Remark 2.15. The isometric action of Γ = π1(M) on M̃ extends to a con-

tinuous action on ∂M̃ . Since by [Ebe72] the geodesic flow is topologically

transitive, every Γ-orbit in ∂M̃ is dense, i.e. the action on ∂M̃ is minimal.

Definition 2.16. Given p ∈ M̃ and ξ ∈ ∂M̃ , let v ∈ T 1
p M̃ be the unique

unit tangent vector at p such that cv(∞) = ξ. We call bp(q, ξ) := bv(q) the
Busemann function based at ξ and normalized by p, i.e. bp(p, ξ) = 0.

The following important property of visibility manifolds is due to Eberlein
[Ebe72, Proposition 1.14].

Proposition 2.17. Let M̃ be a visibility manifold and

A = {(q, z) ∈ M̃ × cl(M̃) | q 6= z}.

Consider the map V : A → T 1M̃ such that V (q, z) ∈ T 1
q M̃ is the unique

vector with cV (q,z)(d(q, z)) = z. Then V : A → T 1M̃ is continuous with
respect to the topology defined above.

Corollary 2.18. For p, q, z ∈ M̃ define bp(q, z) = d(q, z) − d(p, z). Then

for all p ∈ M̃ , compact subsets K ⊂ M̃ , ξ ∈ ∂M̃ and all ε > 0 there exists

an open set U ⊂ cl(M̃) such that

|bp(q, z)− bp(q, ξ)| < ε
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for all q ∈ K and z ∈ U . In particular, we have

(2.8) lim
z→ξ

d(q, z)− d(p, z) = bp(q, ξ) for every p, q ∈ M̃ and ξ ∈ ∂M̃.

Proof. For p ∈ M̃ and z ∈ cl(M̃) consider the function q 7→ bp(q, z). Then

for q 6= z we have grad bp(q, z) = −V (q, z). For a compact set K ⊂ M̃ define

B(K) = cl{q ∈ c[0, 1] | c : [0, 1]→ M̃ geodesic with c(0) = p, c(1) ∈ K}
which is compact as well. Choose r > 0 such that K ⊂ B(p, r) and ε > 0.

Since V : A → T 1M̃ is continuous it is uniformly continuous on compact

subsets. In particular, for ξ ∈ ∂M̃ there exists a neighborhood U ⊂ cl(M̃)
such that U ∩ B(K) = ∅ and ‖V (q, z) − V (q, ξ)‖ < ε

r for all q ∈ B(K) and

z ∈ U . For q ∈ K and z ∈ U and the geodesic c : [0, 1] → M̃ with c(0) = p
and c(1) = q. we obtain

|bp(q, z)− bp(q, ξ)| =
∣∣∣∣∫ 1

0

d

dt
(bp(c(t), z)− bp((c(t), ξ))dt

∣∣∣∣
=

∣∣∣∣∫ 1

0
〈grad bp(c(t), z)− grad bp(c(t), ξ), ċ(t)〉dt

∣∣∣∣ < ε

r

∫ 1

0
‖ċ(t)‖dt ≤ ε

which yields the claim made in the corollary. �

Corollary 2.19. Given p, p′, q ∈ M̃ and ξ ∈ ∂M̃ , we have bp′(q, ξ) =
bp(q, ξ)−bp(p′, ξ). In particular, all Busemann functions based at ξ coincide
up to an additive constant and bp′(q, ξ) = −bq(p′, ξ).

Proof. Given p, p′, q, z ∈ M̃ we obtain bp′(q, z) = bp(q, z) − bp(p
′, z) and

taking the limit z → ξ corollary 2.18 yields the claim. �

The following result justifies the terminology ‘stable manifold’ for W s(v).

Lemma 2.20. Let (M, g) be a closed Riemannian manifold without conju-

gate points and of hyperbolic type. Then for each v ∈ T 1M̃ , we have

(2.9) W s(v) = {w ∈ T 1M̃ : cw is asymptotic to cv}.
Proof. By Lemma 2.14, both the left- and right-hand sides of (2.9) contain

exactly one point from each T 1
p M̃ . By Lemma 2.13, each T 1

p M̃ contains a
w that lies in both the left- and right-hand sides. The result follows. �

We say that a geodesic c : R → M̃ connects two points at infinity η, ξ ∈
∂M̃ if c(−∞) := c−(∞) = η and c(∞) = ξ, where c−(t) = c(−t).

Lemma 2.21 ([Kli71]). For every η, ξ ∈ ∂M̃ with η 6= ξ, there exists a
geodesic c connecting η and ξ.

The geodesic c in Lemma 2.21 is not always unique; there may be multiple
geodesics connecting η and ξ, in which case η and ξ are in some sense ‘con-

jugate points at infinity’; we allow such points in ∂M̃ even though we forbid
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conjugate points in M̃ . In the more restrictive setting of no focal points
(in particular, if M has nonpositive curvature), any two distinct geodesics

connecting η 6= ξ ∈ ∂M̃ must bound a flat strip in M̃ , but this is no longer
the case in our setting.

Given v, w ∈ T 1M̃ , observe that cv(±∞) = cw(±∞) if and only if w ∈
W s(v) ∩ W u(v) by Lemma 2.20, and so cv is the unique geodesic joining
cv(±∞) if and only if

(2.10) W s(v) ∩W u(v) = {ċv(t) : t ∈ R} = {ftv : t ∈ R}.
We can also give a characterization in terms of the horospheres: cv is the
unique geodesic joining cv(±∞) if and only if Hs(v)∩Hu(v) consists of the
single point π(v).

In the following we call

(2.11)
E := {v ∈ T 1M̃ : W s(v) ∩W u(v) = {ċv(t) : t ∈ R}}

= {v ∈ T 1M̃ : Hs(v) ∩Hu(v) is a single point}.
the expansive set, which we will use in the definition of H in §3: From the
discussion above, we have v ∈ E if and only if cv is uniquely determined up
to parametrization by cv(±∞).

2.2. A uniqueness result using specification. We use an approach to
uniqueness of the measure of maximal entropy that goes back to Bowen
[Bow75]; see Franco [Fra77] for the flow case. This approach relies on the
properties of expansiveness and specification. We will use versions of these
properties that differ slightly from those used by Bowen and Franco, but
which keep the essential features; we describe these now, together with a
general uniqueness result proved by the first author and D.J. Thompson
[CT16] that extends Bowen’s result to a more nonuniform setting.

Let (X,F ) be a continuous flow on a compact metric space.

Definition 2.22. Given ε > 0, say that a point x ∈ X is expansive at scale
ε if there is s > 0 such that

{y ∈ X : d(ftx, fty) < ε for all t ∈ R} ⊂ {ftx : t ∈ [−s, s]}.
Let NE(ε) be the set of points in X that are not expansive at scale ε. The
entropy of obstructions to expansivity at scale ε is

(2.12) h⊥exp(ε) = sup{hµ(f1) : µ ∈MF (X), µ(NE(ε)) = 1}.
Definition 2.23. Given δ > 0, we say that the flow has specification at scale
δ > 0 if there exists τ = τ(δ) such that for every (x1, t1), . . . , (xN , tN ) ∈
X × [0,∞) there exist a point y ∈ X and times T1, . . . , TN ∈ R such that
Tj+1 − (Tj + tj) ∈ [0, τ ] for every 1 ≤ j < N and

fTj (y) ∈ Btj (xj , δ) :=
{
z ∈ X : sup

s∈[0,tj ]
d(fsxj , fsz) < δ

}
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for every j ∈ {1, . . . , N}. It is convenient to also use the notation sj = Tj+tj
for the time at which the orbit of y stops shadowing the orbit of xj, and
τj = Tj+1 − sj for the time it takes to transition from the orbit of xj to the
orbit of xj+1. See Figure 2.1 for the relationship between the various times.

. . .

. . .

T1 T2 T3 TN
s1 s2 s3 sN

x1 x2 x3 xN

y

t1 t2 t3 tN
τ1 τ2

Figure 2.1. Book-keeping in the specification property.

Remark 2.24. It is well-known that the specification property holds for tran-
sitive Anosov flows, including the geodesic flow on a smooth negatively
curved closed Riemannian manifold; see [Bow72] and also Appendix 4.2.

The following result is proved in [CT16, Theorem 2.9].

Theorem 2.25. Let (X,F ) be a continuous flow on a compact metric space,
and suppose that there are δ, ε > 0 with ε > 40δ such that h⊥exp(ε) < htop(f1)
and the flow has specification at scale δ. Then (X,F ) has a unique measure
of maximal entropy.

Remark 2.26. The result proved in [CT16] is more general (and more com-
plicated) in two ways: it applies to nonzero potential functions, and it only
requires specification to hold for a (sufficiently large) collection of orbit seg-
ments. The version stated here follows from [CT16, Theorem 2.9] by putting
φ = 0, G = D = X × R+, and P = S = ∅.
2.3. Limit distribution along periodic orbits. Let X be a compact
metric space and ft : X → X a continuous flow. Given T > 0, let P(T ) be a
maximal set of pairwise non-homotopic periodic orbits with period at most
T , and let P (T ) = cardP(T ). Let µT be the invariant probability measure
defined by

(2.13)

∫
X
ϕdµT =

1

P (T )

∑
γ∈P(T )

1

`(γ)

`(γ)∫
0

ϕ(γ(s))ds

for each ϕ ∈ C0(X).

Definition 2.27. We say that a flow-invariant probability measure µ is the
limiting distribution of (homotopy classes of) periodic orbits if µT → µ in
the weak* topology. If this occurs in the case when X = T 1M and ft is the
geodesic flow, we also say that µ is the limiting distribution of (homotopy
classes of) closed geodesics.

Remark 2.28. In our proofs of Theorems 1.1 and 1.2, we prove equidistribu-
tion of periodic orbits in the sense of Definition 2.27. One could also pursue
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a stronger equidistribution result by fixing δ > 0 and writing P(T, δ) for the
set of orbits in P(T ) with period in (T − δ, T ]; in negative curvature and in
nonpositive curvature, the measures corresponding to P(T, δ) as in (2.13)
converge to the MME as T → ∞ for every δ > 0 [Mar04, BCFT18]. This
stronger equidistribution result, which is crucial for the Margulis asymptotic
estimates [Mar69, Mar04], turns out to be true in our setting as well, as we
prove in [CKW20]. However, it requires machinery that we do not develop
here; the crucial step is to show that for every δ > 0, cardP(T, δ) grows
with exponential rate htop(f1). As we discuss in §4.3, this growth is already
known for cardP(T ), which gives an estimate for cardP(T, δ) if we restrict
to “most” T , but the stronger estimate is beyond the scope of this paper.

It is worth observing here that the notion of length does not depend on
which representative of a free homotopy class we choose.

Lemma 2.29. Let M be a manifold with no conjugate points. If c1, c2 are
closed geodesics in the same free homotopy class, then they have the same
length.

Proof. Let `i be the length of ci. Lifting the homotopy to the universal

cover M̃ gives geodesics c̃1, c̃2 : R → M̃ such that d(c̃1(n`1), c̃2(n`2)) =
d(c̃1(0), c̃2(0)) =: r for all integers n. Thus

n`1 = d(c̃1(0), c̃1(n`1))

≤ d(c̃1(0), c̃2(0)) + d(c̃2(0), c̃2(n`2)) + d(c̃2(n`2), c̃1(n`1)) = 2r + n`2,

where the equalities use the assumption of no conjugate points so that

geodesics minimize distances in M̃ . Dividing by n and sending n → ∞
gives `1 ≤ `2, and by symmetry this suffices. �

2.4. Residually finite fundamental groups.

Definition 2.30. A group G is residually finite if the intersection of its
finite index subgroups is trivial.

For surfaces we have the following result which was first proved by Baum-
slag [Bau62] and then Hempel [Hem72] gave an alternative proof.

Theorem 2.31. Every surface has residually finite fundamental group.

Later on, Hempel [Hem87] proved that fundamental groups of three man-
ifolds are residually finite. It is an open problem whether every manifold
supporting a negatively curved metric has a residually finite fundamental
group [Arz14].

For our purposes we need the following implication of a manifold having
residually finite fundamental group.

Proposition 2.32. Let M be a smooth Riemannian manifold and suppose
that π1(M) is residually finite. Then for every R > 0 there is a smooth
Riemannian manifold N and a locally isometric covering map p : N → M
such that the injectivity radius of N is at least R.
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Proof. Fix a point x in the universal cover M̃ , and consider the finite set
Z = {γ ∈ π1(M) \ {e} : γ(x) ∈ B(x, 2R)}. Since π1(M) is residually finite,
for each γ ∈ Z there is a finite index subgroup Gγ < π1(M) such that
γ /∈ Gγ . Then G =

⋂
γ∈Z Gγ < π1(M) is a finite index subgroup such that

d(x, γ(x)) ≥ 2R for all nontrivial γ ∈ G. In particular, N = M̃/G defines a
compact manifold that is a finite cover of M has injectivity radius at least
R. To see this, we can consider without loss of generality that x ∈ D where

D is a fundamental domain corresponding to the covering M̃ → M . Then

there is a fundamental domain of M̃ → N that contains all γD where γ ∈ Z
and by the definition of Z, this domain contains a ball of radius ≥ R. �

3. A class of manifolds with unique measure of maximal
entropy

Now we can define the class H of manifolds to which Theorem 1.2 applies.

Definition 3.1. Let H denote the class of closed smooth Riemannian man-
ifolds (M, g) without conjugate points such that the following conditions are
satisfied.

(H1) M supports a Riemannian metric g0 for which all sectional curva-
tures are negative;

(H2) (M, g) has the divergence property;
(H3) the fundamental group π1(M) is residually finite;
(H4) sup{hµ(f1) : µ ∈ MF (T 1M), µ̃(E) = 0} < htop(F ), where E is the

expansive set defined in (2.11) and µ̃ is the lift of µ given in (2.1);

We show below that every closed surface without conjugate points and
genus ≥ 2 satisfies (H1)–(H4); this is the key to deducing Theorem 1.1
from Theorem 1.2.

Remark 3.2. As observed in Remark 2.1, there are rank 1 manifolds of non-
positive curvature for which (H1) fails, but which have unique measures of
maximal entropy by [Kni98]. Thus this condition places a genuine topolog-
ical restriction on the class of manifolds contained in H.

In higher dimensions, the status of the other conditions is less clear; we
are not currently aware of any examples for which (H1) holds but any
of (H2)–(H4) fails. It is known that (H3) holds whenever dimM ≤ 3
[Bau62, Hem72, Hem87], and it is an open problem in geometric group
theory to determine whether (H1) implies (H3) in general [Arz14].

Following similar arguments to those in [BCFT18, §8], condition (H4)
can be verified under the following assumptions (we omit the proof):

(1) Conditions (H1)–(H3) hold;
(2) the expansive set E has non-empty interior;
(3) the finite cover N of M constructed in the next section has the

property that its geodesic flow is entropy-expansive at scale 10δ,
where δ is given in in (4.1) below.
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Proof of Theorem 1.1 assuming Theorem 1.2. Let M be a closed surface of
genus ≥ 2, and g a metric on M with no conjugate points. We claim that
conditions (H1)–(H4) are satisfied. Indeed, (H1) is a standard result;
(H3) is Theorem 2.31; and (H2) was proved in [Gre56]. The proof of (H4)
is a consequence of the following proposition.

Proposition 3.3. Let M be a surface of genus ≥ 2 without conjugate points,

and µ ∈ MF (T 1M) an ergodic measure with hµ(f1) > 0. Then µ̃(T 1M̃ \
E) = 0.

Proof. Let µ ∈ MF (T 1M) be a ergodic measure with hµ(f1) > 0. This
implies by Ruelle’s inequality that µ-a.e. v ∈ T 1M has nonzero Lyapunov
exponents, and hence by Pesin theory v has transverse stable and unstable
leaves. Using Lemma 2.20, the stable and unstable manifolds of µ-a.e. v
correspond to normal fields of the stable and unstable horospheres, and
thus these horospheres intersect in a single point, so µ-a.e. v ∈ E . �

Finally, the topological entropy of the geodesic flow is positive by Lemma
2.2, so Proposition 3.3 establishes (H4). Thus Theorem 1.2 applies to every
surface of higher genus with no conjugate points, giving a unique measure
of maximal entropy µ, which is ergodic and is the limiting distribution of
closed geodesics. It follows from [LLS16] that µ is Bernoulli which concludes
the proof of Theorem 1.1. �

4. Uniqueness and equidistribution

4.1. Proof of uniqueness. In this section we prove the first part of The-
orem 1.2 by using Theorem 2.25 to establish uniqueness of the MME when
(M, g) is a smooth closed Riemannian manifold without conjugate points
satisfying (H1)–(H4).

The first step is to pass to an appropriate finite cover. Let A be given
by (2.2), and R0 by the Morse lemma. Fix R1 > 3AR0 and let R2 be
given by Lemma 2.4; observe that the proof in Appendix A gives R2 =
4R0 + (6A2 + 1)R1. Let

(4.1) δ = R2 + 2 = 4R0 + (6A2 + 1)R1 + 2.

and fix ε > 40δ. By (H3) and Proposition 2.32, there is a finite cover
N of M whose injectivity radius exceeds 3ε. Observe that the covering
map p : N → M naturally extends to a finite-to-1 semi-conjugacy from the
geodesic flow on T 1N to the geodesic flow on T 1M which implies that

Lemma 4.1. The pushforward map p∗ : MF (T 1N) → MF (T 1M) is sur-
jective and entropy-preserving.

It follows from Lemma 4.1 that if the geodesic flow on T 1N has a unique
measure of maximal entropy, then so does the geodesic flow on T 1M . Ergod-
icity follows from uniqueness because otherwise every ergodic component will
be an MME. Similarly, if the unique MME on T 1N is the limit distribution
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of periodic orbits, then the flow on T 1N satisfies limT→∞ 1
T logP (T, δ) =

htop(f1), and since the semi-conjugacy is finite-to-1, the same is true of the
geodesic flow on T 1M , so Proposition 4.12 gives the corresponding result
for T 1M .

Thus prove the claims in Theorem 1.2 regarding uniqueness and closed
geodesics, it suffices to prove them for geodesic flow on T 1N , which we will
do using Theorem 2.25. From now on we consider X = T 1N and let F be
the geodesic flow.

Lemma 4.2. If v ∈ NE(ε) ⊂ T 1N , then any lift ṽ of v to T 1Ñ = T 1M̃
has the property that ṽ /∈ E. In particular, if µ ∈ MF (T 1N) is such that
µ(NE(ε)) = 1, then µ̃(E) = 0.

Proof. If v ∈ NE(ε), then for every s > 0, there is w ∈ T 1N such that
w /∈ {ftv : t ∈ [−s, s]}, but d(ftv, ftw) < ε for all t ∈ R. Given a lift ṽ ∈
T 1Ñ = T 1M̃ of v, let w̃ ∈ T 1Ñ be a lift of w with d(ṽ, w̃) < ε. Then for all
t ∈ R there is a unique γ(t) ∈ π1(N) such that d(ftṽ, γ(t)ftw̃) < ε; existence
follows since d(ftv, ftw) < ε, and uniqueness follows since 2ε is smaller than
the injectivity radius of N . The function γ : R → π1(N) is continuous and
thus constant on R, so d(ftṽ, ftw̃) < ε for all t ∈ R. In particular, taking
s > ε we conclude that ṽ, w̃ are tangent to distinct geodesics between the

same points on ∂M̃ , and thus ṽ /∈ E . The claim regarding µ and µ̃ follows
immediately. �

It follows from Lemma 4.2 and Condition (H4) that

h⊥exp(ε) ≤ sup{hµ(f1) : µ ∈MF (T 1M), µ̃(E) = 0} < htop(F ),

which verifies the entropy gap condition that is needed for Theorem 2.25.

Proposition 4.3. The geodesic flow of (N, g) has specification at scale δ.

This is a consequence of Theorem 4.4 and Remark 4.5 below. The basic
idea is to use the Morse Lemma to go from orbit segments for F to orbit
segments for F 0, then use the specification property for F 0 to find a single
g0-geodesic that shadows each of these in turn, and finally to use the Morse

Lemma again to show that the g-geodesic with the same endpoints in M̃
shadows the original sequence of orbit segments.

Once specification at scale δ has been proved, Theorem 2.25 implies that
the geodesic flow on T 1N has a unique measure of maximal entropy µ.

4.2. Specification. Let M be a smooth closed Riemannian manifold with-
out conjugate points satisfying (H1) and (H2). Let R1, R2, δ be as given
above. This section is devoted to the proof of the following.

Theorem 4.4. There exist τ, τ ′ > 0 such that given (v1, t1), . . . , (vk, tk) ∈
T 1M × (0,∞) and T1, . . . , Tk ∈ R with Tj+1 − Tj ≥ tj + τ for all 1 ≤ j < k,

there are T̂j ∈ [Tj − τ ′, Tj ] and w ∈ T 1M such that for all 1 ≤ j ≤ k, we
have fT̂jw ∈ Btj (vj , δ).
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Remark 4.5. The conclusion of Theorem 4.4 is a mild strengthening of the
specification property from Definition 2.23. To deduce that property from
this one, observe that the property here remains true if τ, τ ′ are replaced
by max(τ, τ ′), and then choosing Tj+1 = Tj + tj + τ , the times T̂j satisfy

T̂j+1 − (T̂j + tj) ≤ Tj+1 − (Tj − τ + tj) ≤ 2τ .

Note that it suffices to prove Theorem 4.4 in the case when Tj+1 = Tj +
tj +τ ; to reduce the general case to this one, replace tj by Tj+1−Tj−τ ≥ tj
and observe that this does not weaken the condition on w.

Let F 0 = {f0
t } denote the geodesic flow in the background (negatively

curved) Riemannian metric. We identify T 1M for g0 with T 1M for g in
the natural way. To establish specification for F , we use the hyperbolicity
properties of F 0 as in [BCFT18, §4] together with the Morse Lemma.

Let W s and W u denote the strong stable and unstable foliations of T 1M
for the background flow F 0. (We follow the notation in [BCFT18] rather
than that used in §2, where this notation referred to the weak foliations;
in this section we will not use any of the foliations for the flow F .) Equip
the leaves of these foliations with the intrinsic metrics ds and du defined
by pulling back the metrics that the horospheres inherit from the Rie-
mannian metric. Let W cs denote the foliation whose leaves have the form
{f0
t (W s(v)) : t ∈ R}, and define dcs on each leaf of W cs locally by dcs(v, w) =
|t|+ ds(f0

t v, w), where t is such that f0
t v ∈W s(w). Given ρ > 0, let W u

ρ (v)
denote the du-ball in W u(v) of radius ρ centered at v, and similarly for W cs

ρ .
The foliations W cs and W u have the following local product structure

property: there are κ ≥ 1 and δ > 0 such that for every ε ∈ (0, δ] and all
w1, w2 ∈ B(v, ε), the intersection W u

κε(w1)∩W cs
κε (w2) contains a single point,

which we denote by [w1, w2], and this point satisfies

du(w1, [w1, w2]) ≤ κd1(w1, w2),

dcs(w2, [w1, w2]) ≤ κd1(w1, w2).

Proposition 4.6. For every ρ > 0, there exists T > 0 such that for every
v, w ∈ T 1M , we have f0

t (W u
ρ (v)) ∩W cs

ρ (w) 6= ∅ for every t ≥ T .

Proof. Since every leaf of W u is dense in T 1M , a simple compactness ar-
gument as in [CFT18, Lemma 8.1] gives R > 0 such that W u

R−ρ(f
0
t v) is

ρ/κ-dense in T 1M for every v ∈ T 1M and t ∈ R. By the local product
structure, we have W u

R(f0
t v) ∩ W cs

ρ (w) 6= ∅. Since leaves of W u are uni-

formly expanded by f0
t , there exists T > 0 such that f0

t (W u
ρ (v)) ⊃W u

R(f0
t v)

for every v ∈ T 1M and t ≥ T , which completes the proof. �

Since leaves of W u are uniformly expanded by f0
t , there is λ ∈ (0, 1) such

that whenever v, w lie in the same leaf of W u, we have

(4.2) du(f0
−tv, f

0
−tw) ≤ λdu(v, w) for all t ≥ 1.

Let ρ′ > 0 be sufficiently small that R1 > 3A(R0 + ρ′), and let

(4.3) ρ = ρ′(1− λ)/2.
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By Proposition 4.6, there exists T ≥ 1 such that ft(W
u
ρ (v)) intersects

W cs
ρ (w) whenever t ≥ T . We will prove Theorem 4.4 with τ = AT and

τ ′ = 2τ0, where τ0 = 2τ + 7AR0 + 4Aρ′.

Definition 4.7 (Correspondence between orbit segments). The following
procedure defines a map E : T 1M×(0,∞)→ T 1M×(0,∞) with the property
that if (v, t) represents an F -orbit segment, then E(v, t) represents an F 0-
orbit segment that shadows it to within the scale given by the Morse Lemma.

(1) Given (v, t) ∈ T 1M × (0,∞), the corresponding F -orbit segment
projects to the g-geodesic segment cv([0, t]).

(2) Let x, y ∈ M̃ be the endpoints of a lift of cv([0, t]) to M̃ .
(3) Let s = d0(x, y), and let α : [0, s] → M be a g0-geodesic that lifts to

a segment running from x to y.
(4) Let E(v, t) = (α̇(0), s).

v1
T1 s1t1

t̂1
v2
T2 s2t2

t̂2
v3
T3 s3t3

t̂3
v4
T4 s4t4

t̂4

w2
ŝ2

|∆2|

w3
ŝ3

|∆3|

w4
ŝ4

w′
1 = v′1

t′1

s′1T ′
1

v′2
t′2

T ′
2 s′2

w′
2

W uu
ρ W s

ρ
v′3

t′3

T ′
3 s′3

w′
3

W uu
ρ W s

ρW uu
ρ/2

v′4
t′4

T ′
4 s′4

w′
4

W uu
ρ W s

ρW uu
ρ/2W uu

ρ/4

τ

T

τ

T

τ

T

E E

E

E

E−1

Figure 4.1. Proving specification. Horizontal lines corre-
spond to orbit segments with length given by the number in
the middle of the line; labels above endpoints of lines repre-
sent time. The top half of the picture corresponds to F, g, d,
the bottom half to F 0, g0, d

0; the two halves are related by
specific applications of the map E and its inverse.

Fix (v1, t1), . . . , (vk, tk) ∈ T 1M × (0,∞) and T1, . . . , Tk, s1, . . . , sk ∈ R
with T1 = 0 and

sj = Tj + tj , Tj+1 = sj + τ.

We define sequences t̂i, v
′
i, t
′
i, w
′
i, s
′
i, T
′
i , ŝi,∆i recursively (see Figure 4.1).
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• Let t̂1 = t1, ŝ1 = s1, and ∆1 = T ′1 = 0.
• Let (w′1, s

′
1) = (v′1, t

′
1) = E(v1, t̂1).

Now fix j ≥ 2 and suppose all terms have been defined for 1 ≤ i < j.

• Let t̂j = tj + ∆j−1 and (v′j , t
′
j) = E(vj , t̂j).

• Let T ′j = s′j−1 + T and s′j = T ′j + t′j .
• Use Proposition 4.6 to get w′j such that

f0
T ′j

(w′j) ∈ f0
T (W u

ρ (f0
s′j−1

w′j−1)) ∩W cs
ρ (v′j).

• Put (wj , ŝj) = E−1(w′j , s
′
j) and ∆j = sj − ŝj .

Observe that dcs(f0
T ′j
w′j , v

′
j) ≤ ρ and for all 1 ≤ i < j ≤ k,

(4.4) du(f0
s′i
w′j , f

0
s′i
w′j−1) ≤ λj−1−iρ.

For each 1 ≤ i < k, summing (4.4) over j from i to k − 1 gives

(4.5) du(f0
s′i
w′k, f

0
s′i
w′i) ≤

k∑
j=i+1

λj−1−iρ < ρ(1− λ)−1.

Let αj : [0, s′j ] → M̃ be a g0-geodesic corresponding to (w′j , s
′
j). Then for

each i, there is a g0-geodesic βi : [0, t′i] → M̃ corresponding to (v′i, t
′
i) such

that for every 1 ≤ i ≤ j ≤ k and every 0 ≤ t ≤ t′i, we have

(4.6) d0(βi(t), αj(T
′
i + t)) ≤ dcs(f0

T ′i
w′i, v

′
i) + du(f0

s′i
w′k, f

0
s′i
w′i) < ρ′.

In particular, writing xi = βi(0), yi = βi(t
′
i) ∈ M̃ , we have

(4.7) d0(xi, αj(T
′
i )) < ρ′ and d0(yi, αj(s

′
i)) < ρ′ for every 1 ≤ i ≤ j ≤ k.

Let bi : [0, t̂i] → M̃ be the g-geodesic connecting xi and yi; note that bi
corresponds to the F -orbit segment (vi, t̂i). Let cj : R→ M̃ be the g-geodesic
with the property that

(4.8) cj(0) = αj(0) and cj(ŝj) = αj(s
′
j).

We prove Theorem 4.4 by showing that ċj(0) has the desired shadowing
properties.

First note that by the Morse Lemma, for each 1 ≤ i ≤ j ≤ k there are

T̃ ji , s̃
j
i ∈ R such that

(4.9) d(αj(T
′
i ), cj(T̃

j
i )) ≤ AR0 and d(αj(s

′
i), cj(s̃

j
i )) ≤ AR0.

We can take T̃ j0 = 0 and s̃jj = ŝj . Using (4.7) gives

(4.10) d(xi, cj(T̃
j
i )) ≤ A(R0 + ρ′) and d(yi, cj(s̃

j
i )) ≤ A(R0 + ρ′).

This, together with Lemma 2.4, will establish the necessary shadowing prop-

erties once we have proved the following lemmas relating s̃ji , ŝi, si and T̃ ji , Ti.

Lemma 4.8. For every 1 ≤ i ≤ j ≤ k, we have |s̃ji − ŝi| ≤ A(R0 + 2ρ′).
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Lemma 4.9. For every 1 ≤ i ≤ j ≤ k, we have

A−1T − 2AR0 ≤ T̃ ji − s̃
j
i−1 ≤ τ + 2AR0,(4.11)

|s̃ji − (T̃ ji + t̂i)| ≤ 2A(R0 + ρ′).(4.12)

Lemma 4.10. For every 1 ≤ i ≤ k, we have |s̃ki − si| ≤ τ + 5AR0 + 4Aρ′

and |T̃ ki − Ti| ≤ 2τ + 7AR0 + 4Aρ′.

In what follows, we will repeatedly use the following elementary conse-
quence of the triangle inequality.

Lemma 4.11. If (X, d) is a metric space, then for every w, x, y, z ∈ X we
have

|d(w, x)− d(y, z)| ≤ d(w, y) + d(x, z).

Proof. The triangle inequality gives d(w, x) ≤ d(w, y) + d(y, z) + d(z, x), so
d(w, x)− d(y, z) ≤ d(w, y) + d(z, x), and the other inequality is similar. �

Before proving Lemmas 4.8–4.10, we demonstrate how they complete the
proof of Theorem 4.4. Since s̃ki − T̃ ki = d(ck(T̃

k
i ), ck(s̃

k
i )) and ti = d(xi, yi),

we can apply Lemma 4.11 to these four points to deduce that

|(s̃ki − T̃ ki )− ti| ≤ d(ck(T̃
k
i ), xi) + d(ck(s̃

k
i ), yi) ≤ 2A(ρ0 + ρ′),

where the last inequality uses (4.10). Thus

d(ck(T̃
k
i + ti), yi) ≤ |s̃ki − (T̃ ki + ti)|+ d(ck(s̃

k
i ), yi) ≤ 3A(ρ0 + ρ′) < R1,

so Lemma 2.4 gives

(4.13) d(ck(T̃
k
i + t), bi(t)) < R2 for all 0 ≤ i ≤ k and 0 ≤ t ≤ ti,

where R2 = 4R0 +(6A2 +1)R1. Taking T̂i = T̃ ki gives the desired shadowing

property, with T̂i = [Ti−τ0, Ti+τ0] by Lemma 4.10, where τ0 = 2τ+7AR0 +
4Aρ′. Replacing Ti by Ti + τ0 gives the form of the property stated in the
theorem.

Now we prove Lemmas 4.8–4.10.

Proof of Lemma 4.8. Since s̃ji = d(cj(0), cj(s̃
j
i )) and ŝi = d(ci(0), ci(ŝi)), we

can apply Lemma 4.11 to these four points to get

|s̃ji − ŝi| ≤ d(cj(0), ci(0)) + d(ci(ŝi), cj(s̃
j
i ))

= d(αj(0), αi(0)) + d(αi(s
′
i), cj(s̃

j
i ))

≤ Aρ′ + d(αi(s
′
i), αj(s

′
i)) + d(αj(s

′
i), cj(s̃

j
i )) ≤ 2Aρ′ +AR0,

where the last inequality uses (4.5) to compare αi and αj , and (4.9) to
compare αj and cj . �
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Proof of Lemma 4.9. Since T̃ ji −s̃
j
i−1 = d(cj(s̃

j
i−1), cj(T̃

j
i )), we apply Lemma

4.11 to these two points and αj(s
′
i−1), αj(T

′
i ) to get

|T̃ ji − s̃
j
i−1 − d(αj(s

′
i−1), αj(T

′
i ))|

≤ d(cj(s̃
j
i−1), αj(s

′
i−1)) + d(cj(T̃

j
i ), αj(T

′
i )) ≤ 2AR0.

Since d0(αj(s
′
i−1), αj(T

′
i )) = T ′i−s′i−1 = T , (2.2) gives us the bounds A−1T ≤

d(αj(s
′
i−1), αj(T

′
i )) ≤ AT = τ , which proves (4.11). To prove (4.12), we

observe that s̃ji − T̃ ji = d(cj(T̃
j
i ), cj(s̃

j
i )) and d(xi, yi) = t̂i, so we apply

Lemma 4.11 to these four points, obtaining

|(s̃ji − T̃
j
i )− t̂i| ≤ d(cj(T̃

j
i ), xi) + d(cj(s̃

j
i ), yi),

and then (4.10) completes the proof. �

Proof of Lemma 4.10. Recall that ∆i = si− ŝi and t̂i = ti+∆i−1, so t̂i−ti =
∆i−1 = si−1 − ŝi−1. From Lemma 4.9 we have

|s̃ki − (s̃ki−1 + τ + t̂i)| ≤ |s̃ki − (T̃ ki + t̂i)|+ |T̃ ki − (s̃ki−1 + τ)| ≤ τ + 4AR0 + 2Aρ′.

Recalling that si = si−1 + τ + ti, we have

|s̃ki − si| ≤ |s̃ki − (s̃ki−1 + τ + t̂i)|+ |(s̃ki−1 + τ + t̂i)− (si−1 + τ + ti)|
≤ τ + 4AR0 + 2Aρ′ + |s̃ki−1 − si−1 + t̂i − ti|
= τ + 4AR0 + 2Aρ′ + |s̃ki−1 − si−1 + (si−1 − ŝi−1)|
≤ τ + 4AR0 + 2Aρ′ +A(R0 + 2ρ′),

where the last inequality uses Lemma 4.8. One further application of Lemma
4.9 gives

|T̃ ki − Ti| ≤ |T̃ ki − (s̃ki−1 + τ)|+ |(s̃ki−1 + τ)− (si−1 + τ)|
≤ τ + 2AR0 + (τ + 5AR0 + 4Aρ′),

which proves the lemma. �

4.3. Equidistribution of closed geodesics. To prove that the unique
MME µ is the limiting distribution of (homotopy classes of) closed geodesics,
we start by recalling the following standard fact, which can be proved by
following [Wal82, Theorem 9.10] or [Kni98, Proposition 6.4].

Proposition 4.12. Given J ⊂ (0,∞), suppose that for each T ∈ J there is
a set C(T ) of closed geodesics with length at most T such that

(4.14) lim
T→∞
T∈J

1

T
log card C(T ) = htop(f1) > 0,

and that there is ε > 0 such that each C(T ) is (T, ε)-separated for each
T ∈ J, meaning that any two distinct elements of C(T ) admit unit speed
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parametrizations c1, c2 such that d(c1(t), c2(t)) ≥ ε for some t ∈ [0, T ]. Then
the invariant probability measures νT defined by

(4.15)

∫
ϕdνT =

1

card C(T )

∑
c∈C(T )

∫ |c|
0

ϕ(c(t)) dt

have the property that every weak* accumulation point of {νT }T∈J is a mea-
sure of maximal entropy.

Since the MME µ is unique, we could prove that µ is the limiting distri-
bution of closed geodesics by applying Proposition 4.12 with C(T ) = P(T )
(recall §2.3) if we knew that

(1) limT→∞ 1
T logP (T ) = htop(f1), and

(2) there is ε > 0 such that P(T ) is (T, ε)-separated.

Unfortunately the second of these turns out to be false in general, so we
must do a little more work, but the failure is not dramatic. First we obtain
the growth rate estimate by recalling the following special version of a result
from [CK02] which was partially based on ideas in [Kni83].

Theorem 4.13. Let (M, g) be a closed Riemannian manifold (not necessar-
ily without conjugate points) admitting a metric of negative curvature. Let
P (T ) be the number of free homotopy classes containing a closed geodesic
of period less than T . Then there exist positive constants A,B and T0 such
that

(4.16) A
ehT

T
≤ P (T ) ≤ BehT

for all T ≥ T0, where h = limr→∞ 1
r log vol(B(p, r)) is exponential volume

growth (volume entropy) on the universal covering M̃ .

This result was formulated in [CK02] in the general context of Gromov

hyperbolic metric spaces and since M̃ is Gromov hyperbolic the result ap-
plies in our setting. As remarked in (2.3) in case of no conjugate points the
volume entropy coincides with the topological entropy of the geodesic flow,
and we conclude that (4.16) holds with h = htop(f1).

Now we turn our attention to the question of whether orbits in P(T ) are
(T, ε)-separated. In general, two closed geodesics of different lengths can
lie in different free homotopy classes but still shadow each other arbitrarily
closely: consider the center circle and boundary circle of a (flat) Möbius
strip. However, if the lengths are close enough, this cannot occur.

Lemma 4.14. Let ε > 0 be such that 2ε is smaller than the injectivity
radius of M , and let c1, c2 be closed geodesics with lengths in (T − ε, T ] for
some T > 0. If c1, c2 are not homotopic, then there is t ∈ [0, T ] such that
d(c1(t), c2(t)) ≥ ε.
Proof. Suppose that d(c1(t), c2(t)) < ε for all t ∈ [0, T ]. We prove that c1, c2

are homotopic. Let |ci| be the length of ci, and let β = |c2|/|c1|; observe
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that |β − 1| ≤ ε/|c1|. Then for each t ∈ [0, |c1|] we have

d(c1(t), c2(βt)) ≤ d(c1(t), c2(t)) + |(β − 1)t| < ε+
ε

|c1|
t ≤ 2ε.

This is smaller than the injectivity radius, so there is a continuous vector
field V on c1 such that expc1(t) V (c1(t)) = c2(βt) for all t ∈ [0, |c1|]. Then

the map H : [0, 1]× [0, |c1|]→M given by H(s, t) = expc1(t)(sV (c1(t))) is a
homotopy between c1 and c2. �

Motivated by Lemma 4.14, let P ∗(T ) denote the number of free homotopy
classes of closed geodesics with lengths in (T − ε, T ]. (Note that by Lemma
2.29, the length does not depend on the representative chosen.) A priori it
is possible that P ∗(T ) will be ‘too small’ for some values of T ,

J := {T > 0 : P ∗(T ) ≥ T−3ehT }.

Now given T > 0, write Tn := T − nε and N = bT/εc, and observe that

P (T ) =
∑N

n=0 P
∗(Tn). We split the sum into three parts: writing

IT := {n : Tn ∈ J ∩ (T/2,∞)} and I′T := {n : Tn ∈ (T/2,∞) \ J},

we have

(4.17) P (T ) = P (T/2) +
∑
n∈IT

P ∗(Tn) +
∑
n∈I′T

P ∗(Tn).

From (4.16) we see that

P (T ) ≥ A

T
ehT and P (T/2) ≤ BehT/2,

and thus

(4.18)
P (T/2)

P (T )
≤ BehT/2

A
T e

hT
=
TB

A
e−hT/2 → 0 as T →∞.

The definition of J gives∑
n∈I′T

P ∗(Tn) <
∑
n∈I′T

T−3
n ehTn ≤ T

2ε

(T
2

)−3
ehT =

4

εT 2
ehT ,

and thus

(4.19)

∑
n∈I′T P

∗(Tn)

P (T )
≤ 4

εT 2
ehT

T

A
e−hT =

4

εAT
→ 0 as T →∞.

Now given a set P(T ) of pairwise non-homotopic closed geodesics with
lengths at most T , let µT be the corresponding periodic orbit measures
defined in (2.13), and let νT be the periodic orbit measures associated to
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P∗(T ) := {c ∈ P : |c| ∈ (T − ε, T ]}. Observe that

(4.20)

µT =
1

P (T )

N∑
n=0

P ∗(Tn)νTn

=
P (T/2)

P (T )
µT/2 +

∑
n∈IT P

∗(Tn)νTn
P (T )

+

∑
n∈I′T P

∗(Tn)νTn

P (T )
.

As T →∞, the total weight of the first expression goes to 0 by (4.18), and
the total weight of the third expression goes to 0 by (4.19). It follows that the
limit points of {µT } as T →∞ are the same as the limit points of {νT }T∈J.
By Proposition 4.12 and Lemma 4.14, every such limit point is a measure
of maximal entropy. Because the measure of maximal entropy is unique, we
conclude that µT → µ, which completes the proof of the equidistribution
property (Definition 2.27) claimed in Theorem 1.2.

5. Patterson–Sullivan measure and the MME

In this section we assume that M is a closed Riemannian manifold without
conjugate points having the divergence property of geodesic rays and admit-
ting a metric of negative sectional curvature, i.e., we are only assuming that
conditions (H1) and (H2) in Definition 3.1 are satisfied. We will show that
under this assumption the Patterson–Sullivan measure can be used to define
a measure of maximal entropy which is fully supported on T 1M . If we add
the conditions (H3) and (H4) from Definition 3.1 we obtain uniqueness as
was shown in §4.

5.1. Poincaré series and the Patterson–Sullivan measure. If Γ de-
notes the group of deck transformations, for p, q ∈ M̃ and s ∈ R, we consider
the Poincaré series

P (s, p, q) =
∑
γ∈Γ

e−sd(p,γq).

Since M̃ is Gromov hyperbolic it follows from [Coo93] that the series con-
verges for s > h and diverges for s ≤ h, where h is the topological entropy.

For x ∈ M̃ the set Λ(Γ) of accumulation points of the orbit Γx in M̃ is called

the limit set. Since M̃ is cocompact we have Λ(Γ) = ∂M̃ . Fix x ∈ M̃ , s > h

and consider for each p ∈ M̃ the measure

(5.1) νp,x,s =
1

P (s, x, x)

∑
γ∈Γ

e−sd(p,γx)δγx

where δy is the Dirac mass associated to y ∈ M̃ . Using the fact that

e−sd(p,x)e−sd(x,γx) ≤ e−sd(p,γx) ≤ esd(p,x)e−sd(x,γx) for every x, p ∈ M̃ and
γ ∈ Γ, we see that

(5.2) e−sd(p,x) ≤ νp,x,s(cl(M̃)) ≤ esd(p,x);
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in particular, the νp,x,s are all finite. Moreover, we clearly have

(5.3) Γx ⊂ supp νp,x,s ⊂ Γx.

Now choose for a fixed p ∈ M̃ and a weak limit lim
k→∞

νp,x,sk =: νp.

The divergence of the series P (s, x, x) for s = h and the discreteness of
Γ yields that the support of νp is contained in the limit set. Moreover, one
obtains:

Proposition 5.1. There is a sequence sk → h as k →∞ such that for every

p ∈ M̃ the weak* limit lim
k→∞

νp,x,sk =: νp exists. The family of measures

{νp}p∈M̃ has the following properties.

(a) {νp}p∈M̃ is Γ-equivariant: for all Borel sets A ⊂ ∂M̃ , we have

νγp(γA) = νp(A).

(b)
dνq
dνp

(ξ) = e−hbp(q,ξ) for almost all ξ ∈ ∂M̃ , where bp(q, ξ) is as in

Definition 2.16.

(c) supp νp = ∂M̃ for all p ∈ M̃ .

Proof. Fix p ∈ M̃ . Let sk → h be such that the weak* limit limk→∞ νp,x,sk =:

νp exists. To see that sk works for all q, define a function ψ : cl(M̃)→ R by

ψ(z) =

{
d(q, z)− d(p, z) if z ∈ M̃,

bp(q, z) if z ∈ ∂M̃,

and observe that (5.1) gives
dνq,x,s
dνp,x,s

= e−sψ for all q and s. The function ψ

is continuous by (2.8), so using the fact that e−skψ → e−hψ uniformly, we

deduce that for any continuous φ : cl(M̃)→ R we have

lim
k→∞

∫
φdνq,x,sk = lim

k→∞

∫
φe−skψ dνp,x,sk =

∫
φe−hψ dνp.

This proves that νq := limk νq,x,sk exists for all q ∈ M̃ , and that (b) holds.
For (a), it suffices to observe that (5.1) gives

νγp,x,s(γA) =
1

P (s, x, x)

∑
α∈Γ

e−sd(γp,αx)δαx(γA),

and that upon re-indexing by β = γ−1α, the sum is equal to∑
β∈Γ

e−sd(γp,γβx)δγβx(γA) =
∑
β∈Γ

e−sd(p,βx)δβx(A),

so that νγp,x,s(γA) = νp,x,s(A). Taking a limit as sk → h gives (a).

Finally, for (c), we use the fact that Γ acts minimally on ∂M̃ (see Remark
2.15). Suppose ξ /∈ supp νp then γξ /∈ supp νp for all γ ∈ Γ, since given an

open neighborhood U ⊂ M̃ of ξ with νp(U) = 0 we have 0 = νγp(γ(U)) =
νp(γ(U)) by (a) and (b). Since the orbit Γξ is a dense and the supp νp
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is closed we obtain supp νp = ∅ which contradicts the non-triviality of the
Patterson-Sullivan measure. �

Remark 5.2. Since |bp(q, ξ)| ≤ d(p, q) for all p, q, ξ property (b) implies that

for every p, q ∈ M̃ and any measurable subsets A ⊂ ∂M̃ that
νp(A)
νq(A) ≤ ehd(p,q).

For ξ ∈ ∂M̃ and p ∈ M̃ consider the projections

prξ : M̃ → ∂M̃ and prp : M̃ \ {p} → ∂M̃

along geodesics emanating from ξ and p, respectively. That is, prξ(x) =
cξ,x(∞), where cξ,x is the geodesic with cξ,x(−∞) = ξ, cξ,x(0) = x and
prp(x) = cp,x(∞), where cp,x is the geodesic with cp,x(0) = p, cp,x(d(p, x)) =
x.

Lemma 5.3. There exists R > 0 such that for all x ∈ cl(M̃) and p ∈ M̃ ,
the shadow set prxB(p,R) of the open geodesic ball B(p,R) with center p

and radius R contains an open set in ∂M̃ .

Proof. For x ∈ cl (M̃) and p ∈ M̃ , let v = −V (p, x) be given by Proposition

2.17. By the definition of the topology on ∂M̃ , for every v ∈ T 1
p M̃ and

ε > 0 we have Aε(v) := {cw(∞) : ∠p(v, w) < ε} is open in ∂M̃ . For every
η ∈ Aε(v) there exists a unique geodesic c0

ξ,η with respect to the metric of

negative curvature joining ξ := cv(−∞) and η; every such geodesic stays
at a bounded distance to p and this distance can be made arbitrary small
by choosing ε arbitrary small. By the Morse Lemma, every geodesic c0

ξ,η

corresponds to at least one geodesic cξ,η which stay at R0 distance (see
Theorem 2.3). By choosing ε small enough and R large, we can guarantee
d(p, cξ,η) < R which implies that Aε(v) ⊂ prxB(p,R). �

Using Lemma 5.3 we obtain:

Proposition 5.4. Let {νp}p∈M̃ be the Patterson–Sullivan measures and fix

ρ ≥ R, where R is as in Lemma 5.3.

(a) There exists ` = `(ρ) > 0 such that for every x ∈ cl(M̃), we have

νp(prxB(p, ρ)) ≥ `.

(b) There is a constant b = b(ρ) such that for all x ∈ M̃ and ξ =
cp,x(−∞),

1

b
e−hd(p,x) ≤ νp(prξ(B(x, ρ)) ≤ be−hd(p,x).

(c) A similar estimate holds if we project from p ∈ M̃ , namely there is

a constant a = a(ρ) > 0 such that for all p ∈ M̃ ,

1

a
e−hd(p,x) ≤ νp(prp(B(x, ρ))) ≤ ae−hd(p,x).
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Proof. The last two estimates follow from (a) and the defining properties of

νp. To see this, observe that given A ⊂ ∂M̃ , Proposition 5.1(b) gives

νp(A) =

∫
A

e−hbx(p,η)dνx(η).

If A = prξB(x, ρ) or prpB(x, ρ) then corollary 2.18 implies that |(bx(p, η)−
d(p, x))| is bounded by a constant for all η ∈ A, which yields (b) and (c).

The first estimate is a consequence of the following steps.

Step 1: supp νp = ∂M̃ for one and, hence, for all p ∈ M̃ using Proposi-
tion 5.1(c).

For v ∈ T 1
xM̃ = π−1(x) and ε > 0, let Aε(v) = {cw(∞) : w ∈ T 1

xM̃ and

∠(v, w) < ε} ⊂ ∂M̃ as in the proof of Lemma 5.3. Fix a compact set K ⊂ M̃
such that

⋃
γ∈Γ γ(K) = M̃ and a reference point x0 ∈ K. Then it follows:

Step 2: For all ρ ≥ R there exists ε > 0 such that for all p ∈ K and

x ∈ cl(M̃)
Aε(v) ⊂ prx(B(p, ρ))

for some v ∈ T 1
x0M̃ .

Suppose Step 2 is false. Then there exists ρ ≥ R and sequences pn ∈ K,

xn ∈ cl(M̃) such that

A1/n(v) 6⊆ prxn(B(pn, ρ))

for all v ∈ T 1
x0M̃ . We can assume after choosing a subsequence that xn →

ξ ∈ cl(M̃) and pn → p ∈ K. Since prξ(B(p, ρ)) contains some open set

in ∂M̃ there exists ε > 0 and v0 ∈ T 1
x0M̃ such that Aε(v0) ⊂ prξ(B(p, ρ)).

The continuity of the projection implies the existence of n0 such that for
all n ≥ n0 we have: CAε/2(v0) ⊂ prxn(B(pn, ρ)). But this contradicts the
choice of the sequence. Then Step 2 is true.
Step 3: For all ε > 0 there exists a constant ` = `(ε) > 0 such that

νp(Aε(v)) > `

for all v ∈ T 1
x0M̃ and p ∈ K. This is a consequence of the following facts:

each νp is fully supported (Step 1); sup{bp(q, ξ) : ξ ∈ ∂M̃, p, q ∈ K} < ∞
by compactness and continuity; and there is a finite collection of open sets

in ∂M̃ such that each Aε(v) contains an element of this collection.

Now consider x ∈ cl(M̃) and p ∈ M̃ . Choose γ ∈ Γ such that γp ∈
K. Since νp(prx(B(p, ρ)) = νγp(prγxB(γp, ρ)) the estimate (a) follows from
Steps 2 and 3. �

5.2. Construction of the measure of maximal entropy using the
Patterson-Sullivan measure. Now we construct an invariant measure
for the geodesic flow using the Patterson-Sullivan measures νp. Broadly
speaking, we follow the approach in [Kni98], which was originally carried
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out in negative curvature in [Kai90]; however, as we will see below, the
present setting introduces some technical difficulties that require some work
to overcome.

By Proposition 5.1(b), νp is Γ-quasi-invariant with Radon-Nikodym co-
cycle

(5.4) f(γ, ξ) = e−hbp(γ−1p,ξ) =
dνγ−1p

dνp
(ξ).

For (ξ, η) ∈ ∂2M̃ := (∂M̃ × ∂M̃) \ diag consider

(5.5) βp(ξ, η) = −(bp(q, ξ) + bp(q, η)) ,

where q is a point on a geodesic c connecting ξ and η. In geometrical terms
βp(ξ, η) is the length of the segment c which is cut out by the horoballs
through (p, ξ) and (p, η). Since gradq bp(q, ξ) = − gradq bp(q, η) for all points
on geodesics connecting ξ and η, this number is independent of the choice
of q. An easy computation using (5.4), see [Kni98, Lemma 2.4], shows:

Lemma 5.5. For p ∈ M̃ , the measure µ̄ on ∂2M̃ defined by

dµ̄(ξ, η) = ehβp(ξ,η)dνp(ξ)dνp(η)

is Γ-invariant.

Now we use µ̄ to produce a Γ-invariant and flow-invariant Borel measure µ̃

on T 1M̃ that projects to a finite flow-invariant Borel measure µ on T 1M . We

will need the projection P : T 1M̃ → ∂2M̃ given by P (v) = (cv(−∞), cv(∞)),
where cv is the geodesic with ċv(0) = v.

In negative curvature, we can proceed as in [Kai90]: P−1(ξ, η) is a single
trajectory – the set of tangent vectors to a single geodesic – and so writing
λξ,η for Lebesgue measure on P−1(ξ, η), one obtains a Γ-invariant and flow-

invariant measure on T 1M̃ by

(5.6) µ̃(A) =

∫
∂2M̃

λξ,η(A) dµ̄(ξ, η).

One can follow the same approach in nonpositive curvature, where P−1(ξ, η)

is either a single geodesic or a flat totally geodesic submanifold of M̃ on
which the flow acts isometrically [Kni98]. In our setting, however, the flow
need not act isometrically on P−1(ξ, η) (the flat strip theorem fails), and
on such sets it is not clear how to define a flow-invariant measure in a
measurable and Γ-invariant way. Nevertheless, we can prove the following.

Theorem 5.6. Let M be a smooth closed Riemannian manifold without
conjugate points satisfying conditions (H1)–(H4). Then P−1(ξ, η) is a sin-

gle geodesic for µ̄-a.e. (ξ, η) ∈ ∂2M̃ , and thus (5.6) defines a σ-finite Borel

measure µ̃ on T 1M̃ . This measure is fully supported, gives full weight to the
expansive set E from (2.11), and is the lift of the unique MME µ on T 1M
as in (2.1). In particular, µ is ergodic fully supported on T 1M .
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The rest of this section is devoted to proving Theorem 5.6. Although we
will ultimately conclude that P−1(ξ, η) is a single trajectory µ̄-a.e., this will
not come until the end of the proof: first we must construct an MME µ using
µ̄ without knowing this fact, and then use (H4) to deduce that the measure
µ̃ given by (2.1) gives full weight to E , at which point the construction of µ
will finally allow us to deduce the desired result for µ̄.

Remark 5.7. As we will see in the proof, Theorem 5.6 remains true if we
replace (H3) and (H4) with the assumption that there is a unique MME
µ and that the lift µ̃ defined by (2.1) satisfies µ̃(Ec) = 0. The construction
below produces an MME even if we only assume that M is a manifold
without conjugate points satisfying (H1) and (H2). The extra assumptions
are not used until we deduce the expansivity-related properties of this MME,
including (5.6) and full support.

To prove Theorem 5.6, most of the work goes into producing an MME on

T 1M using µ̄. First define an equivalence relation on T 1M̃ by writing

(5.7) v ∼ w iff Hs(v) = Hs(w) and Hu(v) = Hu(w).

Write [v] for the equivalence class of v, which projects injectively under π
to the compact set Hs(v) ∩Hu(v).

Lemma 5.8. If v, w ∈ T 1M̃ are such that v ∼ w and pr∗ v = pr∗w, then
v = w.

Proof. Given v, w as in the hypothesis, it follows that γ∗v = w for some
γ ∈ Γ. Suppose that v 6= w; then γ is not the identity, so by [Kli71, §1.4],

γ fixes exactly two points on ∂M̃ , which are the endpoints of an axis c. In

other words, there exist a geodesic c : R→ M̃ and a real number a 6= 0 such
that γc(t) = c(t + a) for all t ∈ R, and such that c(±∞) are the only two

fixed points of γ in ∂M̃ .
Now observe that v ∼ w gives P (v) = P (w) = P (γ∗v) = γP (v), so

P (v) = P (w) = c(±∞) since γ has no other fixed points. Without loss of
generality assume that c(∞) = cv(∞) = cw(∞) and that c(0) ∈ Hs(v), so
that Hs(w) = Hs(v) = Hs(ċ(0)). Then we have

Hs(ċ(0)) = Hs(w) = Hs(γ∗v) = γHs(v)

= γHs(ċ(0)) = Hs(γ∗ċ(0)) = Hs(ċ(a)),

implying that a = 0, so γ is the identity. This contradicts our assumption
that v 6= w, and proves the lemma. �

This equivalence relation projects to T 1M : we write v ∼ w if v, w have

lifts that satisfy (5.7). Let Q̃ : T 1M̃ → T 1M̃/∼ and Q : T 1M → T 1M/∼ be
the quotient maps. These are continuous when we equip the quotient spaces
with the metric d([v], [w]) = min{d(v′, w′) : v′ ∈ [v], w′ ∈ [w]}. The flow
F takes equivalence classes to equivalence classes, ft[v] = [ftv], and thus it
descends to a continuous flow on the quotient spaces.
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Since by the Morse Lemma (Theorem 2.3) equivalence classes are com-
pact, the measurable selection theorem of Kuratowski and Ryll-Nardzewski
[Sri98, §5.2] guarantees existence of a Borel measurable map V : T 1M/∼ →
T 1M such that Q ◦ V is the identity. Then Lemma 5.8 guarantees that for

every v ∈ T 1M̃ , pr−1
∗ (V (pr∗[v])) intersects [v] in a single point, which we

denote Ṽ ([v]). We conclude that Ṽ : T 1M̃/∼ → T 1M̃ is a measurable map

such that Q̃ ◦ Ṽ is the identity, and moreover

(5.8) Ṽ (γ∗[v]) = γ∗Ṽ ([v]).

Now define a measure νξ,η on each P−1(ξ, η) by fixing any v ∈ P−1(ξ, η) and

putting for a Borel measurable set A ⊂ T 1M̃

(5.9) νξ,η(A) = Leb{t ∈ R : Ṽ ([ftv]) ∈ A}.
Note that this is independent of the choice of v. Use this to define a measure

ν̃ on T 1M̃ by

ν̃(A) =

∫
∂2M̃

νξ,η(A) dµ̄(ξ, η).

Observe that ν̃ is Γ-invariant by (5.8), and as in [Kai90, Kni98] it descends
to a finite Borel measure ν on T 1M . Without loss of generality we scale the
metric so that ν(T 1M) = 1.

The measure ν is not necessarily flow-invariant. However, the measure
m = Q∗ν is a flow-invariant measure on T 1M/∼ because Q∗νξ,η is flow-
invariant on each P−1(ξ, η)/∼. Now the set Q−1

∗ (m) of Borel probabil-
ity measures is weak* compact and closed under (ft)∗ for all t ∈ R, so
the usual argument from the Krylov–Bogolyubov theorem for producing
an invariant probability measure (take a weak* limit point of the family

νT = 1
T

∫ T
0 (ft)∗ν dt as T → ∞) shows that there is a flow-invariant Borel

probability measure µ on T 1M with Q∗µ = m. This lifts to a Γ-invariant

and flow-invariant Borel measure µ̃ on T 1M̃ by (2.1).
We claim that µ is a measure of maximal entropy. For this we will need

some estimates on ν̃ that carry through to µ̃. More specifically: it follows
from (5.9) that νξ,η(A) ≤ diamA for all A, and thus

(5.10) ν̃(A) ≤ µ̄(P (A)) diamA.

The same bound holds for each (ft)∗ν̃, and since µ̃ is a limit of convex
combinations of such measures, we obtain the same bound for µ̃:

(5.11) µ̃(A) ≤ µ̄(P (A)) diamA.

To show that µ is a measure of maximal entropy, we consider a measurable
partition A = {A1, . . . , Am} of T 1M such that the diameters of all elements
in A are less than ε with respect to the metric d1 defined at the beginning
of §2.1.1.
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Lemma 5.9. Let 0 < ε < min{R, inj(M)}, where inj(M) is the injectivity
radius of M . Then there is a constant a > 0 such that

µ(α) ≤ e−hna

for all n ∈ N and α ∈ A(n)
f .

Proof. With ε fixed as in the hypothesis, let R2 > 0 be the constant given
by Lemma 2.4 with R1 = ε, and let r0 := diamM . We will determine the
constant a in terms of ε, R2, and r0.

Fix v ∈ α and observe that α ⊂ ⋂n−1
k=0 f−kBd1(fkv, ε), so for every w ∈ α

and t ∈ [0, n] we have d(cv(t), cw(t)) ≤ ε. Let p ∈ M̃ be the reference point

used in the definition of the measure µ̃ and ṽ ∈ T 1M̃ be a lift of v such that
d(πṽ, p) ≤ diamM = r0. Since ε < inj(M) we can lift the set α to a set

α̃ ∈ T 1M̃ such that for all w̃ ∈ α̃ we have d(cw̃(t), cṽ(t)) ≤ ε for all t ∈ [0, n].
Let cṽ(n) = x and ξ = cw̃(−∞). Let cξ,x be the geodesic connecting ξ

and x such that cξ,x(n) = x. The construction of this geodesic in the proof
of Lemma 2.13 yields the estimate d(cξ,x(t), cw̃(t)) ≤ R2 for all t ∈ (−∞, n].
Applying this with t = 0 we get

d(cξ,x(0), p) ≤ d(cξ,x(0), π(w̃)) + d(π(w̃), p) ≤ ε+ r0 +R2 =: r1

i.e., ξ ∈ prx(B(p, r1)). Therefore, if P : T 1M̃ → ∂2M̃ denotes the endpoint
projection as in the paragraph following Lemma 5.5, we have

(5.12) P (α̃) ⊂
⋃

η∈prx(B(p,r1))

{η} × prη(B(x, ε)).

For each η ∈ prx(B(p, r1)) choose a point q ∈ B(p, r1) that lies on the
geodesic cη,x. Then, using the transformation rule for the Patterson–Sullivan
measure, Proposition 5.4(b) and the estimate

d(q, x) ≥ d(x, πṽ)− d(πṽ, p)− d(p, q) ≥ n− r0 − r1,

we obtain

νp(prη(B(x, ε))) ≤ ehd(p,q)νq(prη(B(x, ε))) ≤ ehr1b e−hd(q,x) ≤ b̃e−hn

for a constant b̃ = beh(r0+2r1) > 0, where the first inequality follows from
Remark 5.2. Recalling the definition of µ̄ in Lemma 5.5, we see that

(5.13) µ̄(P (α̃)) ≤
(

sup
(ξ,η)∈P (α)

ehβp(ξ,η)

)
b̃e−hnνp(∂M̃).

The supremum is at most sup{ehβp(ξ,η) : the geodesic joining ξ and η inter-
sects B(p, r1)}, which is finite. Thus combining (5.11) and (5.13) proves the
lemma. �

Nowe we can complete the proof of Theorem 5.6. First we show that µ
is an MME. Choose a partition A as above, and use Lemma 5.9 to deduce
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that

H(A(n)
f1

) =
∑

α∈A(n)
f1

µ(α) (− logµ(α)) ≥ (hn− log a)
∑

α∈A(n)
f1

µ(α) = hn− log a.

Hence, h ≤ h(f1,A) ≤ hµ(f1) ≤ h, which proves the claim. Because we
showed in §4 that (H1)–(H4) imply uniqueness of the MME, we conclude
that µ is the unique MME, and in particular is ergodic.

Now we show that P−1(ξ, η) is a single trajectory µ̄-a.e. Indeed, if µ̄ gives
positive weight to the set of pairs (ξ, η) for which P−1(ξ, η) contains more
than one trajectory, then we would have µ̃(Ec) > 0, contradicting (H4).
Thus µ̄-a.e. (ξ, η) has the property that P−1(ξ, η) is a single trajectory, and
thus (5.6) immediately gives an invariant measure, without the need for the
later averaging procedures; this measure must be µ̃.

Using (5.6) we can deduce that µ is fully supported. Indeed, if U ⊂ T 1M̃

is open then P (U) ⊂ ∂2M̃ is open as well by the definition of the topology

on ∂M̃ . Thus µ̄(P (U)) > 0, and (5.6) immediately gives µ̃(U) > 0, which
proves Theorem 5.6.

Remark 5.10. As discussed in Remark 5.7, we could replace (H3) and (H4)
with the assumption that the MME is unique and has a lift giving full weight
to E . We conjecture that uniqueness immediately implies this expansivity

hypothesis. Indeed, if we select for each (ξ, η) ∈ ∂2M̃ a single trajectory

V (ξ, η) ⊂ T 1M̃ corresponding to one of the geodesics connecting ξ and η,
and then take λξ,η to be Lebesgue measure along this geodesic, we might
expect to immediately obtain an MME (or rather its lift) by (5.6), and
then observe that making two different choices V1 and V2 would give two
distinct MMEs unless P−1(ξ, η) is a single trajectory µ̄-a.e. However, it is
not clear how to define V in a way that is simultaneously measurable and
Γ-equivariant, and so for the time being this remains a conjecture.

6. On mixing of the measure of maximal entropy

In this section we follow the ideas of [Bab02, Theorem 2] to prove that
the MME constructed in the previous section is mixing.

Theorem 6.1. Let M be a smooth closed Riemannian manifold without
conjugate points satisfying conditions (H1)–(H4). Then F is mixing with
respect to the unique MME µ.

Remark 6.2. As in Remark 5.7, we could replace (H3)–(H4) with the as-
sumption that the MME is unique and that its lift gives full weight to E .

As in [Bab02, Theorem 2], the proof of Theorem 6.1 is based on three key
properties of the flow that are derived from the assumptions of Theorem 1.2:

• the product structure properties of the measure of maximal entropy
that is given by the Patterson–Sullivan construction in §5;
• the continuity of the cross-ratio function which is discussed in §6.1;
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• Lemma 6.8 below gives enough hyperbolicity µ-a.e. to run a version
of the Hopf argument, which uses the fact that µ is ergodic together
with the previous ingredients to establish mixing.

6.1. The cross-ratio function. Most of the definitions and properties be-
low are given in [Dal99] which are inspired by similar concepts in [Ota92].
However, since in [Dal99], the case of negative curvature is considered, for
completeness, we include all the proofs.

Given two distinct points ξ, ξ′ ∈ ∂M̃ , (ξ, ξ′) denotes a geodesic, which

is not necessary unique, joining ξ and ξ′. Given p ∈ M̃ and ξ ∈ ∂M̃ ,
Hp(ξ) denotes the horosphere centered at ξ containing p. Observe that

Hp(ξ) = {q ∈ M̃ : bp(q, ξ) = 0} = Hs(v), where v is the unique unit tangent
vector at p such that cv(∞) = ξ (see Lemma 2.14 and Definition 2.16).

When M is a manifold of hyperbolic type (Definition 2.11), Pesin proved
continuity of the map ξ 7→ Hp(ξ) by first observing that [Ebe72, Lemma

1.6] establishes the following axiom of asymptoticity for M̃ : suppose that

xn, x ∈ M̃ , vn, v ∈ T 1M̃ , and tn → ∞ are such that xn → x, vn → v, and
let cn be the unique geodesic from xn to cvn(tn); then for any limit point

w ∈ T 1
xM̃ of the sequence ċn(0) ∈ T 1

xnM̃ , we have cv(∞) = cw(∞) [Pes77,
Definition 5.1 and Proposition 5.4]. He then used the axiom of asymptoticity
to prove the following continuity result [Pes77, Lemma 6.2]; see also [Rug07,
Lemma 4.11].

Proposition 6.3. Let (M, g) be a compact Riemannian manifold without

conjugate points. If M is of hyperbolic type then for every p ∈ M̃ , the

map ξ → Hp(ξ) is continuous where {Hp(ξ), ξ ∈ ∂M̃} is equipped with the

compact open topology: in other words, if ξn → ξ ∈ ∂M̃ and K ⊂ M̃ is
compact, then Hp(ξn) ∩K → Hp(ξ) ∩K uniformly.

Lemma 6.4 (Definition). For p ∈ M̃, the length of the segment in (ξ, ξ′)
with end points in Hp(ξ) ∩ (ξ, ξ′) and Hp(ξ

′) ∩ (ξ, ξ′) does not depend on
the choice of the geodesic (ξ, ξ′). In particular the Gromov product (ξ|ξ′)p is
well defined as the length of that segment, see Figure 6.1.

Proof. Let v, w ∈ T 1M̃ associated to two different geodesics joining ξ and

ξ′ as in Figure 6.1. Then the proof follows since the flow on M̃ tangent to
grad bv takes horospheres to horospheres. �

Remark 6.5. Observe that (ξ|ξ′)p = βp(ξ, ξ
′), recall (5.5).

Fixing a reference point p ∈ M̃ , the cross-ratio of four points ξ, ξ′, η, η′ ∈
∂M̃ , with ξ, ξ′ distinct from η, η′, is defined by

[ξ, ξ′, η, η′] :=
(
(ξ|η′)p + (ξ′|η)p

)
−
(
(ξ|η)p + (ξ′|η′)p

)
.

We remark that from the continuity of the map ξ → Hp(ξ) (Proposition
6.3), the cross-ratio function is continuous on

(∂M̃)(4) := {(ξ, ξ′, η, η′) ∈ (∂M̃)4 : {ξ, ξ′} ∩ {η, η′} = ∅}.
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(ξ|ξ′)p

(ξ|ξ′)p

ξ

ξ′v

w

p

Hp(ξ
′)

Hp(ξ)

M̃ ∪ ∂M̃

Figure 6.1. Gromov product.

Moreover as in [Bou96], we observe that for q ∈ M̃ ,

(6.1) (ξ|ξ′)p − (ξ|ξ′)q = bp(q, ξ) + bp(q, ξ
′)

This implies that the cross ratio does not depend on the reference point

p. Using Corollary 2.19 and the fact that Γ acts on M̃ by isometries, we
have:

bp(q, ξ) = bp(p
′, ξ) + bp′(q, ξ) ∀p, p′, q ∈ M̃ and ∀ξ ∈ ∂M̃,(6.2)

bγ(p)(γ(q), γ(ξ)) = bp(q, ξ) ∀p, q ∈ M̃, ∀γ ∈ Γ and ∀ξ ∈ ∂M̃.(6.3)

Given (ξ, ξ′, η, η′) ∈ (∂M̃)(4), we fix v ∈ (ξ, η). Let v1 := (ξ′, η) ∩Hs(v),
v2 := (ξ′, η′)∩Hu(v1), v3 := (ξ, η′)∩Hs(v2), v4 := (ξ, η)∩Hu(v3). We have
the following

Lemma 6.6. v4 = f[ξ,ξ′,η,η′](v).

Lemma 6.6 is due to Otal [Ota92] in the case of negative curvature and
it shows the analogy between the cross-ratio function and the temporal
function in [Liv04, Figure 2].

Proof. Let (ξ, ξ′, η, η′) ∈ (∂M̃)(4) and p ∈ M̃ . It suffices to consider the case
when bv(p) = 0, so that q := π(v) ∈ Hp(η). We refer to Figure 6.2 where the
dotted horospheres Hp(ξ), Hp(ξ

′), Hp(η), Hp(η
′) all pass through p ∈ Hq(η)

and cut out geodesic segments whose lengths are the four Gromov products
involved in the definition of the cross-ratio [ξ, ξ′, η, η′]. Writing qi for the
foot point of vi, the figure also illustrates the fact that, from the definitions
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ξ′

ξ

η

η′

v

v1
v2

v3

v4

p

q

q1q2

q3

q4

(ξ′|η′)p

(ξ′|η)p

(ξ|η)p

(ξ|η′)p

p′

Figure 6.2. Proof of Lemma 6.6.

of the vectors vi, we have

q1 ∈ Hq(η), q2 ∈ Hq1(ξ′), q3 ∈ Hq2(η′), q4 ∈ Hq3(ξ),

which in terms of Busemann functions can be written as

bp(q, η) = bp(q1, η), bp(q1, ξ
′) = bp(q2, ξ

′),

bp(q2, η
′) = bp(q3, η

′), bp(q3, ξ) = bp(q4, ξ).

Using these in the definition of the cross-ratio gives

[ξ, ξ′, η, η′] : = (ξ|η′)p + (ξ′|η)p − (ξ|η)p − (ξ′|η′)p
= −bp(q3, ξ)− bp(q3, η

′)− bp(q1, ξ
′)− bp(q1, η)

+ bp(q4, ξ) + bp(q4, η) + bp(q2, ξ
′) + bp(q2, η

′)

= bp(q4, η)− bp(q, η).

Recalling (6.2), this last quantity is equal to bq(q4, η), and since both q, q4

lie on the geodesic connecting ξ and η, we conclude that v4 = fbq(q4,η)(v) =
f[ξ,ξ′,η,η′](v), which finishes the proof. �
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6.2. Asymptotic convergence. The aim of this section is to prove some
hyperbolic estimate for almost every point with respect to the MME.

Given v ∈ T 1M , let ṽ be a lift of v to T 1M̃ , and let

(6.4) W ss(ṽ) = W s(ṽ) ∩ π−1Hs(ṽ) ⊂ T 1M̃.

Given R > 0 and ṽ ∈ T 1M , let

W ss
R (ṽ) = {w̃ ∈ π−1Hs(ṽ) : d(ftw̃, ftṽ) ≤ R for all t ≥ 0}.

Observe that W ss(ṽ) =
⋃
R>0W

ss
R (ṽ). Define W uu(ṽ) and W uu

R (ṽ) similarly.
Recall from (2.11) that

pr∗ E = {v ∈ T 1M : W ss(ṽ) ∩W uu(ṽ) = {ṽ}}.
Fix R > 0 and consider for each v ∈ T 1M and t > 0 the following value:

ϕt(v) = sup{d(w̃, ṽ) : f−tw̃ ∈W ss
R (f−tṽ)}

Lemma 6.7. If v ∈ pr∗ E, then ϕt(v)↘ 0 monotonically as t→∞.

Proof. Monotonicity follows from the fact that f−tw̃ ∈ W ss
R (f−tṽ) implies

f−t′w̃ ∈W ss
R (f−t′ ṽ) for all t′ ≤ t, so the sets in the definition of ϕt are nested

decreasing as t increases. For convergence to 0, suppose v ∈ T 1M is such
that ϕt(v) 6→ 0; then there are δ > 0, tn → ∞, and w̃n ∈ ftnW ss

R (f−tn ṽ)
such that d(w̃n, ṽ) ≥ δ for all n. Since d(w̃n, ṽ) ≤ R, we can replace w̃n
with a convergent subsequence that has w̃n → w̃, and observe that f−tw̃ ∈
W ss
R (f−tṽ) for all t > 0, so w̃ ∈W ss

R (ṽ) ∩W uu
R (ṽ); moreover, d(w̃, ṽ) ≥ δ, so

w̃ 6= ṽ, and thus v /∈ pr∗ E . �

Let µ be a flow-invariant probability measure on T 1M such that µ(pr∗ E) =
1. Since each ϕt is measurable and bounded, and µ is finite, the monotone
convergence theorem implies that ϕt → 0 in the L1 norm. Observing that
the function ϕt ◦ ft satisfies

‖ϕt ◦ ft‖1 =

∫
ϕt ◦ ft dµ =

∫
ϕt dµ = ‖ϕt‖1

by flow-invariance of µ, we conclude that ϕt ◦ ft → 0 in L1. Thus for any
sequence tn →∞, there is a subsequence tnk

→∞ such that ϕtnk
◦ftnk

→ 0
µ-a.e. Note that

ϕt(ftv) = sup{d(ftw̃, ftṽ) : w̃ ∈W ss
R (ṽ)};

thus we can prove the following.

Lemma 6.8. Let µ be a flow-invariant probability measure on T 1M with
µ(pr∗ E) = 1. For every tn →∞ there is a subsequence tnk

→∞ such that

(6.5) d(ftnk
w̃, ftnk

ṽ)→ 0 for µ-a.e. v ∈ T 1M and every w̃ ∈W ss(ṽ).

Proof. The preceding discussion shows that for each R > 0 and every tn →
∞, there is a subsequence tnk

→ ∞ such that (6.5) holds with W ss(ṽ)
replaced by W ss

R (ṽ). Applying this with R = 1, 2, 3, . . . gives a nested family
of subsequences, and the usual diagonal argument gives a subsequence that
works for every R. Since W ss(ṽ) =

⋃
R>0W

ss
R (ṽ), this proves the lemma. �
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6.3. Proof of mixing. Now we prove that the unique MME µ for geodesic
flow on T 1M is mixing, using its product structure to run a version of the
Hopf argument due to Babillot [Bab02].

Suppose for a contradiction that µ is not mixing. Then there is a contin-
uous function ϕ on T 1M such that ϕ ◦ ft does not converge weakly to 0 in
L2(µ). Now we need the following lemma.

Lemma 6.9 ([Bab02, Lemma 1]). Let (X,B,m, (Tt)t∈A) be a measure pre-
serving dynamical system, where (X,B) is a standard Borel space, m a (pos-
sibly unbounded) Borel measure on (X,B) and (Tt)t∈A an action of a locally
compact second countable abelian group A on X by measure preserving trans-
formations. Let ϕ ∈ L2(X,m) be a real-valued function on X such that∫
ϕdm = 0 if m is finite.
If there exists a sequence (tn) going to infinity in A such that ϕ ◦Ttn does

not converge to 0 in the weak-L2 topology, then there exist a sequence (sn)
going to infinity in A and a non-constant function ψ in L2(X,m) such that

ϕ ◦ Tsn → ψ and ϕ ◦ T−sn → ψ in the weak-L2 topology.

We conclude that there is sn → ∞ and a non-constant ψ ∈ L2(T 1M,µ)
such that ϕ ◦ f±sn → ψ in the weak-L2 topology. Applying Lemma 6.8, we
can replace sn with a subsequence such that for µ-a.e. v ∈ T 1M , we have

(6.6)
lim
n→∞

d(fsnw̃
s, fsn ṽ) = 0 for all w̃s ∈W ss(ṽ),

lim
n→∞

d(f−snw̃
u, f−sn ṽ) = 0 for all w̃u ∈W uu(ṽ).

Lemma 6.10 ([Bab02]). Let (ϕn) be a sequence that converges weakly in
L2(X,B,m) to some function ψ. Then there is a subsequence (ϕnk

) such
that the Cesaro averages

AK2 =
1

K2

K2∑
k=1

ϕnk

converge almost surely to ψ.

Proof. In [Bab02] this is quoted as a consequence of the proof of the Banach–
Saks theorem (see p. 80 of Riesz–Sz. Nagy 1968), which gives a subsequence
such that the square of the L2-norm of AK−ψ is O(1/K), and then almost-
sure convergence of (AK2) follows from Borel–Cantelli. �

Thus there is a set R ⊂ T 1M such that µ(R) = 1 and a subsequence
snk
→∞ such for every v ∈ R, the following are true:

(1) the convergence statements in (6.6) hold;

(2) 1
K2

∑K2

k=1 ϕ(f±snk
v)→ ψ(v) as k →∞.

Let ψ̃ be a lift of ψ to T 1M̃ , and smooth ψ̃ along the flow by replacing it
with v 7→

∫ ε
0 ψ̃(ftv) dt. By choosing ε small enough, ψ̃ is not constant. By

continuity of ϕ and the two properties just listed, we see that

if v, w ∈ R and w̃ ∈W ss(ṽ) or w̃ ∈W uu(ṽ), then ψ(v) = ψ(w).
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There is a set R0 of full µ-measure such that for every v ∈ R0, the function
t 7→ ψ̃(ftṽ) is well-defined and continuous at all real t; in particular, the set
of periods of this function is a closed subgroup of R. This subgroup only
depends on the geodesic: v and ftv have the same subgroup for all t ∈ R.
By ergodicity of µ, there is a single subgroup that works for µ-a.e. v. This
subgroup is not all of R since ψ̃ is not constant, and now the remaining parts
of the proof can be carried out exactly as in [Bab02]:

Because νp × νp is a product measure, there is a set E ⊂ ∂2M̃ of full

νp × νp measure, a real number a > 0, and a Γ-invariant function ψ̃ defined

µ̃-a.e. on T 1M̃ such that for every (x, y) ∈ E, the group of periods of ψ̃
restricted to cx,y is exactly aZ.

Next step (page 69 of [Bab02]): for ν4
p -a.e. quadrilateral, the cross-ratio

belongs to aZ. Since νp is fully supported on ∂M̃ , every cross-ratio of a
quadrilateral belongs to aZ.

Since the cross-ratio of (x, x, y, y) is 0, the same is true of any nearby
quadrilateral, which leads to a contradiction; choose p on cx,y and let x′, y′

be such that the corresponding geodesic is regular, passes through p, and is
sufficiently close to cx,y, then we have a quadrilateral with strictly positive
cross-ratio (‘Fact’ on page 72 of [Bab02]), a contradiction.

Appendix A. Morse

Proof of Lemma 2.4. Let R1 > 0 and c1, c2 : [0, T ] → M̃ be two geodesics
with

d(c1(0), c2(0)) ≤ R1 and d(c1(T ), c2(T )) ≤ R1.

For i = 1, 2, let αi : [0, Ti] → M̃ be a g0-geodesic such that αi(0) = ci(0)
and αi(Ti) = ci(T ). By Theorem 2.3, we have dH(ci, αi) ≤ R0 for i = 1, 2,
where R0 depends only on g and g0. Without loss of generality we assume
that T1 ≤ T2. Then the triangle inequality gives

d0(α2(0), α2(T2)) ≤ d0(α2(0), α1(0))+d0(α1(0), α1(T1))+d0(α1(T1), α2(T2)).

Note that d0(αi(0), αi(Ti)) = Ti, and that (2.2) gives

d0(α2(0), α1(0)) = d0(c2(0), c1(0)) ≤ Ad(c2(0), c1(0)) ≤ AR1,

with a similar bound on d0(α1(T1), α2(T2)). We deduce that

(A.1) T2 ≤ T1 + 2AR1,

and consequently

d0(α1(T1), α2(T1)) ≤ d0(α1(T1), α2(T2)) + |T2 − T1| ≤ 3AR1.

Since g0 is negatively curved, the function t 7→ d0(α1(t), α2(t)) is con-
vex, and therefore achieves its maximum on [0, T1] at an endpoint; since
d0(α1(0), α2(0)) ≤ AR1, we conclude that

(A.2) d0(α1(t), α2(t)) ≤ 3AR1 for all t ∈ [0, T1].
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Since dH(ci, αi) ≤ R0, for every t ∈ [0, T ], there exist t0, t
′ ∈ [0, T ] such

that d(c1(t), α1(t0)), d(c2(t′), α2(t0)) ≤ R0. Using the triangle inequality via
α1(t0), α2(t0), c2(t′) together with (2.2) and (A.2), this gives

(A.3) d(c1(t), c2(t)) ≤ 2R0 + 3A2R1 + |t− t′|.
As in the proof of (A.1), the triangle inequality via c1(0) and c1(t) gives

t′ = d(c2(0), c2(t′)) ≤ R1 + t+ (2R0 + 3A2R1),

and a symmetric argument gives

|t′ − t| ≤ 2R0 + (3A2 + 1)R1.

This and (A.2) complete the proof by putting R2 := 4R0 + (6A2 + 1)R1. �
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