Thermodynamics for non-uniformly mixing systems: factors of β-shifts are intrinsically ergodic

Vaughn Climenhaga
University of Maryland

November 11, 2010

Joint work with Daniel Thompson
Thermodynamics for non-uniformly mixing systems: factors of β-shifts are intrinsically ergodic

Vaughn Climenhaga
University of Maryland

November 11, 2010

Joint work with Daniel Thompson
1 Introduction
 • Intrinsic ergodicity
 • Classical results

2 Motivating problem and solution
 • β-shifts
 • Intrinsic ergodicity for factors

3 General result
 • Specification and CGC-decompositions
 • A criterion for intrinsic ergodicity that passes to factors
 • Other examples
Basic thermodynamic concepts

Topological dynamical system:
- X a compact metric space, $f: X \to X$ continuous
- $\mathcal{M} = \{\text{Borel } f\text{-invariant probability measures on } X\}$

Variational principle: $h_{\text{top}}(X, f) = \sup_{\mu \in \mathcal{M}} h_\mu(f)$
- If $h_\mu(f) = h_{\text{top}}(X, f)$, then μ is a measure of maximal entropy (MME)
- (X, f) is intrinsically ergodic if there exists a unique MME
Basic thermodynamic concepts

Topological dynamical system:
- X a compact metric space, $f : X \rightarrow X$ continuous
- $\mathcal{M} = \{\text{Borel } f\text{-invariant probability measures on } X\}$

Variational principle: $h_{\text{top}}(X, f) = \sup_{\mu \in \mathcal{M}} h_\mu(f)$
- If $h_\mu(f) = h_{\text{top}}(X, f)$, then μ is a measure of maximal entropy (MME)
- (X, f) is intrinsically ergodic if there exists a unique MME

Example: The full shift $\Sigma_p = \{1, \ldots, p\}^\mathbb{Z}$ is intrinsically ergodic. The unique MME is $(\frac{1}{p}, \ldots, \frac{1}{p})$-Bernoulli measure.
Introduction
Motivating problem and solution
General result

Intrinsic ergodicity
Classical results

Basic thermodynamic concepts

Topological dynamical system:
- X a compact metric space, $f : X \to X$ continuous
- $\mathcal{M} = \{\text{Borel } f\text{-invariant probability measures on } X\}$

Variational principle: $h_{\text{top}}(X, f) = \sup_{\mu \in \mathcal{M}} h_{\mu}(f)$
- If $h_{\mu}(f) = h_{\text{top}}(X, f)$, then μ is a measure of maximal entropy (MME)
- (X, f) is intrinsically ergodic if there exists a unique MME

Example: The full shift $\Sigma_p = \{1, \ldots, p\}^\mathbb{Z}$ is intrinsically ergodic. The unique MME is $(\frac{1}{p}, \cdots, \frac{1}{p})$-Bernoulli measure.

When is a transitive dynamical system intrinsically ergodic?
More general variational principle for topological pressure $P(\varphi)$ of a continuous potential function $\varphi : X \to \mathbb{R}$

$$P(\varphi) = \sup_{\mu \in \mathcal{M}} \left(h_\mu(f) + \int \varphi \, d\mu \right)$$

If $h_\mu(f) + \int \varphi \, d\mu = P(\varphi)$, then μ is an equilibrium state.
Motivation and context

More general variational principle for topological pressure $P(\varphi)$ of a continuous potential function $\varphi : X \to \mathbb{R}$

$$P(\varphi) = \sup_{\mu \in \mathcal{M}} \left(h_\mu(f) + \int \varphi \, d\mu \right)$$

If $h_\mu(f) + \int \varphi \, d\mu = P(\varphi)$, then μ is an equilibrium state.

- Existence of a unique equilibrium state is connected to statistical properties, large deviations, multifractal analysis, phase transitions, etc.
- $\varphi \equiv 0$: reduces to intrinsic ergodicity. Techniques for showing intrinsic ergodicity usually generalise to help prove other thermodynamic results.
Focus on shift spaces (subshifts):
- $X \subset \Sigma_p$ or $X \subset \Sigma^+_p$, X closed and σ-invariant
- $\mathcal{L} = \mathcal{L}(X) = \{x_1 \cdots x_n \mid x \in X, n \geq 1\}$ is the language of X

When is a transitive shift space intrinsically ergodic?
Intrinsic ergodicity for shift spaces

Focus on shift spaces (subshifts):
- \(X \subset \Sigma_p \) or \(X \subset \Sigma_p^+ \), \(X \) closed and \(\sigma \)-invariant
- \(\mathcal{L} = \mathcal{L}(X) = \{x_1 \cdots x_n \mid x \in X, n \geq 1\} \) is the language of \(X \)

When is a transitive shift space intrinsically ergodic? *Not always.*

Example: \(X \subset \Sigma_5 = \{0, 1, 2, 1, 2\}^\mathbb{Z} \). Define the language \(\mathcal{L} \) by

\[v0^nw, \ w0^n v \in \mathcal{L} \] if and only if \(n \geq 2 \max(|v|, |w|) \).

- \((X, \sigma)\) is topologically transitive
- \(h_{top} (X, \sigma) = \log 2 \)
- 2 measures of maximal entropy:
 \[\nu = (\frac{1}{2}, \frac{1}{2})\text{-Bernoulli on } \{1, 2\}^\mathbb{Z}, \]
 \[\mu = (\frac{1}{2}, \frac{1}{2})\text{-Bernoulli on } \{1, 2\}^\mathbb{Z}. \]
Classes of intrinsically ergodic shifts

The following classes of shift spaces are intrinsically ergodic:

- Irreducible subshifts of finite type (Parry 1964)
Classes of intrinsically ergodic shifts

The following classes of shift spaces are intrinsically ergodic:

- Irreducible subshifts of finite type (Parry 1964)
The following classes of shift spaces are intrinsically ergodic:

- Irreducible subshifts of finite type \textit{(Parry 1964)}
- Irreducible sofic shifts \textit{(Weiss 1970, 1973)}
- Shifts with specification \textit{(Bowen 1974)}
The following classes of shift spaces are intrinsically ergodic:

- Irreducible subshifts of finite type \textit{(Parry 1964)}
- Irreducible sofic shifts \textit{(Weiss 1970, 1973)}
- Shifts with specification \textit{(Bowen 1974)}
- β-shifts \textit{(Walters 1978, Hofbauer 1979)}
$\beta > 1$, $b = \lceil \beta \rceil$. The β-shift $\Sigma_\beta \subset \Sigma_b^+$ is the natural coding space for the map

$$f_\beta : [0, 1] \rightarrow [0, 1], \quad x \mapsto \beta x \pmod{1}$$

$1_\beta = a_1 a_2 \cdots$, where $1 = \sum_{n=1}^{\infty} a_n \beta^{-n}$
\(\beta > 1, \ b = \lceil \beta \rceil\). The \(\beta\)-shift \(\Sigma_\beta \subset \Sigma_+^b\) is the natural coding space for the map

\[
f_\beta : [0, 1] \to [0, 1], \quad x \mapsto \beta x \pmod{1}
\]

\(1_\beta = a_1 a_2 \cdots\), where \(1 = \sum_{n=1}^{\infty} a_n \beta^{-n}\)

Fact: Sequences \(x \in \Sigma_\beta\) are precisely those sequences in \(\Sigma_+^b\) that label trajectories of the following graph beginning at the vertex \(B\).

(Here \(1_\beta = 2100201\ldots\))

![Graph of \(f_\beta(x)\)](attachment:graph.png)
Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^\mathbb{Z}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^\mathbb{Z}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not
Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^\mathbb{Z}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^\mathbb{Z}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of β-shifts = ?????
An open problem

Intrinsic ergodicity is not necessarily preserved by factors.

- $X \subset \{0, 1, 2, 1, 2\}^\mathbb{Z}$ as before
- $Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^\mathbb{Z}$ by similar rule
- X is a factor of Y; Y is intrinsically ergodic; X is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of β-shifts $= ?????$

Are factors of β-shifts intrinsically ergodic? (Klaus Thomsen)
An open problem

Intrinsic ergodicity is not necessarily preserved by factors.

- \(X \subset \{0, 1, 2, 1, 2\}^\mathbb{Z} \) as before
- \(Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\}^\mathbb{Z} \) by similar rule
- \(X \) is a factor of \(Y \); \(Y \) is intrinsically ergodic; \(X \) is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of \(\beta \)-shifts = ????

Are factors of \(\beta \)-shifts intrinsically ergodic? (Klaus Thomsen)

Theorem (C.–Thompson 2010)

Yes.
An open problem

Intrinsic ergodicity is not necessarily preserved by factors.

- \(X \subset \{0, 1, 2, 1, 2\} \mathbb{Z} \) as before
- \(Y \subset \Sigma_6 = \{0, 1, 2, 1, 2, 3\} \mathbb{Z} \) by similar rule
- \(X \) is a factor of \(Y \); \(Y \) is intrinsically ergodic; \(X \) is not

What intrinsically ergodic classes are closed under factors?

- Closure of SFTs is class of sofic systems
- Specification preserved by factors
- Factors of \(\beta \)-shifts = ?????

Are factors of \(\beta \)-shifts intrinsically ergodic? (Klaus Thomsen)

Theorem (C.–Thompson 2010)

Every subshift factor of a \(\beta \)-shift is intrinsically ergodic.
The classical specification property

- $\mathcal{L} =$ language for a shift space X
- $\mathcal{L} \leftrightarrow \{\text{cylinders in } X\}$
- $|w| =$ length of w, $\mathcal{L}_n = \{w \in \mathcal{L} \mid |w| = n\}$

X has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in \mathcal{L}$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word $w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m$ is in \mathcal{L}.

(Arbitrary orbit segments can be connected by a single orbit)
The classical specification property

- $\mathcal{L} =$ language for a shift space X
- $\mathcal{L} \leftrightarrow \{\text{cylinders in } X\}$
- $|w| =$ length of w, $\mathcal{L}_n = \{w \in \mathcal{L} \mid |w| = n\}$

X has **specification** if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in \mathcal{L}$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word $w_1z_1w_2z_2\cdots z_{m-1}w_m$ is in \mathcal{L}.

(Arbitrary orbit segments can be connected by a single orbit)

Topological transitivity guarantees the existence of such words $z_i \in \mathcal{L}$. Specification demands that the words z_i can be chosen to have uniformly bounded length t, where t is independent of the words w_i and their lengths.
Shifts with and without specification

The following shifts have the specification property:

- Mixing subshifts of finite type
The following shifts have the specification property:

- Mixing subshifts of finite type
- Mixing sofic shifts
Shifts with and without specification

The following shifts have the specification property:
- Mixing subshifts of finite type
- Mixing sofic shifts
- Some β-shifts

Σ_β does not have the specification property if 1_β contains arbitrarily long strings of 0’s.
Shifts with and without specification

The following shifts have the specification property:

- Mixing subshifts of finite type
- Mixing sofic shifts
- Some β-shifts

Σ_β does not have the specification property if 1_β contains arbitrarily long strings of 0’s.

Σ_β does not have specification for Lebesgue-a.e. $\beta > 1$.

We must replace specification with a property that

- holds for every β-shift;
- implies intrinsic ergodicity;
- is preserved by factors.
A restricted version of the specification property

Fix a subset $G \subset \mathcal{L}$. We say that G has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in G$, there exist $z_1, \ldots, z_{m-1} \in \mathcal{L}_t$ for which the concatenated word

$$x := w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m$$

is in \mathcal{L}.

Only difference from classical property is that we take $w_i \in G$.
A restricted version of the specification property

Fix a subset \(G \subset \mathcal{L} \). We say that \(G \) has *specification* if there exists \(t \in \mathbb{N} \) such that for every \(w_1, \ldots, w_m \in G \), there exist \(z_1, \ldots, z_{m-1} \in \mathcal{L}_t \) for which the concatenated word
\[x := w_1 z_1 w_2 z_2 \cdots z_{m-1} w_m \]
is in \(\mathcal{L} \).

Only difference from classical property is that we take \(w_i \in G \).

Say that \(G \) has *(Per)-specification* if in addition to the above condition, the cylinder \([x] \) contains a periodic point of period \(|x| + t \).

A restricted version of the specification property

Fix a subset $G \subset L$. We say that G has specification if there exists $t \in \mathbb{N}$ such that for every $w_1, \ldots, w_m \in G$, there exist $z_1, \ldots, z_{m-1} \in L_t$ for which the concatenated word $x := w_1z_1w_2z_2\cdots z_{m-1}w_m$ is in L.

Only difference from classical property is that we take $w_i \in G$.

Say that G has (Per)-specification if in addition to the above condition, the cylinder $[x]$ contains a periodic point of period $|x| + t$.

Example: For $X = \Sigma_\beta$, let G be the set of words corresponding to paths that begin and end at B. Then G has (Per)-specification with $t = 0$.
Decomposing the language

A CGC-decomposition of the language \mathcal{L} is a collection of words $\mathcal{C}^p, \mathcal{G}, \mathcal{C}^s \subset \mathcal{L}$ with the following properties.

1. \mathcal{G} has specification.
A **CGC-decomposition** of the language \mathcal{L} is a collection of words $C^p, G, C^s \subset \mathcal{L}$ with the following properties.

1. G has specification.
2. $\mathcal{L} = C^p G C^s$. That is, every word in \mathcal{L} can be written in the form uvw with $u \in C^p$, $v \in G$, $w \in C^s$.
A CGC-decomposition of the language \mathcal{L} is a collection of words $C^p, G, C^s \subset \mathcal{L}$ with the following properties.

1. G has specification.

2. $\mathcal{L} = C^p G C^s$. That is, every word in \mathcal{L} can be written in the form uvw with $u \in C^p$, $v \in G$, $w \in C^s$.

3. For every $uvw \in \mathcal{L}$ of the above form, there exist $x, y \in \mathcal{L}$ such that $xuvwy \in G$.
Decomposing the language

A **CGC-decomposition** of the language \mathcal{L} is a collection of words $C^p, G, C^s \subset \mathcal{L}$ with the following properties.

1. G has specification.

2. $\mathcal{L} = C^p G C^s$. That is, every word in \mathcal{L} can be written in the form uvw with $u \in C^p$, $v \in G$, $w \in C^s$.

3. For every $uvw \in \mathcal{L}$ of the above form, there exist $x, y \in \mathcal{L}$ such that $xuvwy \in G$.

A CGC-decomposition is **uniform** if the lengths of x and y in the last condition depend only on the lengths of u and w. (And not on u, v, w themselves.)
A CGC-decomposition of the language \mathcal{L} is a collection of words $C^p, G, C^s \subset \mathcal{L}$ with the following properties.

1. G has specification.
2. $\mathcal{L} = C^p G C^s$. That is, every word in \mathcal{L} can be written in the form uvw with $u \in C^p$, $v \in G$, $w \in C^s$.
3. For every $uvw \in \mathcal{L}$ of the above form, there exist $x, y \in \mathcal{L}$ such that $xuvwy \in G$.

A CGC-decomposition is uniform if the lengths of x and y in the last condition depend only on the lengths of u and w. (And not on u, v, w themselves.)

Example: For $X = \Sigma_\beta$, let $C^p = \emptyset$ and let C^s be the set of words corresponding to paths that begin at B and never return. Then (C^p, G, C^s) is a uniform CGC-decomposition.
Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words $\mathcal{D} \subset \mathcal{L}$, let $h(\mathcal{D}) = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{D}_n$. Observe that $h_{\text{top}}(X, \sigma) = h(\mathcal{L})$.

Thermodynamics for non-uniformly mixing systems
Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words $\mathcal{D} \subset \mathcal{L}$, let $h(\mathcal{D}) = \lim_{n \to \infty} \frac{1}{n} \log \# \mathcal{D}_n$. Observe that $h_{\text{top}}(X, \sigma) = h(\mathcal{L})$.

Theorem (C.–Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition.

If $h(C^p \cup C^s) < h_{\text{top}}(X, \sigma)$, then (X, σ) is intrinsically ergodic.

If \mathcal{G} has (Per)-specification, then the unique MME is the limit of the periodic orbit measures $\mu_n = \frac{1}{\# \{x \mid f^n(x) = x \}} \sum_{f^n(x) = x} \delta_x$.

Thermodynamics for non-uniformly mixing systems
Intrinsic ergodicity for shifts with CGC-decompositions

Given a collection of words $\mathcal{D} \subset \mathcal{L}$, let $h(\mathcal{D}) = \lim_{n \to \infty} \frac{1}{n} \log \#\mathcal{D}_n$. Observe that $h_{\text{top}}(X, \sigma) = h(\mathcal{L})$.

Theorem (C.–Thompson 2010)

Let X be a shift space admitting a uniform CGC-decomposition. If $h(\mathcal{C}_p \cup \mathcal{C}_s) < h_{\text{top}}(X, \sigma)$, then (X, σ) is intrinsically ergodic.

If \mathcal{G} has (Per)-specification, then the unique MME is the limit of the periodic orbit measures $\mu_n = \frac{1}{\#\{x | f^n(x) = x\}} \sum_{f^n(x) = x} \delta_x$.

Example: For $X = \Sigma_\beta$, let $x = 1_\beta$. Then $(\mathcal{C}_p \cup \mathcal{C}_s)_n = \{x_1 \cdots x_n\}$, and so $h(\mathcal{C}_p \cup \mathcal{C}_s) = 0$. Thus (Σ_β, σ) is intrinsically ergodic.
Behaviour under factors

Let (\tilde{X}, σ) be a factor of (X, σ), and let $\mathcal{L}, \tilde{\mathcal{L}}$ be the languages.

- If \mathcal{L} has a uniform CGC-decomposition, then so does $\tilde{\mathcal{L}}$.
 Furthermore, $h(\tilde{\mathcal{C}}^p \cup \tilde{\mathcal{C}}^s) \leq h(\mathcal{C}^p \cup \mathcal{C}^s)$.

Every factor with $h_{top}(\tilde{X}, \sigma) > h(\mathcal{C}^p \cup \mathcal{C}^s)$ is intrinsically ergodic.
Behaviour under factors

Let \((\tilde{X}, \sigma)\) be a factor of \((X, \sigma)\), and let \(\mathcal{L}, \tilde{\mathcal{L}}\) be the languages.

- If \(\mathcal{L}\) has a uniform CGC-decomposition, then so does \(\tilde{\mathcal{L}}\).
 Furthermore, \(h(\tilde{\mathcal{C}}^p \cup \tilde{\mathcal{C}}^s) \leq h(C^p \cup C^s)\).

Every factor with \(h_{top}(\tilde{X}, \sigma) > h(C^p \cup C^s)\) is intrinsically ergodic.

Dichotomy for shifts with uniform CGC-decompositions:
Either \(h_{top}(X, \sigma) > 0\), or \(X\) comprises a single periodic orbit.
Behaviour under factors

Let \((\tilde{X}, \sigma)\) be a factor of \((X, \sigma)\), and let \(\mathcal{L}, \tilde{\mathcal{L}}\) be the languages.

- If \(\mathcal{L}\) has a uniform CGC-decomposition, then so does \(\tilde{\mathcal{L}}\).

Furthermore, \(h(\tilde{\mathcal{C}}^p \cup \tilde{\mathcal{C}}^s) \leq h(C^p \cup C^s)\).

Every factor with \(h_{\text{top}}(\tilde{X}, \sigma) > h(C^p \cup C^s)\) is intrinsically ergodic.

Dichotomy for shifts with uniform CGC-decompositions:
Either \(h_{\text{top}}(X, \sigma) > 0\), or \(X\) comprises a single periodic orbit.

Theorem (C.–Thompson 2010)

Let \(X\) be a shift space admitting a uniform CGC-decomposition.

If \(h(C^p \cup C^s) = 0\), then every subshift factor of \((X, \sigma)\) is intrinsically ergodic.
S-gap shifts

Fix $S \subset \mathbb{N}$ and suppose S is infinite. The associated *S-gap shift* is the subshift $\Sigma_S \subset \{0, 1\}^\mathbb{Z}$ with language

$$\mathcal{L} = \{0^k 10^{n_1} 10^{n_2} 1 \cdots 10^{n_j} 10^\ell \mid n_i \in S, k, \ell \in \mathbb{N}\}.$$
Fix $S \subset \mathbb{N}$ and suppose S is infinite. The associated S-gap shift is the subshift $\Sigma_S \subset \{0, 1\}^\mathbb{Z}$ with language

$$\mathcal{L} = \{0^k 10^{n_1} 10^{n_2} 1 \cdots 10^{n_j} 10^\ell \mid n_i \in S, k, \ell \in \mathbb{N}\}.$$

A uniform CGC-decomposition for Σ_S is given by

$$\mathcal{G} = \{0^n 1 \mid n \in S\}$$
$$\mathcal{C}^p = \{0^k 1 \mid k \geq 0\}$$
$$\mathcal{C}^s = \{0^\ell \mid \ell \geq 1\}$$
Fix $S \subset \mathbb{N}$ and suppose S is infinite. The associated S-gap shift is the subshift $\Sigma_S \subset \{0, 1\}^\mathbb{Z}$ with language

$$L = \{0^k 10^{n_1} 10^{n_2} 1 \cdots 10^{n_j} 10^\ell \mid n_i \in S, k, \ell \in \mathbb{N}\}.$$

A uniform CGC-decomposition for Σ_S is given by

$$G = \{0^n 1 \mid n \in S\}$$
$$C^p = \{0^k 1 \mid k \geq 0\}$$
$$C^s = \{0^\ell \mid \ell \geq 1\}$$

Then $\#(C^p \cup C^s)_n = 2$ for all $n \geq 1$, and so $h(C^p \cup C^s) = 0$. It follows that every subshift factor of an S-gap shift is intrinsically ergodic.
Coded systems

A shift space X is **coded** if its language \mathcal{L} is freely generated by a countable set of **generators** $\{w_n\}_{n \in \mathbb{N}} \subset \mathcal{L}$.

\[
\mathcal{L} = \{ \text{all subwords of } w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}
\]
Coded systems

A shift space X is **coded** if its language \mathcal{L} is freely generated by a countable set of generators $\{w_n\}_{n \in \mathbb{N}} \subset \mathcal{L}$.

$$\mathcal{L} = \{\text{all subwords of } w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N}\}$$

Every coded system has a uniform CGC-decomposition.

$$\mathcal{G} = \{w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N}\}$$

$$\mathcal{C}^p = \{\text{suffixes of } w_n \mid n \in \mathbb{N}\}$$

$$\mathcal{C}^s = \{\text{prefixes of } w_n \mid n \in \mathbb{N}\}$$
A shift space X is **coded** if its language \mathcal{L} is freely generated by a countable set of **generators** $\{w_n\}_{n \in \mathbb{N}} \subset \mathcal{L}$.

$$\mathcal{L} = \{ \text{all subwords of } w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}$$

Every coded system has a uniform CGC-decomposition.

$$\mathcal{G} = \{ w_{n_1} w_{n_2} \cdots w_{n_k} \mid n_i \in \mathbb{N} \}$$
$$\mathcal{C}^p = \{ \text{suffixes of } w_n \mid n \in \mathbb{N} \}$$
$$\mathcal{C}^s = \{ \text{prefixes of } w_n \mid n \in \mathbb{N} \}$$

Let $\hat{h} = h(\{ \text{prefixes and suffixes of generators} \})$.

- $\hat{h} < h_{\text{top}}(X, \sigma) \Rightarrow (X, \sigma)$ is intrinsically ergodic
- $\hat{h} = 0 \Rightarrow$ every subshift factor of (X, σ) is intrinsically ergodic