MIDTERM TEST #2

Thursday, March 28, 2013

You must give complete justification for all answers in order to receive full credit.

Name:

	Points	Possible
Problem 1		/10
Problem 2		/15
Problem 3		/20
Problem 4	***************************************	/20
Problem 5		/20
Problem 6		/15
Total		/100

1. Let $\{v_1, v_2\}$ be a basis for \mathbb{R}^2 . Is $\{2v_1 + v_2, 2v_1 - v_2\}$ necessarily a basis for \mathbb{R}^2 ?

YES. Because $\dim \mathbb{R}^2 = 2$, it is enough to check

that $\begin{cases} 2v_1 + v_2, 2v_1 - v_2 \end{cases}$ is linearly independent.

Suppose $a, b \in \mathbb{R}$ are such that $a(2v_1 + v_2) + b(2v_1 - v_2) = \overline{0}$.

Then $(2a+2b)v_1 + (a-b)v_2 = \overline{0}$, and since $\begin{cases} v_1, v_2 \end{cases}$ is linearly independent, 2a+2b=0 $\begin{cases} v_1, v_2 \end{cases}$ is linearly independent, 2a+2b=0The second equation gives a=b, so the first gives 4a=0, thus a=b=0. This observe $\begin{cases} 2v_1 + v_2, 2v_1 - v_2 \end{cases}$ is linearly ind. ... it

2. Determine whether or not each of the following functions $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation. If it is not linear, prove that it is not linear. If it is linear, write the matrix $[T]_{\beta}$, where β is the standard ordered basis for \mathbb{R}^2 .

(a)
$$T(a_1, a_2) = (\sin(a_1), a_2)$$

[5 points]

Not linear -
$$T(\Xi,0) = (1,0)$$
, but
$$T(\pi,0) = (0,0) \neq 2T(\Xi,0).$$

(b)
$$T(a_1, a_2) = (a_1, a_2 + 1)$$

[5 points]

Not linear.
$$T(0,0) = (0,1)$$
, but every linear transformation and $\vec{0}$ to $\vec{0}$.

(c)
$$T(a_1, a_2) = (2a_1 + a_2, 3a_1 - 2a_2)$$

[5 points]

Linear
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$$

3. Let V and W be vector spaces and $T\colon V\to W$ a linear transformation. Suppose that T is one-to-one and that S is a subset of V.

(a) State what it means for S to be linearly independent. [5 points]

S is linearly dependent if $\exists v_1, ..., v_n \in S \otimes a_1, ..., a_n \in F$ s.t. not all the a_i are O_i and $\Sigma a_i v_j = \widehat{O}_i$. S is linearly independent if it is not linearly dependent.

(b) Prove that S is linearly independent if and only if T(S) is linearly independent. [15 points]

Suppose S is linearly dependent. Then $\exists v_1, \dots, v_n \in S \ a_1, \dots, a_n \in F$, not all O, such that $E = a_1 \ v_2 = O$. By linearity we have $E = a_1 \ T(v_1) = O$ & because T is I-I the vectors $T(v_1)$ are distinct, so T(S) is linearly dependent.

Now suppose T(s) is linearly dependents Then $\exists v_1, ..., v_n \in S & a_1, ..., a_n \in F$, not all 0, such that $\exists a_j T(v_j) = \vec{0}$.

By linearly, $T(\exists a_j v_j) = \vec{0}$, and because T is I^{-1} ,

this implies $\exists a_j v_j = \vec{0}$. Thus S is linearly dependents.

This shows S dependent (>> T(S) dependent, which is equivalent to S independent (>> T(S) independent.

4. Consider the ordered bases β and β' for \mathbb{R}^2 given by

$$\beta = \{(1,1), (1,-1)\}, \qquad \beta' = \{(3,1), (-1,3)\}.$$

(a) Find the change of coordinate matrix Q that changes β' -coordinates into β -coordinates. [10 points]

$$V_{1} = \begin{pmatrix} 1 \end{pmatrix} \quad V_{2} = \begin{pmatrix} -1 \end{pmatrix} \qquad W_{1} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \qquad W_{2} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$W_{1} = 2V_{1} + V_{2} \Rightarrow \begin{bmatrix} w_{1} \end{bmatrix}_{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$W_{2} = V_{1} - 2V_{2} \Rightarrow \begin{bmatrix} w_{2} \end{bmatrix}_{B} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$Qe_{1} = Q\begin{bmatrix} w_{1} \end{bmatrix}_{B'} = \begin{bmatrix} w_{1} \end{bmatrix}_{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$Qe_{2} = Q[w_{2}]_{B'} = \begin{bmatrix} w_{2} \end{bmatrix}_{B} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

$$Qe_{3} = Q[w_{2}]_{B'} = \begin{bmatrix} w_{2} \end{bmatrix}_{B'} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

(b) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation and let $A = [T]_{\beta}$. Write an expression for $[T]_{\beta}$.

$$[T]_{B'} = Q [T]_{B B \leftarrow B'}$$

$$= [Q^{-1}AQ]$$

5. For each of the following linear transformations, determine whether it is (i) one-to-one, (ii) onto, and/or (iii) an isomorphism. [10 points]

(a) $T: \mathbb{M}_{m \times n}(\mathbb{R}) \to \mathbb{M}_{n \times m}(\mathbb{R})$ given by $T(A) = A^t$.

1-1: Yes, because $A^t = 0 \Rightarrow A = (A^t)^t = 0^t = 0$.

onto: Yes, because $A = (A^t)^t$

isomorphism: Yes, because 1-1 & onto.

(b) $T: \mathbb{P}(\mathbb{R}) \to \mathbb{P}(\mathbb{R})$ given by (T(f))(x) = f'(x).

[10 points]

1-1: No, because f(x)=c (a constant) implies f'(x)=0 & CER, so kernel is non-trivial

onto: Yes, because f = Tg if $g \in P(R)$ is defined by $g(x) = S_0^x f(y) dy$

isomorphism: No, because not 1-1.

6. (a) Give a matrix A such that $A \neq 0$ but $A^2 = 0$.

[5 points]

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(b) Give matrices A, B such that AB = I but $BA \neq I$.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \Rightarrow AB = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
(c) Consider the matrix
$$(c) \text{ Consider the matrix}$$

$$A = \begin{pmatrix} 5 & 0 & -1 & 2 \\ 2 & 1 & 0 & 3 \\ -1 & 1 & 1 & -2 \\ -3 & 0 & 3 & 4 \end{pmatrix}.$$

Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4$ be the standard (column) basis vectors in \mathbb{R}^4 . Compute Ae_1 , Ae_2 , Ae_3 , and Ae_4 . 5 points

$$Ae_{1} = \begin{bmatrix} 5\\2\\-1\\-3 \end{bmatrix} \qquad Ae_{2} = \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}$$

$$Ae_z = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$Ae_3 = \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}$$

$$Ae_3 = \begin{bmatrix} -1\\ 0\\ 3 \end{bmatrix}$$

$$Ae_4 = \begin{bmatrix} 2\\ 3\\ -2\\ 4 \end{bmatrix}$$

This page left blank to provide extra space for solutions.