NAME: Student #: Student #: Manual Company of the C
Department of Mathematics, University of Houston Math 3333 - Intermediate Analysis - David Blecher KEY—Test 2-July 29, 2010.
[8] I reconculation to (reconculation) field to be reconstructed to the form of the proof (a)
Instructions. Time= 1 hour. Show all working and reasoning, the points are almost all for logical,
complete reasoning. You may quote without proofs results from the classnotes or text, except for
the part you are asked to prove. [Approximate point values are given, total = 100 points plus 9
bonus points].
 (a) Show that a convergent sequence is bounded. (b) State the Bolzano-Weierstrass theorem for sequences. (c) Prove that if s_n → s then s_n → \$. (d) Give the definition (involving ε) of a Cauchy sequence. (e) State the Cauchy test. (f) Solution: (a) Suppose s_n = s, then by (a) with ε = 1 there exists N such that s_n = s < 1 whenever n ≥ N. Now s_n = s_n
Method 2: The function $f(x) = x $ is continuous, so by the 'main theorem for continuity': $f(s_n) \to f(s)$. (d) That given any $\epsilon > 0$, $\exists N$ such that $ s_n - s_m < \epsilon$ whenever $m \ge n \ge N$.
(e) A sequence is convergent iff it is a Cauchy sequence.
(e) A sequence is convergent iff it is a Cauchy sequence. 2. Prove that $\lim_{n} \frac{\sin(n)}{2n+1} = 0$. Solution: $\left \frac{\sin(n)}{2n+1}\right \leq \frac{1}{2n} \neq 0$. Therefore by 'Fact 6', $\lim_{n} \frac{\sin(n)}{2n+1} = 0$.
3. Complete the sentence: A set S is closed iff for every sequence (s_n) in S , if (s_n) converges then [3]
Solution: its limit is in S too.
4. Using the ϵ - δ definition, show that $\lim_{x\to 1} \frac{2x^2+3x+3}{x+1} = 4$. [17]
Solution: $\frac{2x^2+3x+3}{x+1} - 4 = \frac{2x^2-x-1}{x+1} = \frac{2(2x+1)(x-1)}{x+1}$. Thus if $ x-4 < 1$ then $0 < x < 2$ and so $x+1 > 1$. Also, $0 < 2x < 4$ and so $1 \le 2x + 1 < 5$. Therefore
$\left \frac{2x^2 + 3x + 3}{x + 1} - 4 \right = \frac{ 2x + 1 x - 1 }{O x + 1 } < 5 x - 1 .$
Given $\epsilon > 0$ choose $\delta = \min\{1, \epsilon/5\}$. Then $0 < x-1 < \delta$ implies that $\left \frac{2x^2+3x+3}{x+1}-4\right < 5 x-1 < 5\delta \le \epsilon$.

