Math 1312 Section 5.2 Similar Polygons

Definition:

Two polygons are similar (~) if and only if two conditions are satisfied:

1. All pairs of corresponding angles are congruent.

2. The ratios of the measures of corresponding sides are equal.

The symbol "~" means "similar to"

Definition:

Scale Factor (constant of proportionality) is the ratio of the lengths of two corresponding sides of two similar polygons.

Example 1:

The following quadrilaterals are similar:

Why are they similar? Because......

1)
$$\angle A \cong \angle E$$
 $\angle B \cong \angle F$ $\angle C \cong \angle G$ $\angle D \cong \angle H$

2)
$$\frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{DA}{HE} = \frac{2}{1}$$
 This is the scale factor.

Similar figures have the same shape but not necessarily the same size.

Example 2:

Which figures are similar?

Two congruent polygons are also similar.

Question:

Two similar polygons are always congruent, true or false?

Example 3:

Which figures must be similar?

a. Any two isosceles triangles

NO

b. Any two regular pentagons

Yes

c. Any two rectangles

NO

d. Any two squares

Yes

Example 4:

Trapezoid PQRS is similar to trapezoid UTWV. Find the value of x.

a. identify the scale factor

$$\frac{14}{35} = \frac{2}{5}$$

c. cross multiply

d. solve

Example 5:

Complete each statement - RSTU ~ EFGH

3.
$$\angle H = \underline{76}$$
4. $\angle G = \underline{66}$
3. $\angle G = \underline{66}$
5. $\frac{G}{G} = \underline{66}$
6. $\frac{G}{G} = \underline{16} = \underline{66}$
6. $\frac{G}{G} = \underline{16} = \underline{66}$

5.
$$\frac{HG}{UT} = \frac{6}{5}$$

6.
$$\frac{ST}{FG} = \frac{15}{18} = \frac{5}{6}$$

Example 6:

Complete each statement - ABCDE~RSTUV

2.
$$m\angle E = 3c$$

2.
$$m\angle E = 30$$
 3. $m\angle A = 60^{\circ}$

4.
$$m \angle B = \underline{90}$$

4.
$$m \angle B = \frac{90}{28}$$
, $\frac{3}{5} = \frac{10}{5}$, $\frac{64}{5}$, $\frac{64}{5}$, $\frac{64}{5}$

6.
$$y = \frac{5}{3} \cdot 12 = 20$$

7.
$$UT = \frac{5}{3}$$
 $.14 = \frac{70}{3} = \frac{26^{2}13}{3}$

8.
$$UV = 20$$
, $DE = \frac{3}{5} 20 = 12$

Example 7:

AABC~ΔDEF. The scale factor of ΔABC to ΔDEF is $\frac{3}{7}$. Draw a picture and then complete each statement. We don't know which Δ 13 bigger will assume Δ 0 EF 15

1. If AB=15, then DE= $\frac{7}{15} = 35$

2. If EF=42, then BC=
$$\frac{42}{7}$$
 $\frac{3}{7}$ A

3. If DF=56, then AC=
$$\frac{56}{7} = 24$$

Example 8:

In order to find the distance AB across a lake, a surveyor constructed Δ OCD similar to Δ OBA. He measured OB (36m), OC (20m), and CD (150m) directly to obtain the lengths shown. Find the length of AB.

D (150m) directly to obtain the lengths shown. If
$$\frac{AB}{150} = \frac{9}{35} = \frac{36}{5} = \frac{9}{5}$$

$$\frac{AB}{150} = \frac{9}{350} = \frac{35}{5} = \frac{9}{5}$$

$$\frac{AB}{150} = \frac{9}{350} = \frac{36}{5} = \frac{9}{5}$$

Example 9:

 $\Delta RST \sim \Delta RUV \;\; find \; x \; and \; y$

$$4 = \frac{1}{3}$$
 $1 = \frac{1}{3}$
 $1 = \frac{1}{3}$