Worksheet 1 (Revised)
 Convex Polygons

I. The number of diagonals of a polygon of n sides is given by

$$
D=\frac{n(n-3)}{2}
$$

Example 1. A hexagon has six sides. Therefore it has $\frac{6(6-3)}{2}=9$ diagonals?
Example 2. A quadrilateral has four sides. How many diagonals does it have?

Example 3. The formula is a fraction. Is it possible that we could get an answer that is not a whole number?
II. The sum of the measures of the interior angles of a polygon with n sides is given by

$$
S=(n-2) \times 180^{\circ}
$$

Example 4. A pentagon has five sides. Therefore the sum of the measures of its interior angles is $S=(5-2) \times 180^{\circ}=540^{\circ}$.

Example 5. A heptagon has seven sides. What is the sum of the measures of its interior angles?
III. The measure of an interior angle of an equiangular polygon is given by

$$
I=\frac{(n-2) \times 180^{\circ}}{n}
$$

Example 6. A nonagon has nine sides. Therefore the measure of an interior angle of an equiangular nonagon is $\frac{(9-2) \times 180^{\circ}}{9}=\frac{7 \times 180^{\circ}}{9}=140^{\circ}$

Example 7. A decagon has ten sides. What is the measure of an interior angle of an equiangular decagon?
IV. The sum of the measures of the exterior angles of a polygon is 360°. Therefore the measure of an exterior angle of an equiangular polygon is $\frac{360^{\circ}}{n}$.

Example 8. The measure of an exterior angle of an equiangular decagon is

$$
\frac{360^{\circ}}{10}=36^{\circ} .
$$

Example 9. What is the measure of an exterior angle of an equiangular nonagon?

Example 10. Find the number of sides for a regular polygon whose sum of the measures of its interior angles is 1980°.

$$
\begin{gathered}
(n-2) \times 180^{\circ}=1980^{\circ} \\
n-2=\frac{1980^{\circ}}{180^{\circ}}=11 \\
n=13
\end{gathered}
$$

Example 11. Find the number of sides for a regular polygon whose sum of the measures of its interior angles is 2340°.

Example 12. Find the number of sides for a regular polygon whose measure of each interior angle is 150°.

$$
\begin{gathered}
\frac{(n-2) 180^{\circ}}{n}=150^{\circ} \\
(n-2) 180^{\circ}=150^{\circ} n \\
n 180^{\circ}-2 \times 180^{\circ}=150^{\circ} n \\
30^{\circ} n=360^{\circ} \\
n=12
\end{gathered}
$$

Example 13. Find the number of sides for a regular polygon whose measure of each interior angle is 168°.

