Math 1312 Section 3.3 Analyzing Isosceles Triangles

Definitions:

An **isosceles triangle** is a triangle having at least two congruent (of equal length) sides. The two sides are called the **legs** and the third side is called the **base**.

The point at which the legs meet is the **vertex** and the angle there is the **vertex angle**.

The two angles that include the base are called the **base angles**.

Example: Name the parts of this isosceles triangle:

Other important triangle parts:

Definitions:

- Median is a segment that starts from an angle and goes to the <u>midpoint</u> of the opposite side.
- > Altitude is a segment that starts from an angle and is perpendicular to the opposite side.
- Angle bisector of a triangle is a segment that <u>bisects an angle and goes to the opposite</u> side.
- Perpendicular bisector is a segment that <u>passes through the midpoint</u> of a side AND is <u>perpendicular to that side</u>.

Example: *Fill in the blanks.*

- a) \overline{DF} is _____ of ΔDEC .
- b) \overline{EH} is _____ of ΔDEC .

Theorem: Corresponding altitudes of congruent triangles are congruent.

Theorem: The bisector of the vertex angle of an isosceles triangle separates the triangle into two congruent triangles.

Isosceles Triangle Theorem: If two sides of a triangle are congruent, then the angles opposite those sides are congruent.

AND (converse): If two angles of a triangle are congruent, then the sides opposite those angles are congruent.

Example:

 ΔDEF is isosceles. $\angle D$ is the vertex angle. $m \angle E = 2x + 40$ and $m \angle E = 3x + 22$. Find the measures of each angle.

Note:

- > A triangle is equilateral **if and only if** it is equiangular.
- \blacktriangleright Each angle of an equilateral triangle measures 60°.

Definition: The perimeter of a triangle is the sum of the lengths of all of its sides.

Example: In the figure below, $\overline{PQ} \cong \overline{PR}$, and \overline{PS} and \overline{ST} are medians. Find QT and QR.

Example: \overline{KL} is an altitude of ΔHJK . Find x.

Example: \overline{PO} is the perpendicular bisector of \overline{MN} . Find x.

Example: In ΔJKL , $\overline{JK} \cong \overline{JL}$, and \overline{JM} is both a median, and altitude, and an angle bisector. Find the following.

- a) *m∠KMJ*
- b) *KL*
- c) *m∠KJM*

d) *m∠KJL*

e) *m∠K*

Example:

a) $x = _$ ____

c)
$$x =$$

Example: Use the figure below to find the angle measures if $m \angle 1 = 30$.

