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Broadly, a dynamical system is a set X with a map f : X ö . This
is discrete time. Continuous time considers a flow ϕt : X ö . We will
mostly consider discrete time.

Often X has some extra structure that the map f respects.


 X a smooth manifold, f a diffeomorphism

 X a metric space, f continuous

 pX,µq a measure space, f measure-preserving

f is measure-preserving / µ is f-invariant: µpf�1Eq � µpEq for
all measurable E � X. Equivalently,

³
ϕ � f dµ �

³
ϕdµ for all ϕ P L1.

Classical source of examples: X is a smooth manifold, ϕt is the flow of a
conservative vector field. Then each ϕt both respects smooth structure
and preserves volume.

Smooth manifolds have many measures, not just volume. But having
an invariant measure opens up the rich toolbox of ergodic theory. For
example, “time average = space average” (Birkhoff ergodic theorem).

Aside: What about the dissipative case? What measure should we use
instead of volume, when volume is not invariant? Big question, skip
for now.

Connections between topological and measure-theoretic structure are
illustrated by two “toy” examples on X � S1 � C.

(1) Rα : z ÞÑ ze2πiα for α an irrational parameter.
(2) T2 : z ÞÑ z2.

These represent two extremes of dynamical behaviour: Rα is elliptic,
T2 is hyperbolic.
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First consider these topologically. Both are topologically transitive
– any two open sets can be connected by an orbit. This is an irre-
ducibility criterion.

Aside: Transitivity equivalent to existence of a dense orbit. Weaker
than minimality – every orbit is dense. Rα is minimal, T2 is not.

What about invariant measures? For both, Lebesgue measure is in-
variant and ergodic: every f -invariant set E has µpEq � 0 or 1.

This implies, via Birkhoff ergodic theorem: if ϕ P L1, then for
Leb-a.e. x,

1

n
Snϕpxq �

1

n

n�1̧

k�0

ϕpfnxq Ñ

»
ϕdx.

This is the law of large numbers for the “random variables” ϕ, ϕ �
f, ϕ � f 2, . . . ” What about other statistical properties, and the nature
of this convergence?


 Is this convergence uniform in x?

 How quickly does convergence happen? Look at En :� tx |

1
n
Snϕpxq ¡ εu. How quickly does the measure of En go to 0?

Fact: Although ergodicity of Lebesgue measure determines the asymp-
totic behaviour of Lebesgue-a.e. trajectory for both Rα and T2, the na-
ture of the convergence to this asymptotic behaviour is strongly contin-
gent on the presence of other invariant measures.

Rα: Lebesgue is the only invariant measure.

T2: There are many, many others. Any periodic orbit supports an
invariant (ergodic) measure, and there are 2n fixed points of T n2 .

Given f : X ö , let Mf be the collection of f -invariant Borel probability
measures on X, and Me

f the set of ergodic measures.

Geometrical interpretation: Me
f is the set of extreme points of Mf ,

and Mf is a simplex – elements of Mf are in 1-1 correspondence with
probability measures on Me

f (ergodic decomposition).

Consider Rα on k concentric circles. Each circle has exactly one ergodic
measure. Mf is a pk � 1q-simplex.

Question: When do two systems have the same Mf and Me
f? (Up

to affine homeomorphism.)
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First invariant: Number of extreme points (ergodic measures). Finite-
dimensional simplices are affinely homeomorphic iff same number of
extreme points. Also distinguishes countable/uncountable.

Consider Rα on countably many concentric circles, and Rα on unit disc.
First has countable Me

f , second has uncountable.

Second invariant: Topology of Me
f . Becomes important when Me

f

infinite. All examples of Rα have Me
f closed, while T2 has Me

f dense
in Mf .

Last property is important. Simplex with dense extreme points con-
structed in 1961 by E Poulsen. Abstract construction, no dynamics.

Universality of Poulsen simplex: In 1978, J Lindenstrauss, G Olsen, Y
Sternfeld showed that if two simplices both have dense extreme points
then they are affinely homeomorphic.

The extreme set of Poulsen’s simplex is path-connected. So two con-
clusions from fact that (countable) set of periodic measures is dense in
Mf for T2:


 existence of uncountably many other ergodic measures;

 path-connectedness of Me

f .

Questions: How to describe other ergodic measures concretely? For
which other systems is Mf the Poulsen simplex? What is connection
between this fact and statistical properties?

Aside: Natural to ask for example of system where Me
f is path-connected

but not dense. Rα on disc does it but in a silly way - disjoint union of
closed subsystems, and Me

f is only one-dimensional.

A more sophisticated example is the Dyck shift. X � t0, 1, 2, 3uZ

defined by syntax rules on brackets, identifying 0, 1, 2, 3 with p, q, r, s.
Map f is the left shift. Can show Me

f connected but not dense.

Return to questions. Useful to think of other symbolic systems where
X � Σ�2 :� t0, 1uN and f � σ. Connect to maps such as T2 by fixing a
partition of S1 into two subsets and labelling each subset with 0 or 1.

For T2, get X � Σ�2 . Measure µ defined by µrws, where w P t0, 1u�

and rws is set of sequences starting with w. Two important classes:


 p1 � p2 � 1 ñ Bernoulli measure µrws � pw1 � � � pwn .
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 stochastic 2�2 matrix ñ Markov µrws � pw1Pw1w2 � � �Pwn�1wn ,
where p a left eigenvector for P .

For T2, no restrictions on what symbol sequences can appear. Corre-
sponds to configurations on lattice: each site can be on or off, + or -,
Ò or Ó. Suggests language of statistical mechanics.

Can code Rα by X � Σ2. Many restrictions, some very long-range.

Interactions of uniformly bounded range: subshift of finite type.
More generally, specification property.


 Transitivity for shift space X means any set of words can be
concatenated by putting some “buffers” in between.


 Specification means the buffers are uniformly short.

In 1970, K Sigmund showed that specification implies Me
f is dense,

hence Mf is the Poulsen simplex.

The space of invariant measures is often very large – how do we select
a distinguished measure?

Topological entropy: exponential growth rate of number of words of
length n. Call it hpXq.

Measure-theoretic entropy: growth rate of number of words of
length n needed to get to mass 1

2
. Call it hpµq.

Variational principle: hpXq � supthpµq | µ P Me
fu.

Pressure: Give words weights according to a potential function ϕ P
CpXq. Still get variational principle. Measure achieving supremum is
an equilibrium state.

Aside: For smooth systems, another notion of distinguished measure
is SRB measure. I have active research on these.

Various properties of Mf and Me
f :


 (C) Me
f is path-connected.


 (D) Me
f is dense in Mf .


 (H) Me
f is entropy-dense in Mf – can approximate in weak*

and in entropy.

 (E) There exists a dense subspace V � CpXq such that each
ϕ P V has a unique equilibrium state.

SFT ñ specification ñ (E), (H), (D)
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Conjecture: (E) implies (H). (The idea is that (E) gives a way to map a
very large vector space homeomorphically into Me

f . The image should
be “large enough”.)

(E) implies various multifractal results. (VC, Nonlinearity)

(H) and (E) are important for large deviations properties: recall sets
En � tx | 1

n
Snϕpxq ¡ εu, where

³
ϕdx � 0.

lim
nÑ8

1

n
LebpEnq � supthpµq � log 2 |

»
ϕdµ ¡ εu.

Can get similar results anytime (E) holds (H Comman, J Rivera–
Letelier 2010).

Problem: Specification is a very uniform phenomenon, and hence some-
how rare. What non-uniform versions still give (E), LDP, etc?

Example: Fix β ¡ 1, let Tβ : x ÞÑ βx pmod 1q. Code this into Xβ �
Σ�b , where b � rβs. Typically specification fails. But Xβ has (E). (VC,
DJ Thompson, 2013) Can use this to get LDP. (VC, DJ Thompson, K
Yamamoto, in progress)


