Math 1312

Parallel and Perpendicular Lines

Definitions:

- A plane is a two dimensional geometric object. It has infinite length and infinite width but no thickness.
- > Parallel lines are lines that lie in the same plane but do not intersect. (Symbol ||)
- Perpendicular lines are two lines that meet to form congruent adjacent angles. (Symbol ⊥)

Example:

Theorem: If two lines are perpendicular, then they meet to form right angles.

Given: $\stackrel{\leftrightarrow}{AB} \perp \stackrel{\leftrightarrow}{CD}$ intersecting at *E*. *Prove:* $\angle AEC$ is a right angle.

PROOF

Statements

- 1. $\overrightarrow{AB} \perp \overrightarrow{CD}$ intersecting at *E*
- 2. $\angle AEC \cong \angle CEB$
- 3. $m \angle AEC = m \angle CEB$
- 4. $\angle AEB$ is a straight angle
- 5. $m \angle AEC + m \angle CEB = m \angle AEB$
- 6. $m \angle AEC + m \angle CEB = 180^{\circ}$
- 7. $m \angle AEC + m \angle AEC = 180^{\circ}$ or $2m \angle AEC = 180^{\circ}$
- 8. $m \angle AEC = 90^{\circ}$
- 9. $\angle AEC$ is a right angle

Reasons

Definition: The **perpendicular bisector** of a segment is a line (or a segment) that is perpendicular to a given segment and divides it into two congruent segments.

Example:

Theorem: The perpendicular bisector of a line segment is unique.

Construction 5: To construct the line perpendicular to a given line through a given point on the line.

Given: Line l and point P on l. *To construct*: \overrightarrow{PQ} so that $\overrightarrow{PQ} \perp l$. *Construction*:

- 1. Place the compass at the given point P.
- 2. Draw arcs to the left and right of P, using the same compass setting, and intersecting given line l. Label the points of intersection X and Y.
- 3. Open the compass to a setting greater than *XY*.
- 4. Put the compass at point X and draw an arc above line n.
- 5. With the same compass setting, repeat the process in #4 at point Y.
- 6. Label the point of intersection of the two arcs as point Q.
- 7. Use a straightedge to draw \overrightarrow{PQ} .

Example:

Try the following:

Construct a line perpendicular to line b and passing through point C.

Construction 6: To construct the line perpendicular to a given line through a given point not on the given line.

Given: Line l and point P outside of l. To construct: \overrightarrow{PQ} so that $\overrightarrow{PQ} \perp l$. Construction:

- 1. Place the compass at the given point *P*.
- 2. Draw an arc that intersects the given line l in two different places.
- 3. Label the points of intersection on line m as X and Y.
- 4. Open the compass to greater than half of XY.
- 5. Place the compass at point X and draw and arc below line l.
- 6. Use the same setting and repeat #5 at point Y.
- 7. Label the point of intersection of the two arcs as Q.
- 8. Use a straightedge to draw \overrightarrow{PQ} .

Example:

Construction 7: To construct the line parallel to a given line through a given point not on that line.

Given: \overrightarrow{AB} and external point *P*. *To construct*: A line through *P* parallel to \overleftarrow{AB} . *Construction*:

- 1. Draw a line through point P that intersects line \overrightarrow{AB} .
- 2. Label the point of intersection of the new line and line \overrightarrow{AB} as point Q.
- 3. Copy one of the angles that has Q as a vertex. (See Construction #3)
- 4. Copy it so that P is the vertex and one side of the angle is on line \overrightarrow{PQ} .
- 5. Extend the other side of the angle out to form a line.
- 6. This new line is parallel to the original line \overrightarrow{AB}

Example:

Relations and Their Properties

Table 1.8 on page 47

Relation	Object Related	Example
Is equal to	numbers	2 + 3 = 5
Is greater than	numbers	7 > 5
Is perpendicular to	lines	$m \perp l$
Is complementary to	angles	$\angle 1$ is comp to $\angle 2$
Is congruent to	line segments, angles	$\angle 1 \cong \angle 2$,
		$\overline{AB} \cong \overline{BC}$
Is a brother	people	Mike is brother of Tom

There are three special properties that may exist for a given relation **R**.

Properties

➢ Reflexive property: a**R**a

Example: 5 = 5, equality of numbers has a reflexive property.

> Symmetric property: If $a\mathbf{R}b$, then $b\mathbf{R}a$.

Example: If $n \perp m$, then $m \perp n$, perpendicular lines have the symmetric property.

> Transitive property: If $a\mathbf{R}b$ and $b\mathbf{R}c$, then $a\mathbf{R}c$,

Example: If $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$, then $\angle 1 \cong \angle 3$, congruence of angle is transitive.

Example: Given the line segment A- B- C- D give

- a) An example of reflexive property
- b) An example of the transitive property
- c) An example of the symmetric property

Example: Does the relation "is a brother of " have

- a) A reflexive property (consider one male)
- b) A symmetric property (consider two males)
- c) A transitive property (consider three males)

Example: Does the relation "is complementary to" have

- a) A reflexive property (consider one angle)
- b) A symmetric property (consider two angles)
- c) A transitive property (consider three angles)