
BUILDING THERMODYNAMICS FOR
NON-UNIFORMLY HYPERBOLIC MAPS

VAUGHN CLIMENHAGA AND YAKOV PESIN

Abstract. We briefly survey the theory of thermodynamic for-
malism for uniformly hyperbolic systems, and then describe sev-
eral recent approaches to the problem of extending this theory to
non-uniform hyperbolicity. The first of these approaches involves
Markov models such as Young towers, countable-state Markov
shifts, and inducing schemes. The other two are less fully devel-
oped but have seen significant progress in the last few years: these
involve coarse-graining techniques (expansivity and specification)
and geometric arguments involving push-forward of densities on
admissible manifolds.

1. Introduction

1.1. The general setting. Thermodynamic formalism, i.e., the for-
malism of equilibrium statistical physics, was adapted to the study
of dynamical systems in the classical works of Ruelle [Rue72, Rue78b],
Sinai [Sin68, Sin72], and Bowen [Bow70, Bow75, Bow08]. It provides an
ample collection of methods for constructing invariant measures with
strong statistical properties. In particular, this includes constructing a
certain “physical” measure known as the SRB measure (for Sinai–
Ruelle–Bowen).

The general ideas can be given as follows. Let (X, d) be a compact
metric space and f : X → X a continuous map of finite topological
entropy. Fix a continuous function ϕ : X → R, which we will refer to
as a potential. Denote by M(f) the space of all f -invariant Borel
probability measures on X. Given µ ∈ M(f), the free energy of the
system with respect to µ is

Eµ(ϕ) := −(hµ(f) +
∫
X
ϕdµ),
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where hµ(f) is the Kolmogorov–Sinai (measure-theoretic) entropy of
(X, f, µ). Optimizing over all invariant measures gives the topological
pressure

P (ϕ) := − inf
µ∈M(f)

Eµ(ϕ) = sup
µ∈M(f)

(hµ(f) +
∫
X
ϕdµ),

and a measure achieving this extremum is called an equilibrium mea-
sure (or equilibrium state). Note that it suffices to take the infimum
(supremum) over the space Me(f) ⊂M(f) of ergodic measures.

The variational principle relates the definition of pressure as an
extremum over invariant measures to an alternate definition in terms of
growth rates. Given ε > 0 and n ∈ N, a set E ⊂ X is (n, ε)-separated
if points in E can be distinguished at a scale ε within n iterates; more
precisely, if for every x, y ∈ E with x , y, there is 0 ≤ k ≤ n such that
d(fkx, fky) ≥ ε. Then one has

(1.1) P (ϕ) = lim
ε→0

lim sup
n→∞

1
n

log sup
E⊂X

(n,ε)-sep.

∑
x∈E

eSnϕ(x),

where

(1.2) Snϕ(x) :=
n−1∑
k=0

ϕ(fkx).

The sum in (1.1) is a partition sum that quantifies “weighted orbit
complexity at spatial scale ε and time scale n”; P (ϕ) represents the
growth rate of this complexity as time increases. In the particular case
ϕ = 0, the value P (0) is the topological entropy htop(f) of the map f .

Thermodynamic formalism is most useful when the system possesses
some degree of hyperbolic behavior, so that orbit complexity increases
exponentially. The most complete results are available when f is uni-
formly hyperbolic; we discuss these in §1.2. In this article we focus on
non-uniformly hyperbolic systems, and we discuss the general picture
in §1.3. Our emphasis will be on general techniques rather than on
specific examples. In particular, we discuss Markov models (including
Young towers) in §§2–4, coarse-graining techniques (based on expansiv-
ity and specification) in §5, and push-forward (geometric) approaches
(based on newly introduced standard pairs approach) in §6.
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1.2. Uniformly hyperbolic maps (Sinai, Ruelle, Bowen).

1.2.1. General thermodynamic results. We refer the reader to [KH95,
BS02] for fundamentals of uniform hyperbolicity theory and to [Bow08,
PP90] for a complete description of thermodynamic formalism for uni-
formly hyperbolic systems. Consider a compact smooth Riemannian
manifold M and a C1 diffeomorphism f : M → M . A compact invari-
ant set Λ ⊂ M is called hyperbolic if for every x ∈ Λ the tangent
space TxM admits an invariant splitting TxM = Es(x) ⊕ Eu(x) into
stable and unstable subspaces with uniform contraction and expan-
sion: this means that there are numbers c > 0 and 0 < λ < 1 such that
for every x ∈ Λ:

(1) ‖dfnv‖ ≤ cλn‖v‖ for v ∈ Es(x) and n ≥ 0;
(2) ‖df−nv‖ ≤ cλn‖v‖ for v ∈ Eu(x) and n ≥ 0.

One can show that the subspaces Es and Eu depend Hölder continu-
ously on x; in particular, there is k > 0 such that ∠(Es(x), Eu(x)) ≥ k
for every x ∈ Λ.

Moving from the tangent bundle to the manifold itself, for every
x ∈ Λ one can construct local stable V s(x) and unstable V u(x) man-
ifolds (also called leaves) through x which are tangent to Es(x) and
Eu(x) respectively and depend Hölder continuously on x [KH95, §6.2].
In particular, there is ε > 0 such that for any x, y ∈ Λ for which
d(x, y) ≤ ε one has that the intersection V s(x) ∩ V u(y) consists of a
single point (here d(x, y) denotes the distance between points x and y
induced by the Riemannian metric on M). We denote this point by
[x, y].

A hyperbolic set Λ is called locally maximal if there is a neigh-
borhood U of Λ such that for any invariant set Λ′ ⊂ U we have that
Λ′ ⊂ Λ. In other words, Λ = ⋂

n∈Z f
n(U). One can show that a hyper-

bolic set Λ is locally maximal if and only if for any x, y ∈ Λ which are
sufficiently close to each other, the point [x, y] lies in Λ [KH95, §6.4].

Given a locally maximal hyperbolic set and a Hölder continuous
potential function, thermodynamic formalism produces unique equi-
librium measures with strong ergodic properties: before stating the
theorem we recall some notions from ergodic theory for the reader’s
convenience. Let (X,µ) be a Lebesgue space with a probability mea-
sure µ and T : X → X an invertible measurable transformation that
preserves µ.

(1) The Bernoulli property. Let Y be a finite set and ν a prob-
ability measure on Y (that is, a probability vector). One can
associate to (Y, ν) the two-sided Bernoulli shift σ : Y Z → Y Z
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defined by (σy)n = yn+1, n ∈ Z; this preserves the measure κ
given as the direct product of Z copies of ν. We say that (T, µ)
is a Bernoulli automorphism (or “has the Bernoulli property”)
if (T, µ) is metrically isomorphic to the Bernoulli shift (σ, κ)
associated to some Lebesgue space (Y, ν) and we also say that
µ is a Bernoulli measure.1

(2) Decay of correlations. Let H be a class of square-integrable
test functions X → R and define

Corn(h1, h2) :=
∣∣∣∣ ∫ h1(T n(x))h2(x) dµ−

∫
h1(x) dµ

∫
h2(x) dµ

∣∣∣∣.
We say that (T, µ) has
• exponential decay of correlations (EDC) with respect to H

if there is 0 < θ < 1 satisfying: for every h1, h2 ∈ H there
is K = K(h1, h2) > 0 such that for every n > 0

Corn(h1, h2) ≤ Kθn;
• polynomial decay of correlations (PDC) with respect to H

if there is α > 0 satisfying: for every h1, h2 ∈ H there is
K = K(h1, h2) > 0 such that for every n > 0

Corn(h1, h2) ≤ Knα.

(3) The Central Limit Theorem. Say that a measurable func-
tion h is cohomologous to a constant if there is a measurable
function g and a constant c such that h = g ◦ T − g + c al-
most everywhere. We say that the transformation T satisfies
the Central Limit Theorem (CLT) for functions in a class H if
for any h ∈ H that is not cohomologous to a constant, there
exists γ > 0 such that

µ
{
x : 1√

n

n−1∑
i=0

(
h(T i(x))−

∫
h dµ

)
< t

}
→ 1

γ
√

2π

∫ t

−∞
e−τ

2/2γ2
dτ.

Before stating the formal result, we point out that uniformly hy-
perbolic systems (and many non-uniformly hyperbolic ones) satisfy
various other statistical properties, which we do not discuss in de-
tail in this survey. These include large deviations principles [OP88,
You90, Kif90, PS05, MN08, RBY08, CTY], Borel–Cantelli lemmas
[CK01, Dol04, Kim07, Gou07, GNO10, HNPV13], the almost sure in-
variant principle [DP84, MN05, MN09], and many more besides.

1More generally, one can take (Y, ν) to be a Lebesgue space, so ν is metrically
isomorphic to Lebesgue measure on an interval together with at most countably
many atoms. For all the cases we discuss, it suffices to take Y finite.
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Theorem 1.1. Let Λ be a locally maximal hyperbolic set for f , and
assume that f |Λ is topologically transitive.2 Then for any Hölder con-
tinuous potential ϕ, the following are true:

(1) Existence: there is an equilibrium measure µϕ.
(2) Uniqueness: µϕ is the only equilibrium measure for ϕ.
(3) Ergodic and statistical properties:

(a) the Bernoulli property: there is A ⊂ Λ and n > 0 such
that the sets fk(A), 0 ≤ k < n are (essentially) disjoint
and cover Λ, fn(A) = A, and (fn|A, µϕ) has the Bernoulli
property;

(b) exponential decay of correlations: there are A, n as above
such that (fn|A, µϕ) has EDC with respect to the class of
Hölder continuous functions.

(c) the Central Limit Theorem: µϕ satisfies the CLT with re-
spect to the class of Hölder continuous functions.

The proof of Theorem 1.1 uses the fact that f |Λ can be represented
by a subshift of finite type via a Markov partition. Recall that a
p × p transition matrix3 A determines a subshift of finite type (SFT)
(ΣA, σ) as the (left) shift σ(ω)i = ωi+1 on the space ΣA of two-sided
infinite sequences ω = (ωi) ∈ {1, . . . , p}Z which are admissible with
respect to A; that is, for which aωiωi+1 = 1 for all i ∈ Z.

Recall also that a finite partition R = {R1, . . . , Rp} of Λ is a Markov
partition if the following are true.

(1) The diameter diamR = max1≤i≤p diamRi is sufficiently small;
this guarantees thatR is generating so the coding map π : ΣA →
X introduced below is well-defined.

(2) Ri = intRi
4 and for any 1 ≤ i, j ≤ p, i , j we have that

intRi ∩ intRj = ∅; this guarantees that the coding map is
injective away from the boundaries.

(3) Each set Ri is a rectangle, i.e., for any x, y ∈ Ri we have
that z = [x, y] ∈ Ri; this is the local product structure (or
hyperbolic product structure) of the partition elements.

2This means that there is a point x ∈ Λ whose trajectory is everywhere dense,
i.e., Λ = {fnx : n ∈ Z}. An equivalent definition is that for any two non-empty
open sets U and V there is n ∈ Z such that fn(U) ∩ V , ∅.

3That is, a matrix whose entries aij are each equal to 0 or 1.
4Here intRi means the interior of the set Ri in the relative topology.
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(4) The Markov property: for each x ∈ Λ, if x ∈ Ri and f(x) ∈
Rj for some 1 ≤ i, j ≤ p, then

f(V s(x) ∩Ri) ⊂ V s(f(x)) ∩Rj,

f−1(V u(f(x)) ∩Rj) ⊂ V u(x) ∩Ri.

The first construction of Markov partitions was obtained by Adler and
Weiss [AW67, AW70], and independently by Berg [Ber67], in the partic-
ular case of hyperbolic automorphisms of the 2-torus. They observed
that the map allowed a symbolic representation by a subshift of fi-
nite type and that this can be used to study its ergodic properties.
Sinai realized that existence of Markov partitions is a rather general
phenomenon and he constructed Markov partitions for general Anosov
diffeomorphisms, see [Sin68]. Furthermore, in [Sin72] he observed the
analogy between the symbolic models of Anosov diffeomorphisms and
lattice gas models in physics – the starting point in developing the ther-
modynamic formalism. Finally, in the more general setting of locally
maximal hyperbolic sets Markov partitions were constructed by Bowen
[Bow70].

Markov partitions allow one to obtain a symbolic representation
of the map f |Λ by subshifts of finite type. More precisely, let R =
{R1, . . . , Rp} be a finite Markov partition of Λ. Consider the subshift
of finite type (ΣA, σ) with the transition matrix A whose entries are
given by aij = 1 if f(intRi) ∩ intRj , ∅ and aij = 0 otherwise. One
can show that for every ω = (ωi) ∈ ΣA the intersection ⋂

i∈Z f
−i(Rωi

)
is not empty and consists of a single point π(ω). This defines the
coding map π : ΣA → Λ, which is characterized by the fact that
f i(π(ω)) ∈ Rωi

for all i ∈ Z (thus ω “codes” the orbit of π(ω)).

Proposition 1.2. The map π has the following properties:
(1) π is Hölder continuous;
(2) π is a conjugacy between the shift σ and the map f |Λ, i.e.,

(f |Λ) ◦ π = π ◦ σ;
(3) π is one-to-one on the set Σ′ ⊂ Σ which consists of points ω for

which the trajectory of the point π(ω) never hits the boundary
of the Markov partition.

Consider a Hölder continuous potential ϕ on Λ. By Proposition 1.2,
the function ϕ̃ on ΣA given by ϕ̃(ω) = ϕ(π(ω)) is Hölder continu-
ous. Thus in order to prove Theorem 1.1 it suffices to study thermo-
dynamic formalism for Hölder continuous potentials for SFTs. The
starting point for this theory is the following result of Parry [Par64],
which uses Perron–Frobenius theory to deal with the case ϕ = 0. The
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corresponding equilibrium measure is the measure of maximal entropy
(MME) for which hµ(f) = htop(f).

Theorem 1.3. Let A be a transition matrix such that An > 0 for some
n ∈ N, and let ΣA be the corresponding SFT.

(1) The topological entropy of ΣA is log λ, where λ > 1 is the max-
imal eigenvalue of A guaranteed by the Perron–Frobenius theo-
rem.

(2) Let v be a positive right eigenvector for (A, λ) (so Av = λv);
then the matrix P given by Pij = Aij

vj

λvi
is stochastic (its rows

are probability vectors), so it defines transition probabilities
for a Markov chain.

(3) Let h be a positive left eigenvector for (A, λ), normalized so that
πi = hivi defines a probability vector π. Then π is the unique
probability vector with πP = π, and the unique MME for ΣA is
the Markov measure defined by

µ[ω1 · · ·ωn] = πω1Pω1ω2 · · ·Pωn−1ωn .

Theorem 1.3 was adapted to non-zero potentials by Ruelle [Rue68,
Rue76], replacing the transition matrix with a transfer operator. Ru-
elle’s version of the Perron–Frobenius theorem for this transfer operator
is at the heart of the classical results in thermodynamic formalism for
SFTs, and hence, for uniformly hyperbolic systems. Roughly speaking
the idea is the following.

(1) Replace the two-sided SFT ΣA with its one-sided version Σ+
A,

and define the transfer operator associated to ϕ on C(Σ+
A) by5

(Lϕf)(x) =
∑
σy=x

eϕ(y)f(y).

(2) Show that Lϕ has a largest eigenvalue λ and that the rest of
the spectrum lies inside a disc with radius < λ (the spectral
gap property).

(3) Instead of the left and right eigenvalues h and v, find a positive
eigenfunction h ∈ C(Σ+

A) for Lϕ, and an eigenmeasure ν ∈
M(Σ+

A) for the dual L∗ϕ.
(4) Obtain the unique equilibrium state as dµ = h dν.

We stress that this result (and hence Theorem 1.1) may not hold
if the the potential function fails to be Hölder continuous, see [Hof77,
Sar01a, PZ06].

5It is instructive to consider the case ϕ = 0 and write down the action of L0
on the (finite-dimensional) space of functions constant on 1-cylinders, where the
action is given by the (transpose of the) transition matrix A.
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Figure 1.1. The pressure function for (a) typical hyper-
bolic sets; (b) a hyperbolic attractor; (c) a non-uniformly
hyperbolic map with a phase transition.

1.2.2. Thermodynamic formalism for the geometric t-potential. Return-
ing from SFTs to the setting of uniformly hyperbolic smooth systems,
the most significant potential function is the geometric t-potential: a
family of potential functions ϕt(x) := −t log |Jac(df |Eu(x))| for t ∈ R.
Since the subspaces Eu(x) depend Hölder continuously on x, the poten-
tial ϕt is Hölder continuous for each t whenever f is C1+α; in particular,
it admits a unique equilibrium measure µt. Furthermore, the pressure
function P (t) := P (ϕt) is well defined for all t, is convex, decreasing,
and real analytic in t, as in Figure 1.1(a).

There are certain values of t that are particularly important.
• When t = 0, we obtain the topological entropy htop(f) as P (0),

and the unique MME as µ0.
• Since P is strictly decreasing and has P (0) > 0 and P (t)→ −∞

as t → ∞, there is a unique number t0 > 0 for which P (t0) =
0. The equation P (t) = 0 is called Bowen’s equation. In
the two-dimensional case its root is the Hausdorff dimension
of Λ ∩ V u(x)6 and the equilibrium measure µt0 achieves this
Hausdorff dimension (i.e., is the measure of maximal dimension)
[Bow79, Rue82, MM83].

To further study the properties of the pressure function (and t0 in
particular) we recall the notion of the Lyapunov exponent. Given x ∈ Λ
and v ∈ TxM , define the Lyapunov exponent

χ(x, v) = lim sup
n→∞

1
n

log ‖dfnv‖.

For every x ∈ Λ the function χ(x, ·) takes on finitely many values
χ1(x) ≤ · · · ≤ χd(x) where d = dimM . The functions χi(x) are Borel

6The value of the Hausdorff dimension does not depend on x.
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and are invariant under f ; in particular, if µ is an ergodic measure,
then χi(x) = χi(µ) is constant almost everywhere for each i = 1, . . . , d,
and the numbers χi(µ) are called the Lyapunov exponent of the
measure µ. If none of these numbers is equal to zero, µ is called a
hyperbolic measure;7 note that when Λ is a hyperbolic set for f ,
every invariant measure supported on Λ is hyperbolic. The Margulis–
Ruelle inequality (see [Rue78a] and also [BP13]) says that
(1.3) hµ(f) ≤

∑
i:χi(µ)≥0

χi(µ)

and in particular implies that t0 ≤ 1, since the sum in (1.3) is equal to
−
∫
ϕ1 dµ, and hence hµ(f) +

∫
ϕ1 dµ ≤ 0 for every ergodic µ.

1.2.3. Hyperbolic attractors. We consider the particular case when Λ
is a topological attractor for f . This means that there is a neigh-
borhood U ⊃ Λ such that f(U) ⊂ U and Λ = ⋂

n≥0 f
n(U). It is not

difficult to see that for every x ∈ Λ, the local unstable manifold V u(x)
is contained in Λ;8 the same is true for the global unstable manifold
through x. Therefore, the attractor contains all the global unstable
manifolds of its points. On the other hand the intersection of Λ with
stable manifolds of its points is usually a Cantor set.

In the case when Λ is a hyperbolic attractor we have that t0 = 1
(see [Bow08]), so P (t) is as in Figure 1.1(b). The equilibrium state
µ1 is a hyperbolic ergodic measure for which the Margulis–Ruelle in-
equality (1.3) becomes equality. By [LY85], this implies that µ1 has
absolutely continuous conditional measures along unstable manifolds;
that is, there is a collection R of local unstable manifolds V u and a
measure η on R such that µ1 can be written as

(1.4) µ1(E) =
∫
R
µV u(E) dη(V u)

where the measures µV u are absolutely continuous with respect to the
leaf volumes mV u . A hyperbolic measure µ satisfying (1.4) is said to
be a Sinai–Ruelle–Bowen (SRB) measure, and it can be shown that
such measures are physical: the set of generic points

Gµ :=
{
x ∈M | 1

n

n−1∑
k=0

ϕ(x)→
∫
ϕdµ for all continuous ϕ : M → R

}
has positive volume, and so µ is the appropriate invariant measure for
studying “physically relevant” trajectories. The discussion above shows

7It is assumed that some of these numbers are positive while others are negative.
8Indeed, for any y ∈ V u(x) the trajectory of y, {fn(y)}n∈Z lies in U and hence,

must belong to Λ since it is locally maximal.
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that when Λ is a hyperbolic attractor, SRB measures are precisely the
equilibrium states for the geometric potential ϕ1.

1.3. Non-uniformly hyperbolic maps.

1.3.1. Definition of non-uniform hyperbolicity. A C1+α diffeomorphism
f of a compact smooth Riemannian manifold M is non-uniformly hy-
perbolic on an invariant Borel subset S ⊂M if there are a measurable
df -invariant decomposition of the tangent space TxM = Es(x)⊕Eu(x)
for every x ∈ S and measurable f -invariant functions ε(x) > 0 and
0 < λ(x) < 1 such that for every 0 < ε ≤ ε(x) one can find measurable
functions c(x) > 0 and k(x) > 0 satisfying for every x ∈ S:

(1) ‖dfnv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Es(x), n ≥ 0;
(2) ‖df−nv‖ ≤ c(x)λ(x)n‖v‖ for v ∈ Eu(x), n ≥ 0;
(3) ∠(Es(x), Eu(x)) ≥ k(x);
(4) c(fm(x)) ≤ eε|m|c(x), k(fm(x)) ≥ e−ε|m|k(x), m ∈ Z.

The last property means that the estimates in (1) and (2) can deteri-
orate but with sub-exponential rate.

If µ is an invariant measure for f with µ(S) = 1, then by the Mul-
tiplicative Ergodic theorem, if for almost every x ∈ S the Lyapunov
exponents at x are all nonzero, i.e., µ is a hyperbolic measure, then f
is non-uniformly hyperbolic on S.

1.3.2. Possibility of phase transitions and non-hyperbolic behavior. A
general theory of thermodynamic formalism for non-uniformly hyper-
bolic maps is far from being complete, although certain examples here
are well-understood. They include one-dimensional maps, where the
pressure function P (t) = P (ϕt) associated with the family of geomet-
ric potentials may behave as in the uniformly hyperbolic case, or may
exhibit new phenomena such as phase transitions (points of non-
differentiability where there is more than one equilibrium measure).
The latter is illustrated in Figure 1.1(c) and is most thoroughly stud-
ied for the Manneville–Pomeau map x 7→ x + x1+α (mod 1), where
α ∈ (0, 1) controls the degree of intermittency at the neutral fixed
point. In this example one has the following behavior [Pia80, Tha80,
Tha83, Lop93, PW99, LSV99, You99, Sar02, Hu04].

• Hyperbolic behavior for t < 1: the pressure function P (t) is
real analytic and decreasing on (−∞, 1), and for every t in this
range, the geometric t-potential ϕt has a unique equilibrium
measure µt, which is Bernoulli, has EDC, and satisfies the CLT
with respect to the class of Hölder continuous potentials. In a
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nutshell, for t ∈ (−∞, 1), the thermodynamics of this system is
just as in the case of uniform hyperbolicity.
• Phase transition at t = 1: the pressure function P (t) is non-

differentiable at t = 1, and ϕ1 has two ergodic equilibrium mea-
sures. One of these is the absolutely continuous invariant
probability measure µ1 (which plays the role of SRB mea-
sure), and the other is the point mass δ0 on the neutral fixed
point.9 The measure µ1 is Bernoulli and decay of correlations
is polynomial (in particular, subexponential).
• Non-hyperbolic behavior for t > 1: for every t ∈ (1,∞),

the unique equilibrium state for ϕt is the point mass δ0, which
has zero entropy and zero Lyapunov exponent.

Similar results for the geometric t-potential are available for other
classes of one-dimensional maps (e.g., unimodal and multimodal maps)
and rather specific higher-dimensional examples (e.g., polynomial and
rational maps and (piecewise) non-uniformly expanding maps); in some
of these examples phase transitions occur while others are without
phase transitions. As a small sample of the recent literature on the
topic, we mention only [BK98, MS00, Oli03, ALP05, PRL07, PS08,
BT08, BT09, Dob09, IT10, PRL11, LRL14a, LRL14b], as well as the
comprehensive and far-reaching discussion of thermodynamics for in-
terval maps with critical points in [DT15].

Our goal in the rest of this paper is not to discuss these results,
which rely on the specific structure of the examples being studied (or
on the absence of a contracting direction); rather, we want to dis-
cuss the recently developed techniques for studying multi-dimensional
non-uniformly hyperbolic systems, with particular emphasis on recent
results that have the potential to be applied very generally, although
they do not yet give as complete a picture as the one outlined above.
These general results have been obtained in the last few years and
represent an actively evolving area of research.

1.3.3. Different types of equilibrium measures. Before describing the
general methods, we recall some basic notions from non-uniform hy-
perbolicity; see [BP07] for more complete definitions and properties.
Let M be a compact smooth manifold and f : M → M a C1+α diffeo-
morphism. Recall that a point x ∈ M is called Lyapunov–Perron

9For α ∈ (0, 1) the measure µ1 is finite but for α ≥ 1, a new phenomenon
occurs: the intermittent behavior becomes strong enough that while there is still
an absolutely continuous invariant measure, it is infinite. At the same time, the
pressure function for α ≥ 1 becomes differentiable at t = 1, and the measure δ0
becomes the unique equilibrium measure.
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regular if for any basis {v1, . . . , vp} of TxM ,

lim inf
n→±∞

1
n

log V (n) = lim sup
n→±∞

1
n

log V (n) =
p∑
i=1

χi(x, vi),

where V (n) is the volume of the parallelepiped built on the vectors
{dfnv1, . . . , df

nvp}.
Let R be the set of all Lyapunov–Perron regular points. The Multi-

plicative Ergodic theorem claims that this set has full measure with re-
spect to any invariant measure. Consider now the set Γ ⊂ R of points
for which all Lyapunov exponents are nonzero, and let Me(f,Γ) ⊂
Me(f) be the set of all ergodic measures that give full weight to the
set Γ; these are hyperbolic measures and they form the class of mea-
sures where it is reasonable to attempt to recover some of the theory
of uniformly hyperbolic systems.

Let ϕ be a measurable potential function; note that we cannot a
priori assume more than measurability if we wish to include the family
of geometric potentials, since in general the unstable subspace varies
discontinuously and so ϕt is not a continuous function.10 Consider the
hyperbolic pressure defined by using only hyperbolic measures:

(1.5) PΓ(ϕ) := − inf
µ∈Me(f,Γ)

Eµ(ϕ).

Say that µϕ is a hyperbolic equilibrium measure if −Eµϕ(ϕ) =
PΓ(ϕ). For the Manneville–Pomeau example above, we have PΓ(ϕt) =
P (ϕt) for every t ∈ R, and the equilibrium measure µt is the unique
hyperbolic equilibrium measure for every t ≤ 1,11 while for t > 1
there is no hyperbolic equilibrium measure, since δ0 has zero Lyapunov
exponent.

One could also fix a threshold h > 0 and consider the setMe(f,Γ, h)
of all measures in Me(f,Γ) whose entropies are greater than h; re-
stricting our attention to measures from this class gives the restricted

10On the other hand, for surface diffeomorphisms Sarig [Sar13] constructed
Markov partitions with countably many partition elements (see §3 below), and
showed [Sar11] that the function ϕt can be lifted to a function on the symbolic
space that is globally well-defined and is Hölder continuous. This can be used to
study equilibrium measures for this function.

11Note that for t = 1 it is no longer the unique equilibrium measure, but it is
the only hyperbolic one.
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pressure12

(1.6) P h
Γ (ϕ) := − inf

µ∈Me(f,Γ,h)
Eµ(ϕ).

For the Manneville–Pomeau example, we have for every t ∈ R,
lim
h→0

P h
Γ (ϕt) = PΓ(ϕt) = P (ϕt).13

In addition to the use of µht to approximate non-hyperbolic measures by
hyperbolic ones, the above approach is also useful when one can identify
a (not necessarily invariant) subset A ⊂ X of “bad” points away from
which the dynamics exhibits good hyperbolic behavior; then putting
h > htop(f,A) guarantees that we consider only measures to which A
is invisible.14 This concept originated in the work of Buzzi on piecewise
invertible continuous maps of compact metric spaces [Buz99],15but it
is reasonable to consider it in other situations.16

One could also impose a threshold in other ways. For example, one
could fix a reference potential ψ and a threshold p < P (ψ), then re-
strict attention to the set Me(f,Γ, ψ, p) of all measures in Me(f,Γ)
for which −Eµ(ψ) > p. Optimizing Eµ(ϕ) over this restricted set of
measures gives another notion of thresholded equilibrium states that
may be useful; again, it is often natural to take p = PS(ϕ) as the topo-
logical pressure of f on a (not necessarily invariant) subset S ⊂ M
of bad points. Another approach would be to consider only measures
whose Lyapunov exponents are sufficiently large; it may be that this
is a more natural approach in certain settings. We stress that while

12Because Me(f,Γ, h) is not compact, the existence of an optimizing measure
in (1.6) becomes a more subtle issue. Although it may happen that the value of
PhΓ (ϕ) is achieved by a measure µ whose entropy may not be greater than h, the
restriction to measures in the class Me(f,Γ, h) is often made to ensure a certain
“liftability” condition, which may still be satisfied by µ; see Theorem 2.3 and the
discussion in that section.

13This is reminiscent of the use of Katok horseshoes to approximate (with respect
to entropy) an arbitrary system with a uniformly hyperbolic one [Kat80], which was
recently generalized to pressure by Sánchez-Salas [SS15].

14Note that since A is not assumed to be invariant, one should use the definition
of the topological entropy based on the Carathéodory construction of dimension-like
characteristics for dynamical systems [Bow73, Pes97].

15An important goal there was to study the notion of h-isomorphism, which
asks for two systems to have (measure-theoretically) conjugate subsystems that
carry all ergodic measures with large enough entropy, even if the whole systems are
not conjugate.

16For example, if the set A is an elliptic island and the potential function is
sufficiently large on A, then the equilibrium measure may be a zero entropy measure
sitting outside the set with non-zero Lyapunov exponents. Putting any positive
threshold removes this measure from consideration.
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restricting the class of invariant measures using thresholds for the topo-
logical pressure or Lyapunov exponents seem to be natural it is yet to
be shown to be a working tool in effecting thermodynamic formalism.

1.3.4. Outline of the paper. A direct application of the uniformly hy-
perbolic approach in the non-uniformly hyperbolic setting is hopeless in
general; we cannot expect to have finite Markov partitions.17 However,
in many cases it is possible to use the symbolic approach by finding
a countable Markov partition, or the related tools of a Young
tower or a more general inducing scheme; these are discussed in
§§2–4. This approach is challenging to apply completely, but can help
establish existence and uniqueness of equilibrium measures and study
their statistical properties including decay of correlations and the CLT.

A second approach is to avoid the issue of building a Markov partition
by adapting Bowen’s specification property to the non-uniformly hy-
perbolic setting; this is discussed in §5. This is similar to the symbolic
approach in that one uses a “coarse-graining” of the system to make
counting arguments borrowed from statistical physics, but sidesteps the
issue of producing a Markov structure. The price paid for this added
flexibility is that while existence and uniqueness can be obtained with
specification-based techniques, there does not seem to be a direct way
to obtain strong statistical properties without first establishing some
sort of Markov structure.

A third approach, which we discuss in §6, is geometric and is based
on pushing forward the leaf volume on unstable manifolds by the dy-
namics. More generally, one can work with approximations to unstable
manifolds by admissible manifolds and use measures which have pos-
itive densities with respect to the leaf volume as reference measures.
Such pairs of admissible manifolds and densities are called standard
and working with them has proven to be quite a useful technique in
various problems in dynamics.18 So far the geometric approach can
be used to establish existence of SRB measures for uniformly hyper-
bolic and some non-uniformly hyperbolic attractors and one can also

17Indeed, if a map possesses a Markov partition, then its topological entropy is
the logarithm of an algebraic number, which should certainly not be expected in
general. On the other hand, in the presence of a hyperbolic invariant measure µ of
positive entropy, there are horseshoes with finite Markov partitions whose entropy
approximates the entropy of µ [Kat80], but these have zero µ-measure.

18This notion was introduced by Chernov and Dolgopyat in [CD09].
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use a version of this method to construct equilibrium measures for uni-
formly hyperbolic sets, see §6; the questions of uniqueness and statisti-
cal properties using this approach as well as construction of equilibrium
measures for non-uniformly hyperbolic systems are still open.

In the remainder of this paper we describe the three approaches just
listed in more detail, and discuss their application to open problems in
the thermodynamics of non-uniformly hyperbolic systems.

2. Markov models for non-uniformly hyperbolic maps I:
Young diffeomorphisms

2.1. Earlier results: one-dimensional and rational maps. In
one form or another, the use of Markov models with countably many
states to study non-uniformly hyperbolic systems dates back to the late
1970s and early 1980s, when Hofbauer [Hof79, Hof81a, Hof81b] used a
countable-state Markov model to study equilibrium states for piecewise
monotonic interval maps. Indeed, such models for β-transformations
were studied already in 1973 by Takahashi [Tak73].

In [Jak81] Jakobson initiated the study of thermodynamics of uni-
modal interval maps by constructing absolutely continuous invariant
measures (acim) for the family of quadratic maps fa(x) = 1 − ax2

whenever a ∈ ∆, where ∆ is a set of parameters with positive Lebesgue
measure. First we discuss in §2.2 the extensions of Jakobson’s result to
study SRB measures by what have become known as Young towers.
Then in §3 we discuss the study of general equilibrium states in the set-
ting of topological Markov chains with countably many states, which
generalizes the SFT theory from §1.2. Finally, in §4 we discuss the use
of inducing schemes to apply this theory to the thermodynamics of
smooth examples.

2.2. Young towers and Gibbs–Markov–Young structures.

2.2.1. Tower constructions in dynamical systems. Roughly speaking,
a tower construction begins with a base set Λ, a map G : Λ → Λ,
and a height function R : Λ → N. Then the tower is constructed as
Λ̃ := {(z, n) ∈ Λ × {0, 1, 2, . . . } : n < R(z)}, and a map g : Λ̃ → Λ̃ is
defined by g(z, n) = (z, n+ 1) whenever n+ 1 < R(z), and g(z,R(z)−
1) = (F (z), 0). Typically one requires that the dynamics of the return
map G can be coded by a full shift, or a Markov shift on a countable set
of states. To study a dynamical system f : X → X using a tower, one
defines a coding map π : Λ̃→ X such that f ◦π = π◦g; this coding map
is usually not surjective (the tower does not cover the entire space), and
so we will ultimately need to give some “largeness” condition on the
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tower. It is important to distinguish between the case when π(Λ) is
disjoint from π(Λ̃ \ Λ), so that the height R is the first return time to
the base π(Λ), and the case when R is not the first return time.

Tower constructions for which the height of the tower is the first
return time to the base of the tower are classical objects in ergodic
theory and were considered in works of Kakutani, Rokhlin, and oth-
ers. Towers for which the height of the tower is not the first return
time appeared in the paper by J. Neveu [Nev69] under the name of
temps d’arret and in the content of dynamical systems in the paper
by Schweiger [Sch75, Sch81] under the name jump transformation
(which are associated with some fibered systems; see also the paper
by Aaronson, Denker and Urbański [ADU93] for some general results
on ergodic properties of Markov fibered systems and jump transforma-
tions).

A tower construction is implicitly present in Jakobson’s proof of ex-
istence of physical measures for quadratic maps. The first significant
use of the tower approach beyond the one-dimensional setting came in
the study of the Hénon map

(2.1) fa,b(x, y) = (1− ax2 + y, bx),

which for b ≈ 0 can be viewed as a two-dimensional extension of a
unimodal map with parameter a. Building on their alternate proof
of Jakobson’s theorem in [BC85], Benedicks and Carleson showed in
[BC91] that when b is sufficiently close to 0, there is a set ∆b ⊂ R of
positive Lebesgue measure such that fa,b has a topologically transitive
attractor for every a ∈ ∆b. Soon afterwards, Benedicks and Young
established existence of an SRB measure for these examples [BY93];
their approach also gives exponential decay of correlations and the
CLT [BY00].

The general structure behind these results was developed in [You98]
and has come to be known as a Young tower,19 or a Gibbs–Markov–
Young structure. The principal feature of a Young tower is that the
induced map on the base of the tower is conjugate to the full shift on
the space of two-sided sequences over countable alphabet. This allows
one to use some recent results on thermodynamics of this symbolic map
to establish existence and uniqueness of equilibrium measures for the
original map and study their ergodic properties.

19It is worth mentioning that a major achievement of [You98] was to establish
exponential decay of correlations for billiards with convex scatterers, which is an
example of a uniformly hyperbolic system with discontinuities; we will not discuss
such examples further in this paper.



THERMODYNAMICS FOR NON-UNIFORMLY HYPERBOLIC MAPS 17

2.2.2. Young diffeomorphisms. A C1+α diffeomorphism f of a compact
smooth manifold M is called Young diffeomorphism if it admits a
Young tower. This tower has a particular structure which is charac-
terized as follows:

• The base Λ of the tower has hyperbolic product structure
which is generated by continuous families Vu = {V u} and Vs =
{V s} of local unstable and stable manifolds.
• The induced map has the Markov property, is uniformly hyper-

bolic and has uniform bounded distortion.
• The intersection of at least one unstable manifold with the base

of the tower has positive leaf volume20 and the integral of the
height of the tower against leaf volume is finite.

In particular, the tower codes a positive volume part of the system (but
not necessarily all trajectories) by a countable state Markov shift.

A formal description of the Young tower is as follows. There are two
continuous families Vu = {V u} and Vs = {V s} of local unstable and
stable manifolds, respectively, with the property that each V s meets
each V u transversely in a single point and Λ = (⋃V u)∩(⋃V s); a union
of some of the manifolds V u is called a u-set, a union of some of the
manifolds V s is called an s-set. One asks for Λ to have the following
properties; here C, η > 0 and β ∈ (0, 1) are constants.
(P1) Positive measure: each V u∩Λ has positive leaf volume mV u .
(P2) Markov structure: there are (countably many) pairwise dis-

joint s-sets Λs
i ⊂ Λ and numbers Ri ∈ N such that

• Λ \ ⋃i Λs
i is mV u-null for all V u;

• Λu
i = fRi(Λs

i ) is a u-set in Λ;
• for every x ∈ Λs

i ,

fRi(V s(x)) ⊂ V s(fRi(x)),
fRi(V u(x)) ⊃ V u(fRi(x)),

f−Ri(V s(fRi(x)) ∩ Λu
i ) = V s(x) ∩ Λ,

fRi(V u(x) ∩ Λs
i ) = V u(fRi(x)) ∩ Λ;

(P3) Defining the recurrence (induced) time R : ⋃i Λs
i → Λ by

R|Λs
i = Ri and the induced map F (x) = fR(x)(x), we have

that for all n ≥ 1
• Forward contraction on V s: if x, y are in the same leaf
V s, then d(F nx, F ny) ≤ Cβnd(x, y).

20It follows that every local unstable manifold intersects the base in a set of
positive leaf volume.



18 VAUGHN CLIMENHAGA AND YAKOV PESIN

• Backward contraction on V u: if x, y are in the same
leaf V u and the same s-set Λs

i , then d(F−nx, F−ny) ≤
Cβnd(Fx, Fy).
• Bounded distortion: if x, y are in the same leaf V u and

the same s-set Λs
i then

log | det dF u(x)|
| det dF u(y)| ≤ Cd(Fx, Fy)η.

Our description of Young tower follows [PSZ16b] and differs from the
original description in [You98]. Most importantly, we do not require
that the map f contracts distances along local stable manifolds uni-
formly with an exponential rate and neither does the inverse map f−1

along local unstable manifolds but that this requirement holds with
respect to the induced map F (see (P3)). We stress that in construct-
ing SRB and equilibrium measures on Young towers and studying their
ergodic properties these extra requirements on the maps f and f−1 are
not needed and that there are examples in which the map f contracts
distances along local stable manifolds uniformly with a polynomial rate,
see Section 2.3.2.

2.2.3. SRB measures for Young diffeomorphisms. Once a tower struc-
ture has been found, the strength of the conclusions one can draw
depends on the rate of decay of the tail of the tower; that is, the
speed with which mV u{x ∈ V u | R(x) > T} → 0 as T → ∞ for
V u ∈ Vu. We say that with respect to the measure mV u the tower has

• integrable tails if ∫
RdmV u <∞;

• exponential tails if for some C, a > 0 and T ≥ 1,
(2.2) mV u{x | R(x) > T} < Ce−aT ;

• polynomial tails if for some C, a > 0 and T ≥ 1,
mV u{x | R(x) > T} < CT−an.

Theorem 2.1 ([You98]). Let f be a C1+α diffeomorphism of a compact
manifold M admitting a Young tower. Assume that

(1) there is local unstable manifold V u such that
(2.3) mV u(

⋃
i≥1

Λ̄i \ Λi) = 0;

(2) the tower has integrable tails.
Then f has an SRB measure µ.
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To describe ergodic properties of the SRB measure one needs an extra
condition. We say that the tower satisfies the arithmetic condition
if the greatest common denominator of of the set of integers {Ri} is
one.21

Theorem 2.2 ([You98]). Let f be a C1+α diffeomorphism of a compact
manifold M admitting a Young tower. Assume that the tower satisfies
(2.3), the arithmetic condition and has exponential (respectively, poly-
nomial) tails. Then (f, µ) is Bernoulli, has exponential (respectively,
polynomial) decay of correlations and satisfies the CLT with respect to
the class of functions which are Hölder continuous on Λ.

Note that even without the arithmetic condition one still obtains the
“exponential decay up to a period” result stated earlier in Theorem
1.1(3b).

In [You99], Young gave an extension of the results from [You98]
that applies in a more abstract setting, giving existence of an invariant
measure that is absolutely continuous with respect to some reference
measure (not necessarily Lebesgue). She also provided a condition on
the height of the tower that guarantees a polynomial upper bound for
the decay of correlations. The corresponding polynomial lower bound
(showing that Young’s bound is optimal) was obtained by Sarig [Sar02]
and Gouëzel [Gou04].

The flexibility in the reference measure makes Young’s result suitable
for studying existence, uniqueness and ergodic properties of equilibrium
measures other than SRB measures (although this was not done in
[You99]). In particular, this is used in the proof of Statement 2 of
Theorem 2.3 below; we discuss such questions more in §§3–4.

Just as the Hénon maps can be studied as a “small” two-dimensional
extension of the unimodal maps, Theorems 2.1 and 2.2 can be applied
to more general ‘strongly dissipative’ maps that are obtained as ‘small’
two-dimensional extensions of one-dimensional maps; this is carried out
in [WY01, WY08].

Aside from such strongly dissipative maps, Young towers have been
constructed for some partially hyperbolic maps where the center direc-
tion is non-uniformly contracting [AdCJ04] or expanding [AP10, AL15];
the latter papers are built on earlier results for non-uniformly expand-
ing maps where one does not need to worry about the stable direction
[ALP05, Gou06]. In both cases existence (and uniqueness) of an SRB
measure was proved first [BV00, ABV00] via other methods closer to

21The tower Λ̃ admits a natural countable Markov partition (see [You98]) and
the arithmetic condition is equivalent to the requirement that the corresponding
Markov shift is topologically mixing.
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the push-forward geometric approach that we discuss in §6, so the
achievement of the tower construction was to establish exponential de-
cay of correlations and the CLT. These results only cover the SRB
measure and do not consider more general equilibrium states.

2.2.4. Thermodynamics of Young diffeomorphisms for the geometric t-
potential. Let f be a C1+α Young diffeomorphism of a compact smooth
manifold M . Consider the set Λ with hyperbolic product structure. Let
Λs
i be the collections of s-sets and Ri the corresponding inducing times.

Set
Y =

⋃
k≥0

fk(Λ).

This is a forward invariant set for f . For every y ∈ Y the tangent
space at y admits an invariant splitting TyM = Es(y) ⊕ Eu(y) into
stable and unstable subspaces. Thus we can consider the geometric t-
potential ϕt(y) which is well defined for y ∈ Y and is a Borel (but not
necessarily continuous) function for every t ∈ R. We consider the class
M(f, Y ) of all invariant measures µ supported on Y , i.e., for which
µ(Y ) = 1. It follows that µ(Λ) > 0, so that µ ‘charges’ the base of the
Young tower. Further, given a number h > 0, we denote byM(f, Y, h)
the class of invariant measures µ ∈M(f, Y ) for which hµ(f) > h.

The following result describes existence, uniqueness, and ergodic
properties of equilibrium measures. Given n > 0, denote by

Sn := Card{Λs
i : Ri = n}.

Theorem 2.3 (see [PSZ16b, MT14]). Assume that the Young tower
satisfies:

(1) for all large n

(2.4) Sn ≤ ehn,

where 0 < h < hµ1(f) is a constant and µ1 is the SRB measure
for f ;

(2) the set ⋃i≥1(Λ̄i \ Λi) supports no invariant measure that gives
positive weight to any open set.22

Then there is t0 < 0 such that for t0 ≤ t < 1 there exists a measure
µt which is a unique equilibrium measure for ϕt among all liftable
measures (see the remark below). If in addition, the tower satisfies the
arithmetic condition,23 then (f, µt) is Bernoulli, has exponential decay

22This condition is stronger than the corresponding condition (2.3).
23This requirement should be added to Theorem 4.5, Statement 2 of Theorem

4.7 and Statement 3 of Theorem 7.1 in [PSZ16b].
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of correlations and satisfies the CLT with respect to a class of potential
functions which contains all Hölder continuous functions on Y .

Remarks.
1. The requirement (2.4) means that the number of s-sets in the

base of the tower can grow exponentially but with rate slower than the
metric entropy of the SRB measure. This is a strong requirement on
the Young tower, but it is known to hold in some examples, see §2.3
below.

2. For t = 1, the SRB measure µ1 may not have exponential decay
of correlations; this is the case for the Manneville–Pomeau map where
the decay is polynomial. See §1.3.2 and also §2.3 for more details.

3. We stress that the measures µt are equilibrium measures within
the class of measures that can be lifted to the tower: recall that an
invariant measure µ supported on Y is called liftable if there is a
measure ν supported on Λ and invariant under the induced map F
such that the number
(2.5) Qν =

∫
Λ
Rdν

is finite, and for any measurable set E ⊂ Y ,

(2.6) µ(E) = L(ν)(E) := 1
Qν

∑
i≥0

Ri−1∑
k=0

ν(f−k(E) ∩ Λs
i ).

In particular, µt = mathcalL(νt for some measure νt which is an equi-
librium (and indeed, Gibbs) measure for the induced map F .

Under the condition 2.4 every measure with entropy > h is liftable.
In general, it is shown in [Zwe05] that if R ∈ L1(Y, µ) then µ is liftable.
In particular, if the return time R is the first return time to the base
of the tower, then every measure that charges the base of the tower is
liftable.

4. The proof of exponential decay of correlations and the CLT is
based on showing the exponential tails property of the measure νt24

(see [PSZ16b, Theorem 4.5]) and then applying results from [MT14].25

5. For a C1+α diffeomorphism f there may exist several Young
towers with bases Λk, k = 1, . . . ,m, such that the corresponding sets
Yk are disjoint. For each k, Theorem 2.3 gives a number t0k < 0 and
for every t0k < t < 1 the equilibrium measure µtk for the geometric

24See (2.2) where one should replace the leaf volume with the measure νt.
25In [MT14] the authors considered only expanding maps and Young towers with

polynomial tails, however, their results can easily be extended to invertible maps
and Young towers with exponential tails.
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potential ϕt. This measure is unique within the class of measures µ
for which µ(Yk) = 1 and hµ(f) > h where 0 < h < hµ1(f).26 Setting
t0 = max1≤k≤m t0k, for every t0 < t < 1 we obtain the measure µt such
that µt|Yk = µtk. If for every measure µ with hµ(f) > h, we have that
µ(Yk) > 0 for some 1 ≤ k ≤ m, then the measure µt is the unique
equilibrium measure for ϕt within the class of invariant measures with
large entropy. This is the case in the two examples described in §2.3.

6. It is known that t = 1 can be a phase transition, that is the
pressure function P (t) is not differentiable and there are more than
one equilibrium measures for ϕ1. However, it is not known whether
phase transitions can occur for t < t0.

7. Theorem 2.3 is a corollary of a more general result establishing
thermodynamics for maps admitting inducing schemes of hyperbolic
type, see Theorem 4.1.

2.3. Examples of Young diffeomorphisms. We describe two ex-
amples of Young diffeomorphisms for which Theorem 2.3 applies.

2.3.1. A Hénon-like diffeomorphism at the first bifurcation. The first
example is Hénon-like diffeomorphisms of the plane at the first bifurca-
tion parameter. For parameters a, b consider the Hénon map fa,b given
by (2.1). It is shown in [BS04, BS06, CLR08] that for each 0 < b� 1
there exists a uniquely defined parameter a∗ = a∗(b) such that the non-
wandering set for fa,b is a uniformly hyperbolic horseshoe for a > a∗

and the parameter a∗ is the first parameter value for which a homoclinic
tangency between certain stable and unstable manifolds appears.

Theorem 2.4. [ST13, ST16, Theorem A] For any bounded open in-
terval I ⊂ (−1,+∞) there exists 0 < b0 � 1 such that if 0 ≤ b < b0
then

(1) the map fa∗(b),b is a Young diffeomorphism;
(2) there exists a unique equilibrium measure for the geometric t-

potential and for all t ∈ I.

2.3.2. The Katok map. We describe the Katok map [Kat79] (see also
[BP13]), which can be thought of as an invertible and two-dimensional
analogue of the Manneville–Pomeau map. Consider the automorphism
of the 2-torus given by the matrix T = ( 2 1

1 1 ) and then choose 0 < α < 1
and a function ψ : [0, 1] 7→ [0, 1] satisfying:

• ψ is of class C∞ except at zero;
• ψ(u) = 1 for u ≥ r0 and some 0 < r0 < 1;

26Note that both h and hµ1(f) do not depend on k.
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• ψ′(u) > 0 for every 0 < u < r0;
• ψ(u) = (ur0)α for 0 ≤ u ≤ r0

2 .
Let Dr = {(s1, s2) : s1

2 + s2
2 ≤ r2} where (s1, s2) is the coordinate

system obtained from the eigendirections of T . Consider the system of
differential equations in Dr0

(2.7) ṡ1 = s1 log λ, ṡ2 = −s2 log λ,

where λ > 1 is the eigenvalue of T . Observe that T is the time-1 map
of the flow generated by the system of equations (2.7).

We slow down trajectories of (2.7) by perturbing it in Dr0 as follows:

ṡ1 = s1ψ(s1
2 + s2

2) log λ, ṡ2 = −s2ψ(s1
2 + s2

2) log λ.

This generates a local flow, whose time-1 map we denote by g. The
choices of ψ and r0 guarantee that the domain of g contains Dr0 . Fur-
thermore, g is of class C∞ in Dr0 except at the origin and it coincides
with T in some neighborhood of the boundary ∂Dr0 . Therefore, the
map

G(x) =

T (x) if x ∈ T2 \Dr0 ,
g(x) if x ∈ Dr0

defines a homeomorphism of the torus, which is a C∞ diffeomorphism
everywhere except at the origin.

The map G preserves the probability measure dν = κ−1
0 κ dm where

m is the area and the density κ is defined by

κ(s1, s2) :=

(ψ(s1
2 + s2

2))−1 if (s1, s2) ∈ Dr0 ,

1 otherwise

and
κ0 :=

∫
T2
κ dm.

We further perturb the map G by a coordinate change φ in T2 to obtain
an area-preserving C∞ diffeomorphism. To achieve this, define a map
φ in Dr0 by the formula

(2.8) φ(s1, s2) := 1√
κ0(s12 + s22)

(∫ s12+s22

0

du

ψ(u)

)1/2

(s1, s2)

and set φ = Id in T2 \Dr0 . Clearly, φ is a homeomorphism and is a C∞
diffeomorphism outside the origin. One can show that φ transfers the
measure ν into the area and that the map f = φ ◦ G ◦ φ−1 is a C∞
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diffeomorphism. This is the Katok map [Kat79, BP13]. One can show
that the map f has nonzero Lyapunov exponents almost everywhere.27

Theorem 2.5 (see [PSZ16a]). The following statements hold:
(1) the Katok map f is a Young diffeomorphism; moreover,

• there are finitely many disjoint sets Λk that are bases of
Young towers for which the corresponding sets Yk cover
the whole torus except for the origin;
• every invariant measure µ except for the Dirac measure at

the origin δ0 can be lifted to one of the towers.
(2) For any t0 < 0 one can find a small r0 = r0(t0) such that if the

construction is carried out with this value of r0, then for every
t0 < t < 1
• there exists a unique equilibrium ergodic measure µt asso-

ciated to the geometric potential ϕt;
• (f, µt) has exponential decay of correlations and satisfies

the CLT with respect to a class of functions which includes
all Hölder continuous functions on the torus;
• the pressure function Pt is real analytic on (t0, 1).

(3) For t = 1 there exist two equilibrium measures associated to
ϕ1, namely the Dirac measure at the origin δ0 and the Lebesgue
measure.

(4) For t > 1, δ0 is the unique equilibrium measure associated to
ϕt.

3. Markov models for non-uniformly hyperbolic maps II:
Countable state Markov shifts

The thermodynamic formalism for SFTs rested on the Ruelle’s ver-
sion of the Perron–Frobenius theorem for finite-state topological Markov
chains. For the class of two-step potential functions ϕ(x) = ϕ(x0, x1),
which includes the zero potential ϕ = 0, the extension of this the-
ory to countable-state Markov shifts dates back to work of Vere-Jones
[VJ62, VJ67], Gurevich [Gur69, Gur70, Gur84], and Gurevich and
Savchenko [GS98]; we discuss this in §3.1. For more general poten-
tial functions a sufficiently complete picture is primarily due to Sarig,
and we discuss these in §3.2.

3.1. Recurrence properties for random walks. Recall the form of
Theorem 1.3 on existence of a unique MME for SFTs:

27However, there are trajectories with zero Lyapunov exponents, for example the
origin is a neutral fixed point.
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(1) the largest eigenvalue λ of the transition matrix A determines
the topological entropy;

(2) the right eigenvector v = (vi) for λ determines a Markov chain
whose transition probabilities are given by a stochastic matrix
Pij = Aij

vj

λvi
;

(3) P has a unique stationary vector π (which can be written in
terms of left and right eigenvectors for (A, λ)), which determines
a Markov measure that is the unique MME.

In the countable-state setting, existence of eigenvectors and stationary
vectors is a more subtle question (although once these are found, the
proof of uniqueness goes through just as in the finite-state case). The
general story is well-illustrated by just considering the last step above:
suppose we are given a stochastic matrix Pij with countably many
entries. This corresponds to a directed graph G with countably many
vertices, whose edges are given weights as follows: the weight of the
edge from i to j is Pij. Then one can consider the Markov chain
described by P as a random walk on G.

Existence of a stationary vector π = (πi) with πP = π is determined
by the recurrence properties of the shift [VJ62, VJ67]. Suppose we
start our random walk at a vertex a; one can show that the probability
that we return to a infinitely many times is either 0 or 1. If the probabil-
ity of returning infinitely many times is 1, then the walk is recurrent.
Recurrence is necessary in order to have a stationary probability vector
π, but it is not sufficient; one must distinguish between the case when
our expected return time is finite (positive recurrence) and when it
is infinite (null recurrence). If the walk is positive recurrent then
there is a stationary probability vector π; if it is null recurrent then
one can still find a vector π such that πP = π, but one has ∑i πi =∞,
so π cannot be normalized to a probability vector.

In fact, the trichotomy between transience, null recurrence, and pos-
itive recurrence is the key to generalizing all of Theorem 1.3 to the
countable-state case [Pes14]. The recurrence conditions can be formu-
lated in terms of the number of loops in the graph G. Fixing a vertex
a, let Z∗n be the number of simple loops of length n based at a (first
returns to a) and Zn be the number of all loops of length n based at a
(including loops which return more than once).28

(1) The supremum of the metric entropies is equal to the Gurevich
entropy hG := lim 1

n
logZn (the limit exists if the graph is

aperiodic; otherwise one should take the upper limit).
28In the next section when we consider non-zero potentials, we will have to count

the loops with weights coming from the potential.
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(2) The shift ΣA is recurrent if ∑n e
−nhGZn =∞, and transient

if the sum is finite.29 The eigenvectors h and v for (A, λ) exist
if and only if ΣA is recurrent.

(3) Among recurrent shifts, one must distinguish between positive
recurrence, when ∑

n ne
−nhGZ∗n < ∞, and null recurrence,

when the sum diverges. Writing πi = hivi, one has ∑πi < ∞
if ΣA is positive recurrent (hence, π can be normalized), and∑
πi = ∞ if it is null recurrent. One can also characterize

positive recurrent shifts as those for which enhGZn is bounded
away from 0 and ∞, which immediately implies divergence of
the sum ∑

n e
−nhGZn, while null recurrent shifts are those for

which limn e
−nhGZn = 0 but the sum still diverges.

It is instructive to note that once a distinguished vertex a is fixed
as the starting point of the loops, one can view the first return map to
[a] as a Young tower, and then the summability condition in positive
recurrence is equivalent to the condition that the tails of the tower are
integrable, which was the existence criterion in Theorem 2.1.

3.2. Non-zero potentials. In discussing the extension to non-zero
potentials on countable-state topological Markov chains, we will fol-
low the notation, terminology, and results of Sarig [Sar99, Sar01b,
Sar01a], although the contributions of Gurevich [Gur84], Gurevich and
Savchenko [GS98], Mauldin and Urbanski [MU96, MU01], Aaronson
and Denker [AD01], and of Fiebig, Fiebig, and Yuri [FFY02] should
also be mentioned. Sarig adapted transience, null recurrent, and posi-
tive recurrence for non-zero potential functions. The summability cri-
terion for positive recurrence is exactly as above, except that now Zn
represents the total weight of all loops of length n and Z∗n represents
the total weight of simple loops of length n where weight is computed
with respect to the potential function; more precisely

Zn = Zn(ϕ, a) =
∑

σn(x)=x
exp(Φn(x))1[a](x)

and
Z∗n = Z∗n(ϕ, a) =

∑
σn(x)=x

exp(Φn(x))1[ϕa=n](x),

29For some intuition behind this definition, it may be helpful to consider again
a countable-state random walk: writing P(n) for the probability of returning to the
original vertex at time n, we recall that by the Borel–Cantelli lemma, the walk
is recurrent (infinitely many returns a.s.) if

∑
n P(n) = ∞, and transient (finitely

many returns a.s.) if the sum is finite.



THERMODYNAMICS FOR NON-UNIFORMLY HYPERBOLIC MAPS 27

where Φn(x) = ∑n−1
k=0 ϕ(fkx). Furthermore, the Gurevich entropy

hG(σ) is replaced with the Gurevich-Sarig pressure PGS(σ, ϕ), which
is the exponential growth rate of Zn, i.e.,

PGS(σ, ϕ) = lim
n→∞

1
n

logZn.

For Markov shifts with finite topological entropy, Sarig and Buzzi
[BS03] proved that an equilibrium measure exists if and only if the
shift is positive recurrent. A good summary of the theory can be found
in [Sar15]. For our purposes the main result is the following.
Theorem 3.1. Let Σ be a topologically mixing countable-state Markov
shift with finite topological entropy, and let ϕ : X → R be a Hölder con-
tinuous30 function such that PGS(ϕ) <∞. Then ϕ is positive recurrent
if and only if there are λ > 0, a positive continuous function h, and
a conservative measure ν (i.e., a measure that allows no nontriv-
ial wandering sets) which is finite and positive on cylinders, such that
Lϕh = λh, L∗ϕν = λν, and

∫
h dν = 1. In this case the following are

true.
(1) PGS(ϕ) = log λ, and dµ = h dν defines a σ-invariant measure.
(2) If h(µ) <∞, then µ is the unique equilibrium state for ϕ.
(3) For every cylinder [w] ⊂ Σ, we have λ−nν[w]−1Lnϕ1[w] → h

uniformly on compact subsets.
The statistical properties of µ depend on the rate of convergence in

the last item of Theorem 3.1, which in turn depends on how quickly
Z∗ne

−nPGS goes to 0. If it goes to zero with polynomial rate then the
corresponding tower (obtained by inducing on a single state) has poly-
nomial tails, and the equilibrium state has polynomial decay of corre-
lations. If it goes to zero with exponential speed – that is, if Z∗n has
smaller exponential growth rate than Zn – then the tower has expo-
nential tails and correlations decay exponentially. In this case the shift
is called strong positive recurrent; see [CS09] for a summary of the
results in this case.

3.3. Countable-state Markov partitions for smooth systems.
Using Pesin theory, Sarig recently carried out a version of the construc-
tion of Markov partitions for non-uniformly hyperbolic diffeomorphisms
in two dimensions. Recall that for a uniformly hyperbolic diffeomor-
phism f : M →M , one obtains an SFT Σ and a coding map π : Σ→M
such that

30In fact Theorem 3.1 holds for the more general class of potentials with sum-
mable variations, but Hölder continuity is needed for the statistical properties
mentioned below.
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• π is Hölder continuous and has f ◦ π = π ◦ σ;
• π is onto and is 1-1 on a residual set Σ′ ⊂ Σ that has full

measure for every equilibrium state of a Hölder potential on Σ.
In non-uniform hyperbolicity one must replace the SFT with a countable-
state Markov shift, and also weaken some of the conclusions.

Theorem 3.2. [Sar13] Let M be a compact smooth surface and f : M →
M a C1+α diffeomorphism of positive topological entropy. Fix a thresh-
old 0 < χ < htop(f). Then there is a countable-state topological Markov
shift Σχ and a coding map πχ : Σχ →M such that

• πχ is Hölder continuous and has f ◦ πχ = πχ ◦ σ;
• if µ is an ergodic f -invariant measure on M with hµ(f) >
χ, then µ(π(Σχ)) = 1, and moreover there is an ergodic σ-
invariant measure µ̂ on Σχ such that (πχ)∗µ̂ = µ and hµ̂(σ) =
hµ(f).

Observe that Theorem 3.2 echoes our recurring theme that in non-
uniform hyperbolicity, to obtain ‘good’ hyperbolic-type results one of-
ten needs to ignore a ‘small-entropy’ part of the system. In fact the
key property of the threshold χ is that by the Margulis–Ruelle inequal-
ity, any ergodic measure with hµ(f) > χ must have positive Lyapunov
exponent at least χ. Thus for a higher-dimensional generalization of
Theorem 3.2, one should expect that the natural condition would be
on the Lyapunov exponents, rather than the entropy.

The analogous result to Theorem 3.2 for three-dimensional flows was
proved by Lima and Sarig [LS14]. In both cases this can be used to
deduce Bernoullicity up to finite rotations of ergodic positive entropy
equilibrium states [Sar11, LLS15]. However, these general results do
not give any information on the recurrence properties of the countable
state shift, or the tail of the resulting tower, and in particular they do
not provide a mechanism for verifying decay of correlations and the
CLT. This is of no surprise, since at this level of generality, one should
not expect to get exponential decay (or any other particular rate).

4. Markov models for non-uniformly hyperbolic maps III:
Inducing schemes of hyperbolic type

The study of SRB measures via Young towers generalizes to the
study of equilibrium states via inducing schemes, which use the tower
approach to model (a large part of) the system by a countable-state
Markov shift, and then apply the thermodynamic results from §3. The
concept of an inducing scheme in dynamics is quite broad and applies
to systems which may be invertible or not, smooth or not differentiable.
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Every inducing scheme generates a symbolic representation by a tower
which is well adapted to constructing equilibrium measures for an ap-
propriate class of potential functions using the formalism of countable
state Markov shifts. The projection of these measures from the tower
are natural candidates for the equilibrium measures for the original
system.

In order to use this symbolic approach to establish existence and to
study equilibrium states, some care must be taken to deal with the
liftability problem as only measures that can be lifted to the tower
can be ‘seen’ by the tower.

One may consider inducing schemes of expanding type, or of hyper-
bolic type. The former were introduced in [PS08] and apply to study
thermodynamics of non-invertible maps (e.g., non-uniformly expand-
ing maps) while the latter were introduced in [PSZ16b] and are used to
model invertible maps (e.g„ non-uniformly hyperbolic maps). In this
paper we only consider inducing schemes of hyperbolic types and we
follow [PSZ16b].

Let f : X → X be a homeomorphism of a compact metric space
(X, d). We assume that f has finite topological entropy htop(f) < ∞.
An inducing scheme of hyperbolic type for f consists of a count-
able collection of disjoint Borel sets S = {J} and a positive integer-
valued function τ : S → N; the inducing domain of the inducing
scheme {S, τ} is W = ⋃

J∈S J , and the inducing time τ : X → N is
defined by τ(x) = τ(J) for x ∈ J and τ(x) = 0 otherwise. We require
several conditions.

(I1) For any J ∈ S we have f τ(J)(J) ⊂ W and ⋃J∈S f τ(J)(J) = W .
Moreover, f τ(J)|J can be extended to a homeomorphism of a
neighborhood of J .

This condition allows one to define the induced map F : W → W by
setting F |J := f τ(J)|J for each J ∈ S. If τ is the first return time to
W , then all images f τ(J)(J) are disjoint. However, in general the sets
f τ(J)(J) corresponding to different J ∈ S may overlap. In this case the
map F may not be invertible.

(I2) For every bi-infinite sequence a = (an)n∈Z ∈ SZ there exists a
unique sequence x = x(a) = (xn = xn(a))n∈Z such that
(a) xn ∈ Jan and f τ(Jan )(xn) = xn+1;
(b) if xn(a) = xn(b) for all n ≤ 0 then a = b.

This condition allows one to define the coding map π : SZ → ⋃
J by

π(a) := x0(a). Within the full shift σ : SZ → SZ we consider the set

Š := {a ∈ SZ | xn(a) ∈ Jan for all n ∈ Z}.
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For any a ∈ SZ \ Š there exists n ∈ Z such that π ◦σn(a) ∈ Jan \Jan . In
particular, if all J ∈ S are closed then SZ \ Š = ∅; however, this need
not always be the case. It follows from (I1) and (I2) that the map π
has the following properties:

(1) π is well defined, continuous and for all a ∈ SZ one has π◦σ(a) =
f τ(J) ◦ π(a) where J ∈ S is such that π(a) ∈ J̄ ;

(2) π is one-to-one on Š and π(Š) = W ;
(3) if π(a) = π(b) for some a, b ∈ Š then an = bn for all n ≥ 0.

Proving the existence and uniqueness of equilibrium measures requires
some additional condition on the inducing scheme {S, τ}:

(I3) The set SZ \ Š supports no (ergodic) σ-invariant measure which
gives positive weight to any open subset.

This condition is designed to ensure that every equilibrium measure for
the shift is supported on Š and its projection by π is thus supported
on W and is F -invariant. This projection is a natural candidate for
the equilibrium measure for F .

Set Y = {fk(x) | x ∈ W, 0 ≤ k ≤ τ(x) − 1}. Note that Y is
forward invariant under f . This can be thought of as the region of X
that is ‘swept out’ as W is carried forward under the dynamics of f ; in
particular, it contains all trajectories that intersect the base W .

Let ϕ be a potential function. Existence of an equilibrium measure
for ϕ is obtained by first studying the problem for the induced system
(F,W ) and the induced potential ϕ : W → R defined by (1.2). The
study of existence and uniqueness of equilibrium measures for the in-
duced system (F,W ) is carried out by conjugating the induced system
to the two-sided full shift over the countable alphabet S. This requires
that the potential function Φ := ϕ̄ ◦ π be well defined on SZ. To this
end we require that
(P1) the induced potential ϕ can be extended by continuity to a

function on J̄ for every J ∈ S.
Denote the potential induced by the normalized potential ϕ− PL(ϕ)
by

ϕ+ := ϕ− PL(ϕ) = ϕ− PL(ϕ)τ
and let Φ+ := ϕ+ ◦ π.

Theorem 4.1 (see [PSZ16b]). Let {S, τ} be an inducing scheme of
hyperbolic type satisfying Conditions (I1)–(I3) and ϕ a potential sat-
isfying Condition (P1). Assume that

• Φ has strongly summable variations;
• PGS(Φ) <∞ and PGS(Φ+) <∞;
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• supa∈SZ Φ+(a) <∞.
Then

(1) There exists a σ-invariant ergodic measure νΦ+ for Φ+;
(2) If hνΦ+ (σ) <∞, then νΦ+ is the unique equilibrium measure for

Φ+;
(3) If hνΦ+ (σ) < ∞, then the measure νϕ+ := π∗νΦ+ is a unique

F -invariant ergodic equilibrium measure for ϕ+;
(4) If PGS(Φ+) = 0 and Qνϕ+ <∞, then µϕ = L(νϕ+) is the unique

equilibrium ergodic measure in the class ML(f, Y ) of liftable
measures (see (2.5) and (2.6)).

The following result describes ergodic properties of equilibrium mea-
sures. assume that νϕ+ has exponential tails (see (2.2)): there exist
C > 0 and 0 < θ < 1 such that for all n > 0,

νϕ+({x ∈ W : τ(x) ≥ n}) ≤ Cθn.

Theorem 4.2 (see [PSZ16b]). Under the conditions of Theorem 4.1
assume that

• the induced function ϕ on W is locally Hölder continuous;
• the tower has exponential tails with respect to the measure νϕ+

that is there exist C > 0 and 0 < θ < 1 such that for all n > 0,
νϕ+({x ∈ W : τ(x) ≥ n}) ≤ Cθn;

(compare to (2.2));
• the tower satisfies the arithmetic condition.31

Then (f, µϕ) has exponential decay of correlations and satisfies the CLT
with respect to the class of functions whose induced functions on W are
bounded locally Hölder continuous.

We describe some verifiable conditions on the potential function ϕ
under which the assumptions of Theorem 4.1 hold:
(P2) there exist C > 0 and 0 < r < 1 such that for any n ≥ 1

Vn(φ) := Vn(Φ) ≤ Crn,

where
Vn(Φ) := sup

[b−n+1,··· ,bn−1]
sup

a,a′∈[b−n+1,··· ,bn−1]
{|Φ(a)− Φ(a′)|}

is the n variation of Φ;
(P3) ∑J∈S supx∈J exp ϕ̄(x) <∞;

31This requirement should be added to Theorem 4.6 in [PSZ16b].
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(P4) there exists ε > 0 such that∑
J∈S

τ(J) sup
x∈J

exp(ϕ+(x) + ετ(x)) <∞.

The following result is a corollary of Theorems 4.1 and 4.2.

Theorem 4.3 (see [PSZ16b]). Let {S, τ} be an inducing scheme of
hyperbolic type satisfying Conditions (I1)–(I3). Assume that the po-
tential function ϕ satisfies Conditions (P1)–(P4). Then

(1) there exists a unique equilibrium measure µϕ for ϕ among all
measures in ML(f, Y ); the measure µϕ is ergodic;

(2) if νϕ+ = L−1(µϕ) has exponential tail and the tower satisfies
the arithmetic condition, then (f, µϕ) has exponential decay of
correlations and satisfies the CLT with respect to a class of func-
tions whose corresponding induced functions on W (see (1.2))
are bounded locally Hölder continuous functions.

5. Coarse-graining, expansivity, and specification

5.1. Uniform expansivity and specification. Let X be a compact
metric space and f : X → X a homeomorphism; given ε > 0 and
x ∈ X, the set
(5.1) Γε(x) := {y ∈ X | d(fnx, fny) < ε for all n ∈ Z}
contains all points whose trajectory stays within ε of the trajectory of
x for all time. The map f is expansive if there is ε > 0 such that
Γε(x) = {x} for every x ∈ X; that is, if any two distinct trajectories
eventually separate at scale ε. Uniformly hyperbolic systems can easily
be shown to be expansive, and expansivity is a sufficient condition for
existence of an equilibrium measure for any continuous potential ϕ;
indeed, the standard proof of the variational principle [Wal82, Theo-
rem 8.6] gives a construction of such a measure. The idea is that one
“coarse-grains” the system at scale ε and builds a measure that is ap-
propriately distributed over all trajectories that separate by ε within
n iterates; sending n → ∞ and using expansivity one guarantees that
this measure is an equilibrium state.

To show that this equilibrium state is unique, Bowen used the fol-
lowing specification property of uniformly hyperbolic systems: for
every ε > 0 there is τ ∈ N such that any collection of finite-length orbit
segments can be ε-shadowed by a single orbit that takes τ iterates to
transition from one segment to the next. More precisely, if we associate
(x, n) ∈ X ×N to the orbit segment x, f(x), . . . , fn−1(x) and write

Bn(x, ε) = {y ∈ X | d(fkx, fky) ≤ ε for all 0 ≤ k < n}
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for the Bowen ball of points that shadow (x, n) to within ε for those n
iterates, then specification requires that for every (x1, n1), . . . , (xk, nk)
there is y ∈ X such that y ∈ Bn1(x1, ε), then fn1+τ (y) ∈ Bn2(x2, ε),
and in general

(5.2) f
∑j−1

i=0 (ni+τ)(y) ∈ Bnj
(x, ε) for all 1 ≤ j ≤ k.

Mixing Axiom A systems satisfy specification; this is a consequence of
the mixing property together with the shadowing lemma.

A continuous potential ϕ : X → R satisfies the Bowen property if
there is K ∈ R such that |Snϕ(x)−Snϕ(y)| < K whenever y ∈ Bn(x, ε),
where Snϕ(x) = ∑n−1

j=0 ϕ(f jx). The following theorem summarizes the
classical results due to Bowen on systems with specification [Bow75].32

Theorem 5.1. If (X, f) is an expansive system with specification and
ϕ is a potential with the Bowen property, then there is a unique equi-
librium measure µ. This includes the case when f |Λ is topologically
mixing and uniformly hyperbolic, and ϕ is Hölder continuous.

5.2. Non-uniform expansivity and specification. Various weaker
versions of the specification property have been introduced in the liter-
ature. The one which is most relevant for our purposes first appeared
in [CT12] for MMEs in the symbolic setting, and was developed in
[CT13, CT14, CT16] to a version that applies to smooth maps and
flows.

Given ε > 0, consider the ‘non-expansive set’ NE(ε) = {x ∈
X | Γε(x) , {x}}, where Γε(x) is as in (5.1). Note that (X, f) is
expansive if and only if NE(ε) = ∅. The pressure of obstructions
to expansivity is33

(5.3) P⊥exp(ϕ) = lim
ε→0

sup
µ∈Me(f)

{hµ(f) +
∫
ϕdµ | µ(NE(ε)) = 1}.

In particular, expansive systems have P⊥exp(ϕ) = −∞. It follows from
the results in [CT16] that the condition P⊥exp(ϕ) < P (ϕ) is enough for
existence of an equilibrium measure. For uniqueness, we need to weaken
the notion of specification. The idea behind this is to only require the
specification property (5.2) to hold for a certain ‘good’ collection of
orbit segments G ⊂ X × N (and similarly for the Bowen property).
One must also require G to be large enough, which in this case means

32In fact, Bowen required the slightly stronger property that the shadowing point
y in (5.2) be periodic, but this is only necessary for the part of his results dealing
with periodic orbits, which we omit here.

33The idea of ignoring measures sitting on NE(ε) was introduced earlier by Buzzi
and Fisher [BF13].
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that there are collections of orbit segments P ,S ⊂ X × N that have
small pressure compared to the whole system, but are sufficient to
generate X × N from G by adding prefixes from P and suffixes from
S.34

Let us make this more precise. A decomposition of the space of
orbit segments consists of P ,G,S ⊂ X×N and functions p, g, s : X×
N→ N ∪ {0} such that (p+ g + s)(x, n) = n and

(x, p(x, n)) ∈ P ,
(fp(x,n)(x), g(x, n)) ∈ G,

(f (p+g)(x,n)(x), s(x, n)) ∈ S.

The following is [CT16, Theorem 5.5].

Theorem 5.2. Let X be a compact metric space, f : X → X a home-
omorphism, and ϕ : X → R a continuous function. Suppose that
P⊥exp(ϕ) < P (ϕ) and X × N admits a decomposition (P ,G,S) with
the following properties:

(I) G has specification at every scale;
(II) ϕ has the Bowen property on G;

(III) P (P ∪ S, ϕ) < P (ϕ).
Then f has a unique equilibrium measure µϕ.

We describe two examples for which Theorem 5.2 applies. One of
them is the Mañé example [Mañ78], which was introduced as an exam-
ple of a robustly transitive diffeomorphism that is not Anosov. This
“derived from Anosov” example is obtained by taking a 3-dimensional
hyperbolic toral automorphism with one unstable direction and per-
forming a pitchfork bifurcation in Ecs near the fixed point so that Ec

becomes weakly expanding in that neighborhood. One obtains a par-
tially hyperbolic diffeomorphism with a splitting Es⊕Ec⊕Eu such that
Ec “contracts on average” with respect to the Lebesgue measure; this
falls under the results in [AdCJ04] mentioned above, and its inverse
map (for which Ec “expands on average”) is covered by [AP10, AL15].

Now given any Hölder continuous potential ϕ : T3 → R, it is shown
in [CFT15] that there is a C1-open class of Mañé examples for which
this potential has a unique equilibrium state. In particular, when f

34One can sum up the situation by saying that “the pressure of obstructions
to specification is small”. A related idea of studying shift spaces for which “the
entropy of constraints is small” appeared in [Buz05], where Buzzi studied shifts of
quasi-finite type. For more details on the relationship between the two notions,
see [Cli15], especially Theorem 1.4.
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is C2, there is an interval (t0, t1) ⊃ [0, 1] such that the geometric t-
potential −t log | det(df |Ecu)| has a unique equilibrium state for every
t ∈ (t0, t1), and ϕ1 is the unique SRB measure.

A related second example is the Bonatti–Viana example introduced
in [BV00]. Here one takes a 4-dimensional hyperbolic toral automor-
phism with dimEs = dimEu = 2, and makes two perturbations, one in
the Es-direction and another one in the Eu-direction. The first pertur-
bation creates a pitchfork bifurcation as above in Es and then “mixes
up” the two directions in Es so that there is no invariant subbundle of
Es; the second perturbation does a similar thing to Eu. One obtains
a map with a dominated splitting Ecs ⊕ Ecu that has no uniformly
hyperbolic subbundles.

The same approach as above works for the Bonatti–Viana examples,
which have a dominated splitting but are not partially hyperbolic; see
[CFT15]. In this case the presence of non-uniformity in both the stable
and unstable directions makes tower constructions more difficult, and
no Gibbs-Markov-Young structure has been built for these examples.
Earlier results on thermodynamics of these examples (and the Mañé
examples) were given in [BFSV12, BF13], which proved existence of
a unique MME. These results make strong use of the semi-conjugacy
between the examples and the original toral automorphisms, and in
particular do not generalize to equilibrium states corresponding to non-
zero potentials.

Finally, the flow version of Theorem 5.2 can be applied to geodesic
flow in nonpositive curvature. Geodesic flow in negative curvature is
one of the classical examples of an Anosov flow [Ano69], and in particu-
lar it has unique equilibrium states with strong statistical properties.35

If M is a smooth rank 1 manifold with nonpositive curvature, then its
geodesic flow is non-uniformly hyperbolic. Bernoullicity of the regular
component of the Liouville measure was shown by Pesin [Pes77]. It
was shown by Knieper [Kni98] that there is a unique measure of maxi-
mal entropy; his proof uses powerful geometric tools and does not seem
to generalize to non-zero potentials. Using non-uniform specification,
Knieper’s result can be extended to the geometric t-potential for t ≈ 0,
and when dimM = 2, it works for any t ∈ (−∞, 1), showing that the
pressure function is differentiable on this interval and we recover the
same picture as for Manneville–Pomeau [BCFT15].

In each of the above examples, the basic idea is as follows: one
identifies a “bad set” B ⊂ X with the properties that

35Although the issue of decay of correlations is more subtle because it is a flow,
not a map; see [Dol98], among others.
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(1) the system has uniformly hyperbolic properties outside of B;
(2) trajectories spending all (or almost all) of their time in B carry

small pressure relative to the whole system.
For the Mañé and Bonatti–Viana examples, B is the neighborhood
where the perturbation is carried out; for the geodesic flow, B is a
small neighborhood of the singular set.

Given an orbit segment (x, n), let G(x, n) = 1
n
#{0 ≤ k < n | fkx <

B} be the proportion of time that the orbit segment spends in the
“good” part of the system.36 A decomposition of the space of orbit
segments X × N is obtained by fixing a threshold γ > 0 and taking

P = S = {(x, n) | G(x, n) < γ},
G = {(x, n) | G(x, k) ≥ γ,G(fkx, n− k) ≥ γ for all 0 ≤ k ≤ n}.

Indeed, given any (x, n) ∈ X ×N, one can take p and s to be maximal
such that (x, p) ∈ P and (fn−sx, s) ∈ S, and use additivity of G
along orbit segments to argue that (fpx, n− p− s) ∈ G, which yields a
decomposition X×N = PGS. Then one makes the following arguments
to apply Theorem 5.2.

• Assumption (1) above leads to hyperbolic estimates along tra-
jectories in G, which can be used to prove specification for G
(condition (I) in Theorem 5.2) and the Bowen property on G
for Hölder continuous potentials (condition (II)).
• Assumption (2) gives the pressure estimate P (P∪S, ϕ) < P (ϕ)

from (III).
• The expansion estimates along G and the pressure estimates on
P and S also yield P⊥exp(ϕ) < P (ϕ).

This approach establishes existence and uniqueness, and yields some
statistical properties such as large deviations estimates. However, it
does not yet give stronger statistical results such as a rate of decay
of correlations, or the CLT. In the setting when X is a shift space
with non-uniform specification, results along these lines have recently
been established [Cli15] by using conditions (I)–(III) (or closely re-
lated ones) to build a tower with exponential tails, but it is not yet
clear how this result extends to the smooth setting.

6. The geometric approach

6.1. Geometric construction of SRB measures.

36For flows one should make the obvious modifications, replacing N by [0,∞)
and cardinality with Lebesgue measure.
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6.1.1. Idea of construction. Having discussed constructions of SRB and
equilibrium measures via Markov dynamics (SFTs and Young towers)
and via coarse-graining (expansivity and specification), we turn our
attention now to a third approach, which is in some sense more natural
and more simple-minded. The first two approaches addressed not just
existence but also questions of uniqueness and statistical properties;
the price to be paid for these stronger results is that the construction
of a tower (or even the verification of non-uniform specification) may
be difficult in many examples. The approach that we now describe
is best suited to prove existence, rather than uniqueness or statistical
properties, but has the advantage that it seems easier to verify.

We start by discussing SRB measure, which for dissipative systems
plays the role of Lebesgue measure in conservative systems and is the
most natural measure from the physical point of view. So in trying to
find an SRB measure, it is natural to start with Lebesgue measure itself;
while it may not be invariant, we will follow the standard Bogolubov–
Krylov procedure of taking a non-invariant measure m, average it under
the dynamics to produce the sequence

(6.1) µn = 1
n

n−1∑
k=0

fk∗m,

and pass to a weak*-convergent subsequence µnj
→ µ; then µ is f -

invariant. If we do this starting with Lebesgue measure as our reference
measure m, then it is reasonable to expect that the limiting measure
will have something to do with Lebesgue, and may even be an SRB
measure.37

At an intuitive level, this approach is consistent with Viana’s con-
jecture [Via98] that nonzero Lyapunov exponents imply existence of
an SRB, since this should be exactly the setting in which the iter-
ates of Lebesgue spread out along the unstable manifolds and converge
in average to a measure that is absolutely continuous in the unstable
direction. Now we describe how it can be made precise.

6.1.2. Uniform geometry: uniform and partial hyperbolicity. In the
uniformly hyperbolic setting, this approach can be carried out as fol-
lows. Let R be the set of all standard pairs (W, ρ), where W is a
small piece of unstable manifold and ρ : W → (0,∞) is integrable with
respect to mW , the leaf volume on W . Let Mac be the set of all (not
necessarily invariant) probability measures µ on the manifold M that

37In general, though, the measure µ may be quite trivial – just consider the point
mass at an attracting fixed point
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can be expressed as

(6.2) µ(E) =
∫
R

∫
W∩E

ρ(x) dmW (x) dζ(W, ρ)

for some measure ζ on R; in other words, µ admits a decomposition (in
the sense of Fubini’s theorem) along unstable local manifolds, in which
conditional measures are leaf-volumes. Then one can show thatMac∩
M(f) is precisely the set of SRB measures for f . Moreover, Lebesgue
measure m is in Mac and thus since images of unstable manifolds can
be decomposed into small pieces of unstable manifolds, we have fk∗m ∈
Mac for all k ∈ N, so the averaged measures given by (6.1) are inMac

as well.
In order to pass to the limit and obtain µ ∈ Mac one needs a little

more control. Fixing K > 0, let RK be the set of all standard pairs
(W, ρ) such that W has size at least 1/K, and ρ : W → [1/K,K] is
Hölder continuous with constant K. Then defining Mac

K using (6.2)
with RK in place of R, one can show that Mac

K is weak* compact and
is f∗-invariant for large enough K. This is basically a consequence
of the Arzelà–Ascoli theorem and the fact that f uniformly expands
unstable manifolds; in particular it relies strongly on the uniform hy-
perbolicity assumption. Then µn ∈ Mac

K for all n by invariance, and
by compactness, µ = limµnj

∈Mac
K ∩M(f) is an SRB measure. Thus

we have the following statement.
Theorem 6.1. Let Λ be a hyperbolic attractor for f and assume that
f |Λ is topologically transitive. If the reference measure m is the restric-
tion of the Lebesgue measure to a neighborhood of Λ, then the sequence
of measures (6.1) converges and the limit measure is the unique SRB
measure for f .

Now consider the setting where f is partially hyperbolic, i.e., for
every point x the tangent space splits TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x)
into stable, central, and unstable subspaces respectively with uniform
contraction along Es(x), uniform expansion along Eu(x), and possi-
ble contractions and/or expansions along Ec(x) with rates which are
weaker than the corresponding rates along Es(x) and Eu(x).

In the situation where the centre-unstable direction Ecu is only non-
uniformly expanding more care must be taken with the above approach
becauseMac

K may no longer be f∗-invariant: even if W is a “sufficiently
large” local unstable manifold, its image f(W ) may be smaller than
1/K, and similarly the Hölder constant of the density ρ can get worse
under the action of f∗ if W is contracted by f .

The solution is to use hyperbolic times, which were introduced by
Alves [Alv00]. Roughly speaking, a time n is hyperbolic for a point x
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if dfk|Eu(fn−kx) is uniformly expanding for every 0 ≤ k ≤ n. If W is
a local unstable manifold around x and n is a hyperbolic time for x,
then fn(W ) contains a large neighborhood of fn(x), and the density ρ
behaves well under fn∗ . Thus from the point of view of the construction
above, the key property of hyperbolic times is that if Hn is the set of
all points x for which n is a hyperbolic time, then the measures

(6.3) νn := 1
n

n−1∑
k=0

fk∗ (m|Hk)

are all contained in Mac
K (after rescaling to obtain a probability mea-

sure). As long as νn 6→ 0, one concludes that µ = lim νnk
∈ M(f) has

some ergodic component in Mac
K , which must be an SRB measure. To

get the lower bound on the total weight of νn, one needs a lower bound
on 1

n

∑n−1
k=0 m(Hk), which can be obtained using Pliss’ lemma as long

as a positive Lebesgue measure set of points have positive Lyapunov
exponents along Ecu.

One can also construct the SRB measure by beginning “within the
attractor”: instead of using Lebesgue measure on M as the starting
point for the sequence (6.1), one can let mu be leaf volume along a
local unstable manifold and then consider the sequence

(6.4) νn(x) = 1
n

n−1∑
k=0

fk∗m
u(x).

If the attractor Λ is uniformly hyperbolic, the sequence of measures
6.4 converges and the limit measure is a unique SRB measure for f .
In the partially hyperbolic setting, it was shown by Pesin and Sinai
[PS82] that every limit measure ν of the sequence of measures 6.4
is a u-measure on Λ: that is, the conditional measures it generates
on local unstable manifolds are absolutely continuous with respect to
the leaf-volume on these manifolds. What prevents ν from being an
SRB measure in general is that the Lyapunov exponents in the central
direction can be positive or zero.

Several results are available that establish existence (and in some
cases uniqueness) of SRB measures under some additional requirements
on the action of the system along the central direction Ec or central-
unstable direction Ecu. For example the case of systems with mostly
contracting central directions was carried out in [BV00, BDPP08] and
with mostly expanding central directions in [ABV00]. A more general
case of systems whose central direction is weakly expanding was studied
in [ADLP14].

In these settings one at least has a dominated splitting, which gives
the system various uniform geometric properties, even if the dynamics
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is non-uniform. To extend this approach to settings where the ge-
ometry is non-uniform (no dominated splitting, stable and unstable
directions vary discontinuously) some new tools are needed. An im-
portant observation (which holds in the uniform case as well) is that
for many purposes we can replace V u(x) itself with a local manifold
passing through x that is C1-close to V u(x). Such a manifold is called
admissible, and in the next section will develop the machinery of stan-
dard pairs, the class of measures Mac, and the sequences of measures
(6.4) using admissible manifolds in place of unstable manifolds.

6.1.3. Non-uniform geometry: effective hyperbolicity. The difficulties
encountered in the geometrically non-uniform setting can be overcome
by the machinery of ‘effective hyperbolicity’ from [CP16, CDP15]. This
approach has the advantage that the requirements on the system ap-
pear weaker, and much closer to the Viana conjecture. The drawback
of this approach is that it is currently out of reach to use it to establish
exponential (or even polynomial) decay of correlations and the CLT.

Let U be a neighborhood of the attractor Λ for a C1+ε diffeomor-
phism, and consider a forward invariant set S ⊂ U on which there are
two measurable cone families Ks(x) = Ks(x,Es(x), θ) and Ku(x) =
Ku(x,Es(x), θ) that are

• invariant: Df(Ku(x)) ⊂ Ku(fx) andDf−1(Ks(fx)) ⊂ Ks(x);
• transverse: TxM = Es(x)⊕ Eu(x).

Given x ∈ S, consider the expansion and contraction coefficients

λu(x) := inf{log ‖Df(v)‖ | v ∈ Ku(x), ‖v‖ = 1},
λs(x) := sup{log ‖Df(v)‖ | v ∈ Ks(x), ‖v‖ = 1},

and the defect from domination

∆(x) := max(0, 1
ε
(λs(x)− λu(x));

note that ∆(x) = 0 whenever λu(x) > λs(x), so the defect only comes
into play when the stable cone expands more than the unstable cone.
The coefficient of effective hyperbolicity is

(6.5) λ(x) := min(λu(x)−∆(x),−λs(x));

thus λ(x) > 0 whenever the system “behaves hyperbolically” at x,
while λ(x) ≤ 0 when one of the following happens:

• some stable vectors expand (so −λs(x) < 0); or
• some unstable vectors contract (so λu(x) < 0); or
• the defect from domination is greater than the expansion in the

unstable cone (so λu(x)−∆(x) < 0).
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Let α(x) be the angle between the cones Ks(x) and Ku(x), and given
a threshold ᾱ > 0, let

ρᾱ(x) := lim
n→∞

1
n

#{0 ≤ k < n | α(fkx) < ᾱ}

be the asymptotic upper bound on how often the angle drops below
that threshold. Notice that in the case of a dominated splitting, α(x)
is uniformly bounded away from 0, so there is ᾱ > 0 with ρᾱ(x) = 0
for every x; however, for a system with non-uniform geometry it may
be the case that every ᾱ > 0 has points with ρᾱ(x) > 0.

With the above notions in mind, we consider the following set of
points:

S ′ = {x ∈ S | lim
n→∞

1
n

n−1∑
k=0

λ(fkx) > 0 and lim
ᾱ→0

ρᾱ(x) = 0}.

Thus S ′ contains points for which the average asymptotic rate of effec-
tive hyperbolicity is positive, and for which the asymptotic frequency
with which the angle between the cones degenerates can be made ar-
bitrarily small. Then we have the following result, which is a step
towards Viana’s conjecture.

Theorem 6.2 ([CDP15]). If S ′ has positive volume then f has an SRB
measure.

6.1.4. Idea of proof. The construction of an SRB measure in the setting
of Theorem 6.2 follows the same averaging idea as in §§6.1.1–6.1.2: if
µn is the sequence of measures given by (6.1), then one wish to show
that a uniformly large part of µn lies in the set of “uniformly absolutely
continuous” measures Mac

K .
In this more general setting the definition of Mac

K is significantly
more involved. Broadly speaking, in the definition of R we must
replace unstable manifolds W with admissible manifolds; an ad-
missible manifold W through a point x ∈ S is a smooth subman-
ifold such that TxW ⊂ Ku(x) and W is the graph of a function
ψ : Bu(r) ⊂ Eu(x) → Es(x), such that Dψ is uniformly bounded and
is uniformly Hölder continuous. The Hölder constant for Dψ can be
thought of as the “curvature” of W .

When the geometry is uniform as in the previous setting, the image
of an admissible manifold W is itself admissible; this is essentially the
classical Hadamard–Perron theorem. In the more general case this is no
longer true; although fn(W ) contains an admissible manifold, its size
and curvature may vary with time n, with the size becoming arbitrarily
small and the curvature arbitrarily large. In this setting a version of
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the Hadamard–Perron theorem was proved in [CP16] that gives good
bounds on fn(W ) when n is an effective hyperbolic time for x ∈ W ;
that is, when

n−1∑
j=k

λ(f jx) ≥ χ(n− k)

for every 0 ≤ k < n, where χ > 0 is a fixed rate of effective hyper-
bolicity.

The set of effective hyperbolic times is a subset of the set of hyper-
bolic times; the extra conditions in the definition of effective hyperbolic
time guarantee that we can control the dynamics of f on the manifold
itself, not just the dynamics of df on the tangent bundle. In the uni-
form geometry setting from earlier, this extension came for free for
hyperbolic times.

With the notion of effective hyperbolic times, the approach outlined
in §§6.1.1–6.1.2 can be carried out. One must add some more conditions
to the collectionR; most notably, one must fix n ∈ N and then consider
only admissible manifolds W for which

d(f−k(x), f−k(y)) ≤ Ce−χkd(x, y) for all 0 ≤ k ≤ n and x, y ∈ W,

and then defineMac
K,n using only this class of admissible manifolds. In

addition to size of W and regularity of ρ, the constant K must also be
chosen to govern the curvature of W , but we omit details here. The
point is that the setMac

K,n is compact, but not f∗-invariant, and so the
proof of Theorem 6.2 can be completed via the following steps.

(1) Writing Hn for the set of points with n as an effective hyper-
bolic time, use Pliss’ lemma and the assumption that S ′ has
positive volume to show that Hn has positive Lebesgue mea-
sure on average.

(2) Use the effective Hadamard–Perron theorem from [CP16] to
show that νn := 1

n

∑n−1
k=0 f

k
∗ ∈ Mac

K,n, and use the bound from
the previous step to get a lower bound on the total weight of
νn.

(3) Write µn = νn + ζn and argue from general principles that if
µnk
→ µ, then µ has an ergodic component in Mac; moreover,

this ergodic component is hyperbolic and f -invariant, so it is
an SRB measure.

6.2. Constructing equilibrium measures. A natural next step is
to extend the above procedure to study general equilibrium states, and
not just SRB measures. The direct analogue of the previous section
has not yet been fully developed, and we describe instead a related
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approach that is also based on studying how densities transform under
the dynamics.

First consider the case of a piecewise expanding interval map, and
the question of finding an SRB measure. In this case there is no sta-
ble direction, and so we do not have to keep track of the “shape” of
unstable manifolds, or admissible manifolds; indeed, a local unstable
manifold is just a small piece of the interval, and an SRB measure is
just an invariant measure that is absolutely continuous with respect to
Lebesgue. Thus the entire problem is reduced to the following ques-
tion: given a (not necessarily invariant) absolutely continuous measure
µ � m, how is the density function of its image f∗µ related to the
density function of µ? One ends up defining a transfer operator L
with the property that if dµ = h dx, then d(f∗µ) = (Lh) dx. Questions
about the existence of an absolutely continuous invariant measure, and
its statistical properties, can be reduced to questions about the transfer
operator L.

The central issue in studying L is the problem of finding a Banach
space B (of functions) on which L acts “with good spectral properties”.
Generally speaking this means that 1 is a simple eigenvalue of L (so
there is a unique fixed point h = Lh, which corresponds to the unique
absolutely continuous invariant measure) and the rest of the spectrum
of L lies inside a disc of radius r < 1, which guarantees exponential
decay of correlations and other statistical properties.

For piecewise expanding interval maps, this was accomplished by La-
sota and Yorke [LY73], and the approach can be adapted to equilibrium
states for other potential functions by considering a transfer operator
that depends on the potential in an appropriate way. A thorough ac-
count of this approach is given in [Bal00].

The mechanism that drives this approach is that the expansion of the
dynamics acts to “smooth out” the density function; irregularities in
the function h are made milder by passing to Lh. (The precise meaning
of this statement depends on the particular choice of Banach space B,
and is encoded by the Lasota–Yorke inequality, which we do not pursue
further here.) But this means that one runs into problems when going
from expanding interval maps to hyperbolic diffeomorphisms, where
there is a non-trivial stable direction; the contracting dynamics in the
stable direction make irregularities in the function worse!

In the classical approach to uniformly hyperbolic systems, this was
dealt with by passing to a symbolic coding by an SFT (as described
after Theorem 1.1) and then replacing the two-sided SFT Σ ⊂ AZ by
its one-sided version Σ+ ⊂ AN. As described after Theorem 1.3, the
transfer operator L has an eigenfunction h ∈ C(Σ+), and its dual L∗
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has an eigenmeasure ν ∈ C(Σ+)∗; combining them gives the equilib-
rium state dµ = h dν. Note that positive indices of an element of Σ
code the future of a trajectory, while negative indices code the past,
and so dynamically, passing from Σ to Σ+ can be interpreted as “for-
getting the past”. Geometrically, this means that we conflate points
lying on the same local stable manifold; taking a quotient in the stable
direction eliminates the problem described in the previous paragraph,
where contraction in the stable direction exacerbates irregularities in
the density function.

More recent work has shown that this problem can be addressed
without the use of symbolic dynamics. The key is to consider a Banach
space B whose elements are not functions, but are rather objects that
behave like functions in the unstable direction, and like distributions
in the stable direction. For SRB measures, this was carried out in
[BKL02, GL06, BT07]. A further generalization to equilibrium states
for other potential functions was given in [GL08]; as with expanding
interval maps, this requires working with a transfer operator L that
depends on the potential. Moreover, instead of distributions along
the stable direction, one must consider a certain class of “generalized
differential forms”. We refer the reader to [GL08, §7] for a comparison
of this approach to equilibrium states and other related approaches,
including the technique of “standard pairs”.

It remains an open problem to extend this approach to the non-
uniformly hyperbolic setting.

6.3. Ergodic properties. An important open question is to study
uniqueness and statistical properties of the SRB measure produced
in Theorem 6.2, or of any equilibrium states that may be produced
by an analogous result for other potentials. One potential approach
is to study the standard pairs (W, ρ) and derive statistical properties
via coupling techniques, as was done by Chernov and Dolgopyat in
another setting [CD09].38 One might also hope to adapt the functional
analytic approach from §6.2 into the non-uniformly hyperbolic setting
and obtain statistical properties this way. For now, though, we only
mention results on Bernoullicity and hyperbolic product structure.

6.3.1. SRB measures. By a result of Ledrappier [Led84], a hyperbolic
SRB measure has at most countably many ergodic components and
every hyperbolic SRB measure is Bernoulli up to a finite period. It
follows that there may exist at most countably many ergodic SRB

38Coupling techniques are also at the heart of Young’s tower results for subex-
ponential mixing rates [You99].
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measures on Λ. One way to ensure uniqueness of SRB measures is to
show that its every ergodic component is open (mod 0) in the topology
of Λ and that f |Λ is topologically transitive.

6.3.2. Equilibrium measures. Let µ be a hyperbolic ergodic measure
for a C1+α diffeomorphism f . Given ` > 0, consider the regular set Γ`,
which consists of points x ∈ Γ whose local stable V s(x) and unstable
V u(x) manifolds have size at least 1/`. For x ∈ Γ` and some sufficiently
small r > 0 let R`(x, r) = ⋃

y∈Au(x) V
s(y) be a rectangle at x, where

Au(x) is the set of points of intersection of V u(x) with local stable
manifolds V s(z) for z ∈ Γ` ∩B(x, r). We denote by

• π : V u(z1) → V u(z2) with z1, z2 ∈ R`(x, r) ∩ Γ` the holonomy
map generated by local stable manifolds;
• µu(z) the conditional measure generated by µ on local unstable

manifolds V u(z).
Say that µ has a direct product structure if the holonomy map is
absolutely continuous with the Jacobian uniformly bounded away from
0 and ∞ on R`(x, r).

Conjecture 6.3. If µ is a hyperbolic ergodic equilibrium measure for the
geometric t-potential for a C1+α diffeomorphism f , then µ has a direct
product structure.

If true, this would imply that µ has some “nice” ergodic proper-
ties; for example, it has at most countably many ergodic components.
Similar results have recently been established (using the symbolic ap-
proach) for two-dimensional diffeomorphisms and three-dimensional
flows [Sar11, LLS15].

We conclude with a conjecture on the relationship between effective
hyperbolicity (from §6.1) and decay of correlations. Suppose that Λ
is an attractor with trapping region U , and that we have invariant
measurable transverse cone families defined Lebesgue-a.e. in U , with
the property that there is χ > 0 for which

S ′ = {x ∈ U | lim
n→∞

1
n

n−1∑
k=0

λ(fkx) > χ and lim
ᾱ→0

ρᾱ(x) = 0}

has full Lebesgue measure in U . Consider for each N ∈ N the set

XN = {x ∈ U |
n−1∑
k=0

λ(fkx) > χn for all n > N},

and note that the assumption on S ′ guarantees that m(U \ XN) → 0
as N →∞.
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Conjecture 6.4. If m(U \ XN) decays exponentially in N , then the
SRB measure µ produced by Theorem 6.2 has exponential decay of
correlations.

Some support for this conjecture is provided by the fact that the anal-
ogous result for partially hyperbolic attractors with mostly expanding
central direction was proved in [AL15].
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and Bonatti–Viana, Preprint, 70 pages, arXiv:1505.06371, 2015.

[CK01] N. Chernov and D. Kleinbock, Dynamical Borel-Cantelli lemmas for
Gibbs measures, Israel J. Math. 122 (2001), 1–27. MR 1826488

[Cli15] Vaughn Climenhaga, Specification and towers in shift spaces, Preprint,
66 pages, arXiv:1502.00931, 2015.

http://arxiv.org/abs/1405.6194
http://arxiv.org/abs/1505.06371
http://arxiv.org/abs/1502.00931


THERMODYNAMICS FOR NON-UNIFORMLY HYPERBOLIC MAPS 49

[CLR08] Yongluo Cao, Stefano Luzzatto, and Isabel Rios, The boundary of hy-
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