SRB measures for non-uniformly hyperbolic systems

Vaughn Climenhaga University of Maryland

October 21, 2010

Joint work with Dmitry Dolgopyat and Yakov Pesin

Introduction and classical results

- Definition of SRB measure
- Some known results
- 2 General method to build an SRB measure
 - Decomposing the space of invariant measures
 - Recurrence to compact sets
- 3 A non-uniform Hadamard–Perron theorem
 - Sequences of local diffeomorphisms
 - Frequency of large admissible manifolds

4 Sufficient conditions for existence of an SRB measure

- Usable hyperbolicity
- Existence of an SRB measure

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure Definition of SRB measure Some known results

Physically meaningful invariant measures

- *M* a compact Riemannian manifold
- $f: M \to M$ a $C^{1+\varepsilon}$ local diffeomorphism
- ${\mathcal M}$ the space of Borel measures on M

•
$$\mathcal{M}(f) = \{\mu \in \mathcal{M} \mid \mu \text{ is } f \text{-invariant}\}$$

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure Definition of SRB measure Some known results

Physically meaningful invariant measures

- *M* a compact Riemannian manifold
- $f: M \to M$ a $C^{1+\varepsilon}$ local diffeomorphism
- ${\mathcal M}$ the space of Borel measures on M
- $\mathcal{M}(f) = \{\mu \in \mathcal{M} \mid \mu \text{ is } f \text{-invariant}\}$

Birkhoff ergodic theorem. If $\mu \in \mathcal{M}(f)$ is ergodic then it describes the statistics of μ -a.e. trajectory of f: for every integrable φ ,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x))=\int\varphi\,d\mu$$

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure Definition of SRB measure Some known results

Physically meaningful invariant measures

- *M* a compact Riemannian manifold
- $f: M \to M$ a $C^{1+\varepsilon}$ local diffeomorphism
- ${\mathcal M}$ the space of Borel measures on M
- $\mathcal{M}(f) = \{\mu \in \mathcal{M} \mid \mu \text{ is } f \text{-invariant}\}$

Birkhoff ergodic theorem. If $\mu \in \mathcal{M}(f)$ is ergodic then it describes the statistics of μ -a.e. trajectory of f: for every integrable φ ,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\varphi(f^k(x))=\int\varphi\,d\mu$$

To be "physically meaningful", a measure should describe the statistics of *Lebesgue*-a.e. trajectory.

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure

SRB measures

Definition of SRB measure Some known results

• Smooth/absolutely continuous invariant measures are physically meaningful, but...

・ 同 ト ・ ヨ ト ・ ヨ ト

э

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure

SRB measures

Definition of SRB measure Some known results

- Smooth/absolutely continuous invariant measures are physically meaningful, but...
- ... many systems are not conservative.
- Interesting dynamics often happen on a set of Lebesgue measure zero.

・ 同 ト ・ ヨ ト ・ ヨ ト

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure

SRB measures

Definition of SRB measure Some known results

- Smooth/absolutely continuous invariant measures are physically meaningful, but...
- ... many systems are not conservative.
- Interesting dynamics often happen on a set of Lebesgue measure zero.

"absolutely continuous" ~> "a.c. on unstable manifolds"

- $\mu \in \mathcal{M}(f)$ is an SRB measure if
 - all Lyapunov exponents non-zero;

2 μ has a.c. conditional measures on unstable manifolds.

SRB measures are physically meaningful. Goal: Prove existence of an SRB measure.

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure Definition of SRB measure Some known results

Uniform geometric structure

SRB measures are known to exist in the following settings.

- Uniformly hyperbolic f (Sinai, Ruelle, Bowen)
- Partially hyperbolic *f* with positive/negative central exponents (Alves-Bonatti-Viana, Burns-Dolgopyat-Pesin-Pollicott)

Key tool is a dominated splitting $T_x M = E^s(x) \oplus E^u(x)$.

- E^s , E^u depend continuously on x.
- (e^s, E^u) is bounded away from 0.

Both conditions fail for non-uniformly hyperbolic f.

伺 ト イ ヨ ト イ ヨ ト

General method to build an SRB measure A non-uniform Hadamard–Perron theorem Sufficient conditions for existence of an SRB measure Definition of SRB measure Some known results

Non-uniformly hyperbolic maps

The Hénon maps $f_{a,b}(x, y) = (y + 1 - ax^2, bx)$ are a perturbation of the family of logistic maps $g_a(x) = 1 - ax^2$.

- g_a has an absolutely continuous invariant measure for "many" values of a. (Jakobson)
- For b small, f_{a,b} has an SRB measure for "many" values of a. (Benedicks–Carleson, Benedicks–Young)
- Similar results for "rank one attractors" small perturbations of one-dimensional maps with non-recurrent critical points. (Wang-Young)

Genuine non-uniform hyperbolicity, but only one unstable direction, and stable direction must be strongly contracting.

・ロト ・同ト ・ヨト ・ヨト

Decomposing the space of invariant measures Recurrence to compact sets

Constructing invariant measures

- f acts on \mathcal{M} by $f_*: m \mapsto m \circ f^{-1}$.
- Fixed points of f_* are invariant measures.
- Césaro averages + weak* compactness \Rightarrow invariant measures:

$$\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k m \qquad \qquad \mu_{n_j} \to \mu \in \mathcal{M}(f)$$

周 ト イ ヨ ト イ ヨ ト

Decomposing the space of invariant measures Recurrence to compact sets

Constructing invariant measures

- f acts on \mathcal{M} by $f_*: m \mapsto m \circ f^{-1}$.
- Fixed points of f_* are invariant measures.
- Césaro averages + weak* compactness \Rightarrow invariant measures: $\mu_n = \frac{1}{n} \sum_{k=0}^{n-1} f_*^k m \qquad \mu_{n_i} \rightarrow \mu \in \mathcal{M}(f)$

Idea: m = volume $\Rightarrow \mu$ is an SRB measure.

 $H = \{x \in M \mid all \text{ Lyapunov exponents non-zero at } x\}$

 $\mathcal{S} = \{ \nu \in \mathcal{M} \mid \nu(\mathcal{H}) = 1, \nu \text{ a.c. on unstable manifolds} \}$

- $S \cap \mathcal{M}(f) = \{ SRB \text{ measures} \}$
- S is f_* -invariant, so $\mu_n \in S$ for all n.
- S is *not* compact. So why should μ be in S?

Decomposing the space of invariant measures Recurrence to compact sets

Non-uniform hyperbolicity in \mathcal{M}

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

 $d(f^{-k}(x), f^{-k}(y)) \leq Ce^{-\lambda k}d(x, y)$ for all $0 \leq k \leq n$ and $x, y \in V$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Decomposing the space of invariant measures Recurrence to compact sets

Non-uniform hyperbolicity in \mathcal{M}

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

$$d(f^{-k}(x), f^{-k}(y)) \leq Ce^{-\lambda k}d(x, y)$$
 for all $0 \leq k \leq n$ and $x, y \in V$.

 $S_n = \{\nu \text{ supp. on and a.c. on } n\text{-admissible manifolds, } \nu(H) = 1\}.$ This set of measures has various non-uniformities.

- **Q** Value of C, λ in definition of *n*-admissibility.
- Size and curvature of admissible manifolds.
- **③** $\|\rho\|$ and $\|1/\rho\|$, where ρ is density wrt. leaf volume.

伺 ト イ ヨ ト イ ヨ ト

Decomposing the space of invariant measures Recurrence to compact sets

Non-uniform hyperbolicity in \mathcal{M}

Theme in NUH: choose between invariance and compactness.

Replace unstable manifolds with n-admissible manifolds V:

$$d(f^{-k}(x), f^{-k}(y)) \leq Ce^{-\lambda k}d(x, y)$$
 for all $0 \leq k \leq n$ and $x, y \in V$.

 $S_n = \{\nu \text{ supp. on and a.c. on } n\text{-admissible manifolds, } \nu(H) = 1\}.$ This set of measures has various non-uniformities.

Q Value of C, λ in definition of *n*-admissibility.

Size and curvature of admissible manifolds.

③ $\|\rho\|$ and $\|1/\rho\|$, where ρ is density wrt. leaf volume.

Given K > 0, let $S_n(K)$ be the set of measures for which these non-uniformities are all controlled by K.

large $K \Rightarrow$ worse non-uniformity

 $S_n(K)$ is compact, but not f_* -invariant.

・ロト ・周ト ・ヨト ・ヨト

Decomposing the space of invariant measures Recurrence to compact sets

Conditions for existence of an SRB measure

- *M* be a compact Riemannian manifold, $U \subset M$ open, $f: U \to M$ a local diffeomorphism with $\overline{f(U)} \subset U$.
- Let μ_n be a sequence of measures whose limit measures are all invariant.
- Fix K > 0, write $\mu_n = \nu_n + \zeta_n$, where $\nu_n \in S_n(K)$.

Theorem (C.–Dolgopyat–Pesin, 2010)

If $\overline{\lim}_{n\to\infty} \|\nu_n\| > 0$, then some limit measure of $\{\mu_n\}$ has an ergodic component that is an SRB measure for f.

Decomposing the space of invariant measures Recurrence to compact sets

Conditions for existence of an SRB measure

- *M* be a compact Riemannian manifold, $U \subset M$ open, $f: U \to M$ a local diffeomorphism with $\overline{f(U)} \subset U$.
- Let μ_n be a sequence of measures whose limit measures are all invariant.
- Fix K > 0, write $\mu_n = \nu_n + \zeta_n$, where $\nu_n \in S_n(K)$.

Theorem (C.–Dolgopyat–Pesin, 2010)

If $\overline{\lim}_{n\to\infty} \|\nu_n\| > 0$, then some limit measure of $\{\mu_n\}$ has an ergodic component that is an SRB measure for f.

The question now becomes: How do we obtain recurrence to the set $S_n(K)$?

イロト イポト イヨト イヨト 二日

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a sequence of local diffeomorphisms.

- $\{f^n(x) \mid n \ge 0\}$ is a trajectory of f
- U_n ⊂ T_{fⁿ(x)}M is a neighbourhood of 0 small enough so that the exponential map exp_{fⁿ(x)}: U_n → M is injective
- $f_n \colon U_n \to \mathbb{R}^d = T_{f^{n+1}(x)}M$ is the map f in local coordinates

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Coordinates in TM

We use local coordinates to write the map f along a trajectory as a sequence of local diffeomorphisms.

- $\{f^n(x) \mid n \ge 0\}$ is a trajectory of f
- $U_n \subset T_{f^n(x)}M$ is a neighbourhood of 0 small enough so that the exponential map $\exp_{f^n(x)}: U_n \to M$ is injective

• $f_n: U_n \to \mathbb{R}^d = T_{f^{n+1}(x)}M$ is the map f in local coordinates

Suppose $\mathbb{R}^d = T_{f^n(x)}M$ has an invariant decomposition $E_n^u \oplus E_n^s$ with asymptotic expansion (contraction) along E_n^u (E_n^s).

$$Df_n(0) = A_n \oplus B_n$$

$$f_n = Df_n(0) + s_n$$

$$f_n(v, w) = (A_n v + g_n(v, w), B_n w + h_n(v, w))$$

・同 ・ ・ ヨ ・ ・ ヨ ・ …

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Controlling hyperbolicity and regularity

$$\mathbb{R}^d = E_n^u \oplus E_n^s \qquad \qquad f_n = (A_n \oplus B_n) + s_n$$

Start with an admissible manifold V_0 tangent to E_0^u at 0, push it forward and define an invariant sequence of admissible manifolds by $V_{n+1} = f_n(V_n)$.

$$V_n = \operatorname{graph} \psi_n = \{ v + \psi_n(v) \} \qquad \qquad \psi_n \colon B(E_n^u, r_n) \to E_n^s$$

Need to control the size r_n and the regularity $||D\psi_n||$, $|\psi_n|_{\varepsilon}$.

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Controlling hyperbolicity and regularity

$$\mathbb{R}^d = E_n^u \oplus E_n^s \qquad \qquad f_n = (A_n \oplus B_n) + s_n$$

Start with an admissible manifold V_0 tangent to E_0^u at 0, push it forward and define an invariant sequence of admissible manifolds by $V_{n+1} = f_n(V_n)$.

$$V_n = \operatorname{graph} \psi_n = \{ v + \psi_n(v) \} \qquad \qquad \psi_n \colon B(E_n^u, r_n) \to E_n^s$$

Need to control the size r_n and the regularity $||D\psi_n||$, $|\psi_n|_{\varepsilon}$. Consider the following quantities:

$$\lambda_n^u = \log(\|A_n^{-1}\|^{-1}) \qquad \qquad \lambda_n^s = \log\|B_n\|$$
$$\alpha_n = \measuredangle(E_n^u, E_n^s) \qquad \qquad C_n = \|s_n\|_{C^{1+\varepsilon}}$$

- A I - A I

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Classical Hadamard–Perron results

Uniform case: Constants such that

- $\lambda_n^s \leq \bar{\lambda}^s < 0 < \bar{\lambda}^u < \lambda_n^u$
- $\alpha_n \geq \bar{\alpha} > 0$
- $C_n \leq \bar{C} < \infty$

Then V_n has uniformly large size: $r_n \ge \overline{r} > 0$.

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Classical Hadamard–Perron results

Uniform case: Constants such that

- $\lambda_n^s \leq \bar{\lambda}^s < 0 < \bar{\lambda}^u < \lambda_n^u$
- $\alpha_n \geq \bar{\alpha} > 0$
- $C_n \leq \bar{C} < \infty$

Then V_n has uniformly large size: $r_n \ge \overline{r} > 0$.

Non-uniform case: λ_n^s , λ_n^u , α_n still uniform, but C_n not.

$$C_n$$
 grows slowly $\Rightarrow r_n$ decays slowly

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Classical Hadamard–Perron results

Uniform case: Constants such that

- $\lambda_n^s \leq \bar{\lambda}^s < 0 < \bar{\lambda}^u < \lambda_n^u$
- $\alpha_n \geq \bar{\alpha} > 0$
- $C_n \leq \bar{C} < \infty$

Then V_n has uniformly large size: $r_n \ge \overline{r} > 0$.

Non-uniform case: λ_n^s , λ_n^u , α_n still uniform, but C_n not.

$$C_n$$
 grows slowly $\Rightarrow r_n$ decays slowly

We want to consider the case where

- $\lambda_n^s < 0 < \lambda_n^u$ may fail (may even have $\lambda_n^u < \lambda_n^s$)
- α_n may become arbitrarily small
- C_n may become arbitrarily large (no control on speed)

Usable hyperbolicity

Sequences of local diffeomorphisms

In order to define ψ_{n+1} implicitly, we need control of the regularity of ψ_n . Control $||D\psi_n||$ and $|D\psi_n|_{\varepsilon}$ by decreasing r_n if necessary. So how do we guarantee that r_n becomes "large" again?

伺 ト イ ヨ ト イ ヨ ト

Sequences of local diffeomorphisms Frequency of large admissible manifolds

Usable hyperbolicity

In order to define ψ_{n+1} implicitly, we need control of the regularity of ψ_n . Control $||D\psi_n||$ and $|D\psi_n|_{\varepsilon}$ by decreasing r_n if necessary. So how do we guarantee that r_n becomes "large" again?

$$\beta_n = C_n (\sin \alpha_{n+1})^{-1}$$

Fix a threshold value $\bar{\beta}$ and define the usable hyperbolicity:

$$\lambda_n = \begin{cases} \min\left(\lambda_n^u, \ \lambda_n^u + \frac{1}{\varepsilon}(\lambda_n^u - \lambda_n^s)\right) & \text{if } \beta_n \leq \bar{\beta}, \\ \min\left(\lambda_n^u, \ \lambda_n^u + \frac{1}{\varepsilon}(\lambda_n^u - \lambda_n^s), \ \frac{1}{\varepsilon}\log\frac{\beta_n}{\beta_{n+1}}\right) & \text{if } \beta_n > \bar{\beta}. \end{cases}$$

Sequences of local diffeomorphisms Frequency of large admissible manifolds

A Hadamard–Perron theorem

Write $F_n = f_{n-1} \circ \cdots \circ f_1 \circ f_0 \colon U_0 \to \mathbb{R}^d = T_{f^n(x)}M$. Let $V_0 \subset \mathbb{R}^d$ be a $C^{1+\varepsilon}$ manifold tangent to E_0^u at 0, and let $V_n(r)$ be the connected component of $F_n(V_0) \cap (B(E_n^u, r) \times E_n^s)$ containing 0.

Theorem (C.–Dolgopyat–Pesin, 2010)

Suppose $\bar{\beta}$ and $\bar{\chi} > 0$ are such that $\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda_k > \bar{\chi} > 0$. Then there exist constants $\bar{\gamma}, \bar{\kappa}, \bar{r} > 0$ and a set $\Gamma \subset \mathbb{N}$ with positive lower asymptotic frequency such that for every $n \in \Gamma$,

- $V_n(\bar{r})$ is the graph of a $C^{1+\varepsilon}$ function $\psi_n \colon B_{E_n^{\omega}}(\bar{r}) \to E_n^s$ satisfying $\|D\psi_n\| \leq \bar{\gamma}$ and $|D\psi_n|_{\varepsilon} \leq \bar{\kappa}$;
- ② if $F_n(x)$, $F_n(y) \in V_n(\bar{r})$, then for every $0 \le k \le n$, $||F_n(x) - F_n(y)|| \ge e^{k\bar{\chi}} ||F_{n-k}(x) - F_{n-k}(y)||$.

・ロト ・同ト ・ヨト ・ヨト

Cone families

Usable hyperbolicity Existence of an SRB measure

Return to a local diffeomorphism $f: U \to M$. Given $x \in M$, a subspace $E \subset T_x M$, and an angle θ , we have a cone

$$K(x, E, \theta) = \{ v \in T_x M \mid \measuredangle(v, E) < \theta \}.$$

If E, θ depend measurably on x, this defines a measurable cone family. Suppose $A \subset U$ has positive Lebesgue measure, is forward invariant, and has two measurable cone families $K^{s}(x), K^{u}(x)$ s.t.

$$\ \, {\overline{Df(K^u(x))}} \subset K^u(f(x)) \ \, {\rm for \ all} \ \, x \in A$$

$$\ \ \, \overline{Df^{-1}(K^s(f(x)))} \subset K^s(x) \ \, \text{for all} \ \, x \in f(A)$$

$$T_x M = E^s(x) \oplus E^u(x)$$

Usable hyperbolicity Existence of an SRB measure

Usable hyperbolicity (again)

Define $\lambda^{u}, \lambda^{s} \colon A \to \mathbb{R}$ by

$$\begin{split} \lambda^{u}(x) &= \inf\{\log \|Df(v)\| \mid v \in \mathcal{K}^{u}(x), \|v\| = 1\}, \\ \lambda^{s}(x) &= \sup\{\log \|Df(v)\| \mid v \in \mathcal{K}^{s}(x), \|v\| = 1\}. \end{split}$$

Let $\alpha(x)$ be the angle between the boundaries of $K^{s}(x)$ and $K^{u}(x)$. Fix $\bar{\alpha} > 0$ and consider the quantities

$$\zeta(x) = \begin{cases} \frac{1}{\varepsilon} \log \frac{\alpha(f(x))}{\alpha(x)} & \text{if } \alpha(x) < \bar{\alpha}, \\ +\infty & \text{if } \alpha(x) \ge \bar{\alpha}. \end{cases}$$
$$\lambda(x) = \min \left\{ \lambda^{u}(x), \ \lambda^{u}(x) + \frac{1}{\varepsilon} (\lambda^{u}(x) - \lambda^{s}(x)), \ \zeta(x) \right\}$$

・ 同 ト ・ ヨ ト ・ ヨ

Usable hyperbolicity Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

$$S = \left\{ x \in A \ \Big| \ \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda(f^k(x)) > 0 \text{ and } \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda^s(f^k(x)) < 0 \right\}$$

Usable hyperbolicity Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

$$S = \left\{ x \in A \, \Big| \, \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda(f^k(x)) > 0 \text{ and } \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda^s(f^k(x)) < 0 \right\}$$

Theorem (C.–Dolgopyat–Pesin, 2010)

If there exists $\bar{\alpha} > 0$ such that Leb S > 0, then f has a hyperbolic SRB measure supported on Λ .

Usable hyperbolicity Existence of an SRB measure

An existence result

Consider points with positive asymptotic usable hyperbolicity:

$$S = \left\{ x \in A \, \Big| \, \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda(f^k(x)) > 0 \text{ and } \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \lambda^s(f^k(x)) < 0 \right\}$$

Theorem (C.–Dolgopyat–Pesin, 2010)

If there exists $\bar{\alpha} > 0$ such that Leb S > 0, then f has a hyperbolic SRB measure supported on Λ .

Theorem (C.–Dolgopyat–Pesin, 2010)

Fix $x \in U$. Let V(x) be an embedded submanifold such that $T_xV(x) \subset K^u(x)$, and let m_V be leaf volume on V(x). Suppose that there exists $\bar{\alpha} > 0$ such that $\lim_{r \to 0} m_V(S \cap B(x, r)) > 0$. Then f has a hyperbolic SRB measure supported on Λ .