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Physically meaningful invariant measures

M a compact Riemannian manifold

f : M → M a C 1+ε local diffeomorphism

M the space of Borel measures on M

M(f ) = {µ ∈ M | µ is f -invariant}

Birkhoff ergodic theorem. If µ ∈ M(f ) is ergodic then it describes
the statistics of µ-a.e. trajectory of f : for every integrable ϕ,

lim
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)) =

∫

ϕ dµ
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Physically meaningful invariant measures

M a compact Riemannian manifold

f : M → M a C 1+ε local diffeomorphism

M the space of Borel measures on M

M(f ) = {µ ∈ M | µ is f -invariant}

Birkhoff ergodic theorem. If µ ∈ M(f ) is ergodic then it describes
the statistics of µ-a.e. trajectory of f : for every integrable ϕ,

lim
n→∞

1

n

n−1
∑

k=0

ϕ(f k(x)) =

∫

ϕ dµ

To be “physically meaningful”, a measure should describe the
statistics of Lebesgue-a.e. trajectory.
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Definition of SRB measure
Some known results

SRB measures

Smooth/absolutely continuous invariant measures are
physically meaningful, but. . .

. . . many systems are not conservative.

Interesting dynamics often happen on a set of Lebesgue
measure zero.

“absolutely continuous”  “a.c. on unstable manifolds”

µ ∈ M(f ) is an SRB measure if

1 all Lyapunov exponents non-zero;

2 µ has a.c. conditional measures on unstable manifolds.

SRB measures are physically meaningful. Goal: Prove existence of
an SRB measure.
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Uniform geometric structure

SRB measures are known to exist in the following settings.

Uniformly hyperbolic f (Sinai, Ruelle, Bowen)

Partially hyperbolic f with positive/negative central exponents
(Alves–Bonatti–Viana, Burns–Dolgopyat–Pesin–Pollicott)

Key tool is a dominated splitting TxM = E s(x) ⊕ Eu(x).

1 E s , Eu depend continuously on x .

2 ∡(E s ,Eu) is bounded away from 0.

Both conditions fail for non-uniformly hyperbolic f .
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Non-uniformly hyperbolic maps

The Hénon maps fa,b(x , y) = (y + 1 − ax2, bx) are a perturbation
of the family of logistic maps ga(x) = 1 − ax2.

1 ga has an absolutely continuous invariant measure for “many”
values of a. (Jakobson)

2 For b small, fa,b has an SRB measure for “many” values of a.
(Benedicks–Carleson, Benedicks–Young)

3 Similar results for “rank one attractors” – small perturbations
of one-dimensional maps with non-recurrent critical points.
(Wang–Young)

Genuine non-uniform hyperbolicity, but only one unstable direction,
and stable direction must be strongly contracting.
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Constructing invariant measures

f acts on M by f∗ : m 7→ m ◦ f −1.

Fixed points of f∗ are invariant measures.

Césaro averages + weak* compactness ⇒ invariant measures:

µn = 1
n

∑n−1
k=0 f k

∗
m µnj

→ µ ∈ M(f )
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Constructing invariant measures

f acts on M by f∗ : m 7→ m ◦ f −1.

Fixed points of f∗ are invariant measures.

Césaro averages + weak* compactness ⇒ invariant measures:

µn = 1
n

∑n−1
k=0 f k

∗
m µnj

→ µ ∈ M(f )

Idea: m = volume ⇒ µ is an SRB measure.

H = {x ∈ M | all Lyapunov exponents non-zero at x}

S = {ν ∈ M | ν(H) = 1, ν a.c. on unstable manifolds}

S ∩M(f ) = {SRB measures}

S is f∗-invariant, so µn ∈ S for all n.

S is not compact. So why should µ be in S?
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Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V :

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V .
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Decomposing the space of invariant measures
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Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V :

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V .

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}.
This set of measures has various non-uniformities.

1 Value of C , λ in definition of n-admissibility.
2 Size and curvature of admissible manifolds.
3 ‖ρ‖ and ‖1/ρ‖, where ρ is density wrt. leaf volume.
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Decomposing the space of invariant measures
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Non-uniform hyperbolicity in M

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V :

d(f −k(x), f −k(y)) ≤ Ce−λkd(x , y) for all 0 ≤ k ≤ n and x , y ∈ V .

Sn = {ν supp. on and a.c. on n-admissible manifolds, ν(H) = 1}.
This set of measures has various non-uniformities.

1 Value of C , λ in definition of n-admissibility.
2 Size and curvature of admissible manifolds.
3 ‖ρ‖ and ‖1/ρ‖, where ρ is density wrt. leaf volume.

Given K > 0, let Sn(K ) be the set of measures for which these
non-uniformities are all controlled by K .

large K ⇒ worse non-uniformity

Sn(K ) is compact, but not f∗-invariant.
SRB measures for non-uniformly hyperbolic systems
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Recurrence to compact sets

Conditions for existence of an SRB measure

M be a compact Riemannian manifold, U ⊂ M open,
f : U → M a local diffeomorphism with f (U) ⊂ U.

Let µn be a sequence of measures whose limit measures are all
invariant.

Fix K > 0, write µn = νn + ζn, where νn ∈ Sn(K ).

Theorem (C.–Dolgopyat–Pesin, 2010)

If limn→∞ ‖νn‖ > 0, then some limit measure of {µn} has an

ergodic component that is an SRB measure for f .
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Decomposing the space of invariant measures
Recurrence to compact sets

Conditions for existence of an SRB measure

M be a compact Riemannian manifold, U ⊂ M open,
f : U → M a local diffeomorphism with f (U) ⊂ U.

Let µn be a sequence of measures whose limit measures are all
invariant.

Fix K > 0, write µn = νn + ζn, where νn ∈ Sn(K ).

Theorem (C.–Dolgopyat–Pesin, 2010)

If limn→∞ ‖νn‖ > 0, then some limit measure of {µn} has an

ergodic component that is an SRB measure for f .

The question now becomes: How do we obtain recurrence to the
set Sn(K )?
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Sequences of local diffeomorphisms
Frequency of large admissible manifolds

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a
sequence of local diffeomorphisms.

{f n(x) | n ≥ 0} is a trajectory of f

Un ⊂ Tf n(x)M is a neighbourhood of 0 small enough so that
the exponential map expf n(x) : Un → M is injective

fn : Un → R
d = Tf n+1(x)M is the map f in local coordinates
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Sequences of local diffeomorphisms
Frequency of large admissible manifolds

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a
sequence of local diffeomorphisms.

{f n(x) | n ≥ 0} is a trajectory of f

Un ⊂ Tf n(x)M is a neighbourhood of 0 small enough so that
the exponential map expf n(x) : Un → M is injective

fn : Un → R
d = Tf n+1(x)M is the map f in local coordinates

Suppose R
d = Tf n(x)M has an invariant decomposition Eu

n ⊕ E s
n

with asymptotic expansion (contraction) along Eu
n (E s

n ).

Dfn(0) = An ⊕ Bn

fn = Dfn(0) + sn

fn(v ,w) = (Anv + gn(v ,w),Bnw + hn(v ,w))

SRB measures for non-uniformly hyperbolic systems



Introduction
General method to build an SRB measure
A non-uniform Hadamard–Perron theorem

Sufficient conditions for existence of an SRB measure
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Controlling hyperbolicity and regularity

R
d = Eu

n ⊕ E s
n fn = (An ⊕ Bn) + sn

Start with an admissible manifold V0 tangent to Eu
0 at 0, push it

forward and define an invariant sequence of admissible manifolds
by Vn+1 = fn(Vn).

Vn = graphψn = {v + ψn(v)} ψn : B(Eu
n , rn) → E s

n

Need to control the size rn and the regularity ‖Dψn‖, |ψn|ε.
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Sequences of local diffeomorphisms
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Controlling hyperbolicity and regularity

R
d = Eu

n ⊕ E s
n fn = (An ⊕ Bn) + sn

Start with an admissible manifold V0 tangent to Eu
0 at 0, push it

forward and define an invariant sequence of admissible manifolds
by Vn+1 = fn(Vn).

Vn = graphψn = {v + ψn(v)} ψn : B(Eu
n , rn) → E s

n

Need to control the size rn and the regularity ‖Dψn‖, |ψn|ε.

Consider the following quantities:

λu
n = log(‖A−1

n ‖−1) λs
n = log ‖Bn‖

αn = ∡(Eu
n ,E

s
n ) Cn = ‖sn‖C1+ε
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Sequences of local diffeomorphisms
Frequency of large admissible manifolds

Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.
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Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.

Non-uniform case: λs
n, λ

u
n, αn still uniform, but Cn not.

Cn grows slowly ⇒ rn decays slowly
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Sequences of local diffeomorphisms
Frequency of large admissible manifolds

Classical Hadamard–Perron results

Uniform case: Constants such that

λs
n ≤ λ̄s < 0 < λ̄u < λu

n

αn ≥ ᾱ > 0

Cn ≤ C̄ <∞

Then Vn has uniformly large size: rn ≥ r̄ > 0.

Non-uniform case: λs
n, λ

u
n, αn still uniform, but Cn not.

Cn grows slowly ⇒ rn decays slowly

We want to consider the case where

λs
n < 0 < λu

n may fail (may even have λu
n < λs

n)

αn may become arbitrarily small

Cn may become arbitrarily large (no control on speed)

SRB measures for non-uniformly hyperbolic systems
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Sequences of local diffeomorphisms
Frequency of large admissible manifolds

Usable hyperbolicity

In order to define ψn+1 implicitly, we need control of the regularity
of ψn. Control ‖Dψn‖ and |Dψn|ε by decreasing rn if necessary. So
how do we guarantee that rn becomes “large” again?
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Sequences of local diffeomorphisms
Frequency of large admissible manifolds

Usable hyperbolicity

In order to define ψn+1 implicitly, we need control of the regularity
of ψn. Control ‖Dψn‖ and |Dψn|ε by decreasing rn if necessary. So
how do we guarantee that rn becomes “large” again?

βn = Cn(sinαn+1)
−1

Fix a threshold value β̄ and define the usable hyperbolicity:

λn =

{

min
(

λu
n, λ

u
n + 1

ε
(λu

n − λs
n)

)

if βn ≤ β̄,

min
(

λu
n, λ

u
n + 1

ε
(λu

n − λs
n),

1
ε
log βn

βn+1

)

if βn > β̄.
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A Hadamard–Perron theorem

Write Fn = fn−1 ◦ · · · ◦ f1 ◦ f0 : U0 → R
d = Tf n(x)M. Let V0 ⊂ R

d

be a C 1+ε manifold tangent to Eu
0 at 0, and let Vn(r) be the

connected component of Fn(V0) ∩ (B(Eu
n , r) × E s

n ) containing 0.

Theorem (C.–Dolgopyat–Pesin, 2010)

Suppose β̄ and χ̄ > 0 are such that limn→∞

1
n

∑n−1
k=0 λk > χ̄ > 0.

Then there exist constants γ̄, κ̄, r̄ > 0 and a set Γ ⊂ N with

positive lower asymptotic frequency such that for every n ∈ Γ,

1 Vn(r̄) is the graph of a C 1+ε function ψn : BEu
n
(r̄) → E s

n

satisfying ‖Dψn‖ ≤ γ̄ and |Dψn|ε ≤ κ̄;

2 if Fn(x),Fn(y) ∈ Vn(r̄), then for every 0 ≤ k ≤ n,

‖Fn(x) − Fn(y)‖ ≥ ekχ̄‖Fn−k(x) − Fn−k(y)‖.
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Cone families

Return to a local diffeomorphism f : U → M. Given x ∈ M, a
subspace E ⊂ TxM, and an angle θ, we have a cone

K (x ,E , θ) = {v ∈ TxM | ∡(v ,E ) < θ}.

If E , θ depend measurably on x , this defines a measurable cone
family. Suppose A ⊂ U has positive Lebesgue measure, is forward
invariant, and has two measurable cone families K s(x),Ku(x) s.t.

1 Df (Ku(x)) ⊂ Ku(f (x)) for all x ∈ A

2 Df −1(K s(f (x))) ⊂ K s(x) for all x ∈ f (A)

3 TxM = E s(x) ⊕ Eu(x)

SRB measures for non-uniformly hyperbolic systems
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Usable hyperbolicity (again)

Define λu, λs : A → R by

λu(x) = inf{log ‖Df (v)‖ | v ∈ Ku(x), ‖v‖ = 1},

λs(x) = sup{log ‖Df (v)‖ | v ∈ K s(x), ‖v‖ = 1}.

Let α(x) be the angle between the boundaries of K s(x) and
Ku(x). Fix ᾱ > 0 and consider the quantities

ζ(x) =

{

1
ε
log α(f (x))

α(x) if α(x) < ᾱ,

+∞ if α(x) ≥ ᾱ.

λ(x) = min

{

λu(x), λu(x) +
1

ε
(λu(x) − λs(x)), ζ(x)

}
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An existence result

Consider points with positive asymptotic usable hyperbolicity:

S =

{

x ∈ A
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}

.
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Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

S =

{

x ∈ A
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}

.

Theorem (C.–Dolgopyat–Pesin, 2010)

If there exists ᾱ > 0 such that LebS > 0, then f has a hyperbolic

SRB measure supported on Λ.
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Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

S =

{

x ∈ A
∣

∣

∣
lim

n→∞

1

n

n−1
∑

k=0

λ(f k(x)) > 0 and lim
n→∞

1

n

n−1
∑

k=0

λs(f k(x)) < 0

}

.

Theorem (C.–Dolgopyat–Pesin, 2010)

If there exists ᾱ > 0 such that LebS > 0, then f has a hyperbolic

SRB measure supported on Λ.

Theorem (C.–Dolgopyat–Pesin, 2010)

Fix x ∈ U. Let V (x) be an embedded submanifold such that

TxV (x) ⊂ Ku(x), and let mV be leaf volume on V (x). Suppose

that there exists ᾱ > 0 such that limr→0 mV (S ∩ B(x , r)) > 0.
Then f has a hyperbolic SRB measure supported on Λ.
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